
...

MULTICORE RESOURCE MANAGEMENT
...

CURRENT RESOURCE MANAGEMENT MECHANISMS AND POLICIES ARE INADEQUATE FOR

FUTURE MULTICORE SYSTEMS. INSTEAD, A HARDWARE/SOFTWARE INTERFACE BASED ON

THE VIRTUAL PRIVATE MACHINE ABSTRACTION WOULD ALLOW SOFTWARE POLICIES TO

EXPLICITLY MANAGE MICROARCHITECTURE RESOURCES. VPM POLICIES, IMPLEMENTED

PRIMARILY IN SOFTWARE, TRANSLATE APPLICATION AND SYSTEM OBJECTIVES INTO VPM

RESOURCE ASSIGNMENTS. THEN, VPM MECHANISMS SECURELY MULTIPLEX, ARBITRATE,

OR DISTRIBUTE HARDWARE RESOURCES TO SATISFY THE VPM ASSIGNMENTS.

......Continuing the long-term trend of
increasing integration, the number of cores
per chip is projected to increase with each
successive technology generation. These
chips yield increasingly powerful systems
with reduced cost and improved efficiency.
At the same time, general-purpose comput-
ing is moving off desktops and onto diverse
devices such as cell phones, digital enter-
tainment centers, and data-center servers.1

These computers must have the key features
of today’s general-purpose systems (high
performance and programmability) while
satisfying increasingly diverse and stringent
cost, power, and real-time performance
constraints.

An important aspect of multicore chips is
improved hardware resource utilization. On
a multicore chip, concurrently executing
threads can share costly microarchitecture
resources that would otherwise be under-
utilized, such as off-chip bandwidth. Higher
resource utilization improves aggregate per-
formance and enables lower-cost design
alternatives, such as smaller die area or less
exotic battery technology. However, in-
creased resource sharing presents a number
of new design challenges. In particular,
greater hardware resource sharing among
concurrently executing threads can cause

individual thread performance to become
unpredictable and might lead to violations
of the individual applications’ performance
requirements.2,3

Traditionally, operating systems are re-
sponsible for managing shared hardware
resources—processor(s), memory, and I/O.
This works well in systems where processors
are independent entities, each with its own
microarchitecture resources. However, in
multicore chips, processors are concurrently
executing threads that compete with each
other for fine-grain microarchitecture re-
sources. Hence, conventional operating
system policies don’t have adequate control
over hardware resource management. To
make matters worse, the operating system’s
software policies and the hardware policies
in the independently developed microarch-
itecture might conflict. Consequently, this
compromises operating system policies di-
rected at overall system priorities and real-
time performance objectives.

In the context of future applications, this
poses a serious system design problem,
making current resource management
mechanisms and policies no longer ade-
quate for future multicore systems. Policies,
mechanisms, and the interfaces between
them must change to fit the multicore era.

Kyle J. Nesbit

James E. Smith

University of Wisconsin

–Madison

Miquel Moreto

Polytechnic University of

Catalonia

Francisco J. Cazorla

Barcelona Supercomputing

Center

Alex Ramirez

Mateo Valero

Barcelona Supercomputing

Center and Polytechnic

University of Catalonia

...

6 Published by the IEEE Computer Society 0272-1732/08/$20.00 G 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

In this article, our vision for resource
management in future multicore systems
involves enriched interaction between sys-
tem software and hardware. Our goal is for
the application and system software to
manage all the shared hardware resources
in a multicore system. For example, a
developer or end user will specify an
application’s quality-of-service (QoS) objec-
tives, and the developer or system software
stack will translate these objectives into
hardware resource assignments. Because
QoS objectives are often application specif-
ic, the envisioned multicore architecture
provides an efficient and general interface
that can satisfy QoS objectives over a range
of applications. By enriching the interaction
between hardware and software, the envi-
sioned resource management framework
facilitates a more efficient, better perform-
ing platform design.

Designing general-purpose systems re-
quires a clear separation of policies and
mechanisms.4 Policies provide solutions; for
flexibility, we strive for policies implement-
ed in software. Mechanisms provide the
primitives for constructing policies. Because
primitives are universal, system designers
can implement mechanisms in both hard-
ware and software. In general, mechanisms
that interact directly with fine-grain hard-
ware resources should be implemented in
hardware; to reduce hardware cost, mecha-
nisms that manage coarse-grain resources
should be implemented in software.

Virtual private machines
In a traditional multiprogrammed sys-

tem, the operating system assigns each
application (program) a portion of the
physical resources—for example, physical
memory and processor time slices. From the
application’s perspective, each application
has its own private machine with a
corresponding amount of physical memory
and processing capabilities. With multicore
chips containing shared microarchitecture-
level resources, however, an application’s
machine is no longer private, so resource
usage by other, independent applications
can affect its resources.

Therefore, we introduce the virtual
private machine (VPM) framework as a

means for resource management in systems
based on multicore chips.3 VPMs are similar
in principle to classical virtual machines.
However, classical virtual machines virtua-
lize a system’s functionality5 (ignoring
implementation features), while VPMs
virtualize a system’s performance and power
characteristics, which are implementation
specific. A VPM consists of a complete set
of virtual hardware resources, both spatial
(physical) resources and temporal resources
(time slices). These include the shared
microarchitecture-level resources. By defini-
tion, a VPM has the same performance and
power characteristics as a real machine with
an equivalent set of hardware resources.

The VPM abstraction provides the con-
ceptual interface between policies and
mechanisms. VPM policies, implemented
primarily in software, translate application
and system objectives into VPM resource
assignments, thereby managing system re-
sources. Then, VPM mechanisms securely
multiplex, arbitrate, or distribute hardware
resources to satisfy the VPM assignments.

Spatial component
A VPM’s spatial component specifies the

fractions of the system’s physical resources
that are dedicated to the VPM during the
time(s) that it executes a thread. For example,
consider a baseline system containing four
processors, each with a private L1 cache. The
processors share an L2 cache, main memory,
and supporting interconnection structures.
Figure 1 shows that the policy has distribut-
ed these resources among three VPMs. VPM
1 contains two processors, and VPMs 2 and
3 each contain a single processor. The policy
assigns VPM 1 a significant fraction (50
percent) of the shared resources to support a
demanding multithreaded multimedia ap-
plication and assigns the other two VPMs
only 10 percent of the resources. These
assignments leave 30 percent of the cache
and memory resources unallocated; these
resources are called excess service. Excess
service policies distribute excess service to
improve overall resource utilization and
optimize secondary performance objectives.

In our example, we focus on shared
memory hierarchy resources, but VPM
concepts also apply to internal processor

..

MAY–JUNE 2008 7
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

resources, such as issue buffers, load/store
queue entries, and instruction decode and
execution bandwidth.2 Furthermore, we can
apply the same concepts to architected
resources such as memory capacity and I/O.

As Figure 1 illustrates, a VPM’s spatial
component might contain multiple proces-
sors. Multiprocessor VPMs are a natural
extension of gang scheduling and support
hierarchical resource management.6,7 For
example, schedulers and resource manage-
ment policies running within a multipro-
cessor VPM can schedule and manage the
VPM’s processors and resources as if the
VPM were a real multiprocessor machine.
That is, multiprocessor VPMs can support
recursive virtualization.5

Temporal component
A VPM’s temporal component is based

on the well-established concept of ideal

proportional sharing.8 It specifies the frac-
tion of processor time (processor time slices)
that a VPM’s spatial resources are dedicated
to the VPM (see Figure 2). As with spatial
VPM resources, a VPM’s temporal compo-
nent naturally lends itself to recursive
virtualization and hierarchical resources
management, and excess temporal service
might exist.

Minimum and maximum VPMs
To satisfy objectives, policies might

assign applications minimum or maximum
VPMs, or both, depending on the objec-
tives. Mechanisms ensure an application is
offered a VPM that is greater than or equal
to the application’s assigned minimum
VPM. (We precisely define the greater than
or equal to VPM ordering relationship
elsewhere.3) Informally, the mechanisms
offer an application at least the resources

Figure 1. Virtual private machine (VPM) spatial component. The policy has distributed the

multicore chip’s resources among three VPMs. After assigning VPM 1 50 percent of the

shared resources and VPMs 2 and 3 each 10 percent, it leaves 30 percent of the cache and

memory resources unallocated for excess service.

...

ARCHITECTURE-OS INTERACTION

...

8 IEEE MICRO

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

of its assigned minimum VPM. When
combined with the assumption that an
application will only perform better if it is
offered additional resources (performance
monotonicity9), ensuring a minimum VPM
assignment leads to desirable performance
isolation; that is, the application running on
the VPM performs at least as well as it
would if it were executing on a real machine
with a configuration equivalent to the
application’s assigned VPM. This perfor-
mance level is assured, regardless of the
other applications in the system.

Mechanisms can also ensure an applica-
tion receives no more than its maximum
VPM resources. Policies can use maximum
VPM assignments to control applications’
power consumption, which is based on the
assumption that an application’s power
consumption is a monotonically increasing
function of its resource usage (power
monotonicity). For maximum VPM assign-
ments to improve power savings significant-
ly, they should be supported by mechanisms
that power down unused resources. Fur-
thermore, because temperature and transis-
tor wear-out strongly depend on power
consumption, policies can use maximum

VPMs to control temperature and lifetime
reliability.10 Lastly, application developers
can use maximum VPMs to test whether a
minimum VPM configuration satisfies an
application’s real-time performance require-
ments.9

Policies
VPM assignments satisfy real-time per-

formance, aggregate performance, power,
temperature, and lifetime reliability objec-
tives. Overall, the VPM policy design space
is enormous and is a fertile area for future
research. Here, we begin with a high-level
overview of the policy design space and then
discuss the basic types of policies and how
they interact in our envisioned system
architecture.

In general, we envision two basic types of
policies. Application-level policies satisfy an
application’s QoS objectives by translating
the QoS objectives into a VPM configura-
tion as well as scheduling and managing
VPM resources assigned to the application.
System policies satisfy system objectives by
controlling the distribution of VPM re-
sources among applications. System policies
control resource distribution by granting
and rejecting requests for VPM resources
and revoking VPM resources when the
system is overloaded.

The policy architecture’s main feature is
its extensibility (see Figure 3, next page): we
clearly separate policies and mechanisms,4

and policies are easy to replace or modify on
a per system and per application basis.11 For
example, in Figure 3, a system is running
five applications, each within its own VPM
(not shown). The first application (on the
left) is a real-time recognition application.
To satisfy its real-time requirements, the
application is running with an application-
specific VPM that the application’s devel-
oper computed offline. The second and
third applications (mining and synthesis)
are written in a domain-specific, concurrent
programming language. The language in-
cludes a runtime that computes VPM
configurations online and optimizes appli-
cations’ concurrency in coordination with
the applications’ VPM resources. The
mining and synthesis applications are iso-
lated from each other, but they share the

Figure 2. VPMs consist of a spatial

component and a temporal component.

The temporal component specifies the

fraction of processor time that a VPM’s

spatial resources are dedicated to

the VPM.

..

MAY–JUNE 2008 9
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

library code that implements the language’s
runtime. The last two applications (MySQL
and Apache) are standard Linux applica-
tions that are oblivious to the underlying
system’s VPM support. The applications are
running on a paravirtualized version of
Linux, which in turn is running on a thin
software layer that monitors the applica-
tions’ workload characteristics and roughly

computes VPM configurations using heu-
ristics and ad hoc techniques. Most impor-
tantly, application-level policies allow ap-
plication developers and runtime libraries to
customize a system’s behavior to satisfy a
range of applications’ requirements.

Application-level policies
In general, there are two logical steps for

determining VPM assignments: modeling
and translation. We describe the steps as
separate phases, although in practice they
may be combined. As we described earlier,
application policies compute VPM config-
urations either online (automated) or offline
(manually). Online policies are based pri-
marily on runtime analysis (for example, by
using performance counters), while offline
policies require an application developer to
perform most of the program analysis.
Online/offline hybrid policies are also
feasible.

In addition, application policies can use
standardized application-level abstraction
layers that provide developers with abstract
machine models. Such models are often
implementation independent and have per-
formance characteristics that are easier for
developers to reason about (see Figure 4).

VPM modeling. The VPM modeling step
maps application QoS objectives, such as
minimum performance and maximum
power, to VPM configurations. The sophis-
tication of VPM modeling techniques spans
a fairly wide range. At one end are simple,

Figure 3. The VPM system architecture consists of application-level policies, system

policies, software mechanisms, and hardware mechanisms. The extensible policy

architecture lets policy builders modify policies on a per system and per application basis.

Figure 4. Application policies compute VPM configurations in two logical

steps: VPM modeling and translation. Standardized application-level

abstractions can be used to abstract away irrelevant implementation-

specific VPM details.

...

ARCHITECTURE-OS INTERACTION

...

10 IEEE MICRO

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

general-purpose analytical models that use
generic online profiling information to
roughly predict an application’s perfor-
mance and power when running on differ-
ent VPM configurations. At the other end
are models specialized to a specific applica-
tion (or a domain of applications) through
offline profiling and characterization. Such
offline models can precisely capture an
application’s performance and power on
different VPM configurations.

Application- or domain-specific VPM
modeling can provide more precise predic-
tions but might require more developer
effort—for example, to determine suitable
VPM configurations offline. Applications
with critical QoS objectives (such as real-
time applications) will generally require
more precise VPM modeling.

VPM translation. The VPM translation
step uses the VPM models to find VPM
configurations that satisfy an application’s
QoS objectives. Multiple VPM configura-
tions can satisfy the same objective. For
example, multiple minimum VPM config-
urations can satisfy a single real-time
performance objective; that is, one suitable
VPM configuration might have a larger
spatial component and smaller temporal
component, while another suitable VPM
might have a larger temporal component
and smaller spatial component. Or there
might be different combinations of resourc-
es within the spatial component.

Furthermore, applications might have
multiple objectives that a policy can use to
prune the number of suitable VPM config-
urations. For example, an application policy
can search for a VPM configuration that
satisfies a real-time performance require-
ment and minimizes power consumption.
Moreover, a policy can assign an application
a maximum VPM to bound the applica-
tion’s power consumption. In many practi-
cal situations, finding the optimal VPM
configuration is NP-hard. Consequently,
online translation generally must use ap-
proximate and heuristic-based optimization
techniques. For applications with critical
QoS objectives, the application developer
can do a portion of the VPM translation
offline. Moreover, the developer can com-

bine the VPM modeling and translation
steps into a single step. For example, an
application developer might use maximum
VPM assignments and trial and error to
compute a minimum VPM configuration
that satisfies their application’s real-time
performance objective.9

Once the policy has found a suitable
VPM configuration, it initiates a request to
the system’s policies for the VPM resources.
If the VPM resources are available, the
system policies securely bind the VPM
resources to the application.11 When a
system is heavily loaded, the system policies
might reject an application’s VPM request
or revoke a previous VPM resource binding.

An application policy must implement a
procedure for handling VPM rejections and
revocations. When a rejection or revocation
occurs, an application policy can find
another suitable VPM configuration or
reconfigure the application to reduce the
application’s resource requirements. For
example, a real-time media player can
downgrade its video quality or simply
return an insufficient resource error message
and exit.

To help with global (systemwide) re-
source optimization, VPM system policies
can provide feedback to the applications’
policies. The feedback informs the applica-
tions of global resource usage. An applica-
tion’s policies can use the system feedback
information to further prune the suitable
VPM configurations and find a VPM that is
amenable to systemwide resource con-
straints. In addition, an application’s poli-
cies can use VPM modeling and online
profiling information to dynamically re-
spond to changing workload characteristics.

VPM abstraction layer. In our discussion
so far, we’ve assumed a relatively high-level
VPM abstraction—for example, VPMs that
consist of shares of cache bandwidth, cache
storage, and memory system bandwidth.
However, real hardware resources are more
complex. For example, a physical cache
implementation consists of banks, sets, and
ways. VPM mechanisms don’t abstract
hardware resources; that is, the VPM
mechanisms convey implementation specif-
ic details to the application policies. Expos-

..

MAY–JUNE 2008 11
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

ing implementation details creates an inter-
face that’s more efficient to implement and
grants more latitude to implementers of
higher-level abstractions.11

However, exposing implementation de-
tails to applications can make applications
implementation dependent. Moreover,
many application policies don’t need low-
level implementation details to satisfy their
QoS objectives. To improve application
compatibility, many application policies can
use standardized VPM abstraction layers. A
VPM abstraction layer provides a high-level
VPM that abstracts away a system’s imple-
mentation-specific details while capturing
the system’s first-order performance and
power characteristics. At runtime, the
abstraction layer efficiently translates high-
level VPM configurations into low-level
VPM assignments that the system’s mech-
anisms support.

System policies
System policies control the distribution

of VPM resources by brokering applica-
tions’ VPM requests. System policies have
three basic components: a system monitor,
feedback policies, and excess service policies
(see Figure 5).

System monitor. The system monitor
tracks the load on the system’s resources
and detects system overload. A system is
overloaded if it doesn’t have enough
resources to satisfy its applications’ VPM

assignments. In general, it’s best to detect
overload as early as possible, such as when
an application initiates a VPM request that
causes the system to become overloaded. To
detect system overload, the system must
monitor any shared resource that can
become overloaded, such as cache storage,
execution bandwidth, cooling capacity, and
power delivery. We can detect that a VPM
request overloads a system’s physical re-
sources with an admission control test. For
example, the system monitor can compare
the set of dedicated VPM resources with the
capacity of the system’s physical resources.

Detecting that a VPM request overloads a
system’s less tangible resource constraints
(such as a power-delivery system, cooling
capacity, or transistor lifetime reliability) is
more difficult. The system monitor must
use VPM models to translate between less
tangible resource constraints and VPM
configurations. The VPM models should
be accurate enough to detect most overload
conditions at the time an application
initiates a VPM request; however, they
don’t have to be completely accurate. The
system monitor’s VPM models are used to
supplement conventional hardware sensors,
such as voltage and temperature sensors.
Hardware sensors can detect anomalous
overload conditions (such as overheating)
in real time and prevent catastrophic
failures. If a sensor detects an overloaded
resource, the system policies have accepted
more VPM requests than the system’s
physical resources can satisfy. In this case,
the system policies must revoke some
applications’ assigned VPM resources.

Feedback policies. Feedback policies deter-
mine which applications’ VPM resources
should be rejected or revoked when the
system is overloaded. For example, when a
system is overloaded, a feedback policy
might reject any incoming VPM request
or revoke the VPM resources of the
application with the lowest user-assigned
priority. Feedback policies also inform
applications of systemwide resource utiliza-
tion and the cause(s) of rejected or revoked
VPM requests—for example, the system
might have insufficient power resources
available.

Figure 5. System policies broker VPM requests and monitor application

resource usage to ensure that the system does not become overloaded.

...

ARCHITECTURE-OS INTERACTION

...

12 IEEE MICRO

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

As we described earlier, applications’
policies can use the feedback to compute a
suitable VPM configuration that’s amenable
to systemwide resource usage. The feedback
policies should also provide applications
with up-to-date systemwide resource usage
information regardless of VPM rejections
and revocations. This way the feedback
policies can direct global optimization of a
system’s resource usage.

Excess service policies. After application and
system policies have settled on a suitable set
of VPM assignments, there might be excess
service available. Excess service is service
that is unassigned or assigned but unused by
the application to which it’s assigned. Excess
service policies distribute excess service to
optimize system objectives. For example,
these policies can distribute service to
improve response time or throughput
averaged over all applications, to conserve
power or transistor lifetime, or a combina-
tion of such objectives. To optimize power
or transistor lifetime objectives, excess
service policies prevent applications from
consuming the excess service. That is, these
policies assign tasks maximum VPMs, thus
causing the excess resources to be powered
off. Excess service policies must also ensure
that distributing excess service doesn’t
violate applications’ maximum VPM as-
signments.

In most cases, excess service policies
transparently adjust applications’ VPM
assignments. For example, they can trans-
parently increase a minimum VPM assign-
ment or decrease a maximum VPM assign-
ment without violating the application
policy’s VPM assignments. For some re-
sources, the policies must notify an appli-
cation’s policies when excess resources are
added—for example, they must notify an
application’s thread scheduler when proces-
sors are added to a VPM.

For some resources, excess service be-
comes available and must be distributed at a
fine time granularity, such as with SDRAM
memory system bandwidth. In such cases, a
portion of the excess service policy must be
implemented in hardware. However, a
policy’s hardware portion should be simple,
parameterized, and general; that is, it should

work with multiple software excess-service
policies.

Mechanisms
There are three basic types of mecha-

nisms needed to support the VPM frame-
work: a VPM scheduler, partitioning mech-
anisms, and feedback mechanisms (see
Figure 6). The first two types securely
multiplex, arbitrate, or distribute hardware
resources to satisfy VPM assignments. The
third provides feedback to application and
system policies. Because mechanisms are
universal, system builders can implement
mechanisms in both hardware and software.
Generally, the VPM scheduler is imple-
mented in software (in a microkernel11 or a
virtual machine monitor12), while the par-
titioning mechanisms and feedback mecha-
nisms are primarily implemented in hard-
ware. Although a basic set of VPM
mechanisms are available,2,3 many research
opportunities remain to develop more
efficient and robust VPM mechanisms.

VPM scheduler
The VPM scheduler satisfies applications’

temporal VPM assignments by time-slicing
hardware threads.3 The VPM scheduler is a
proportional-fair (p-fair) scheduler,13 but it
must also ensure that coscheduled applica-
tions’ spatial resource assignments don’t
conflict—that is, that the set of coscheduled
threads’ spatial resource assignments match
the physical resources available and don’t
oversubscribe any microarchitecture re-

Figure 6. VPM mechanisms are implemented in hardware and software.

The mechanisms satisfy VPM resource assignments and provide feedback

regarding individual application and systemwide resource usage.

..

MAY–JUNE 2008 13
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

sources. VPM scheduling in its full gener-
ality, satisfying proportional fairness with-
out spatial conflicts, is an open research
problem.3

When the VPM scheduler context
switches an application onto a processor
(or a group of processors), the scheduler
communicates the application’s spatial
VPM assignment to the hardware partition-
ing mechanisms through privileged control
registers. Once the control registers are
configured, the VPM resources are securely
bound to the application. Secure binding
decouples the authorization from resource
usage11—that is, once a resource is securely
bound to an application, the application’s
policies can schedule and manage its VPM
resources without reauthorization. This way
VPMs can efficiently support hierarchical
scheduling.6

The VPM scheduler we describe here is a
first-level scheduler (or root scheduler), and
application-level schedulers are second-level
schedulers. Hierarchical scheduling is useful
for satisfying different classes of QoS
requirements.6 Furthermore, precise appli-
cation-level schedulers will play an impor-
tant role in future parallel programming
models.

Partitioning mechanisms
To satisfy the spatial component of VPM

assignments, each shared microarchitecture
resource must be under the control of a
partitioning mechanism that can enforce
minimum and maximum resource assign-
ments. As we described earlier, the resource
assignments are stored in privileged control
registers that the VPM scheduler configures.
In general, each shared microarchitecture
resource is one of three basic types of
resources: a memory storage, buffer, or
bandwidth resource. Each type of resource
has a basic type of partitioning mechanism.
For example, thread-aware replacement
algorithms partition storage resources (main
memory and cache storage3,14), upstream
flow control mechanisms partition buffer
resources (issue queue and miss status
handling registers2), and fair-queuing and
traffic-shaping arbiters partition bandwidth
resources (execution and memory ports3).
These basic techniques combined with the

proper control logic can sufficiently enforce
minimum and maximum resource assign-
ments.

For maximum VPM assignments to be
useful, the partitioning mechanisms must be
accompanied by mechanisms to power
down resources during periods of inactivity.
An example would be, mechanisms that
clock-gate unused pipeline stages and tran-
sition inactive memory storage resources
into a low-power state. As we mentioned
earlier, by controlling resources’ power
consumption, policies can control other
important characteristics such as die tem-
perature and transistor wear out.5

Feedback mechanisms
Mechanisms also provide application and

system policies with feedback regarding
physical resource capacity and usage. Feed-
back mechanisms communicate to system
policies the capacity of the system’s resourc-
es and the available VPM partitioning
mechanisms. They also provide application
policies with information regarding indi-
vidual applications’ resource usage.

Application resource usage information
should be independent of the system
architecture and the application’s VPM
assignments. For example, a mechanism
that measures a stack distance histogram can
predict cache storage and memory band-
width usage for many different cache sizes.14

Lastly, feedback mechanisms provide
information regarding overall resource uti-
lization. For example, a system’s mecha-
nisms should provide system policies with
die-temperature and power-consumption
information.

Overall, the VPM framework provides a
solid foundation for future architec-

ture research, but many challenges remain
in evaluating the VPM framework. First,
the framework targets system-level metrics
that occur over time granularities that
preclude the use of simulation. Second,
many of the applications we’re interested in
(such as smart phone or cloud computer
applications) are unavailable or unknown.
To address these problems, we plan to
develop most of the framework mathemat-
ically. (The basis of the mathematical

...

ARCHITECTURE-OS INTERACTION

...

14 IEEE MICRO

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

framework is available elsewhere.3) We plan
to validate the mathematical framework and
assumptions using statistical simulation. In
turn, we plan to validate the statistical
methods by prototyping the envisioned
system architecture and policies in
FPGAs. MICRO

..

References
1. S. Lohr and M. Helft, ‘‘Google Gets Ready

to Rumble with Microsoft,’’ New York

Times, 16 Dec. 2007; www.nytimes.com/

2007/12/16/technology/16goog.html.

2. F.J. Cazorla et al., ‘‘Predictable Performance

in SMT Processors: Synergy between the

OS and SMTs,’’ IEEE Trans. Computers,

vol. 55, no. 7, Jul. 2006, pp. 785-799.

3. K.J. Nesbit, J. Laudon, and J.E. Smith,

Virtual Private Machines: A Resource Ab-

straction for Multicore Computer Systems,

tech. report 07-08, Electrical and Computer

Engineering Dept., University of Wiscon-

sin–Madison, Dec. 2007.

4. R. Levin et al., ‘‘Policy/Mechanism Separa-

tion in Hydra,’’ Proc. 5th ACM Symp.

Operating Systems Principles (SOSP 75),

ACM Press, 1975, pp. 132-140.

5. G.J. Popek and R.P. Goldberg, ‘‘Formal

Requirements for Virtualizable Third Gener-

ation Architectures,’’ Comm. ACM, vol. 74,

no. 7, Jul. 1974, pp. 412-421.

6. P. Goyal, X. Guo, and H.M. Vin, ‘‘A

Hierarchical CPU Scheduler for Multimedia

Operating Systems,’’ SIGOPS Operating

Systems Rev., vol. 30, no. SI, Oct. 1996,

pp. 107-121.

7. J.K. Ousterhout, ‘‘Scheduling Techniques

for Concurrent Systems,’’ Proc. Int’l Conf.

Distributed Computing Systems (ICDCS

82), IEEE CS Press, 1982, pp. 22-30.

8. A.K. Parekh and R.G. Gallager, ‘‘A General-

ized Processor Sharing Approach to Flow

Control in Integrated Services Networks: The

Single-Node Case,’’ IEEE/ACM Trans. Net-

works, vol. 1, no. 3, Jun. 1993, pp. 344-357.

9. J.W. Lee and K. Asanovic, ‘‘METERG:

Measurement-Based End-to-End Perfor-

mance Estimation Technique in QoS-Capa-

ble Multiprocessors,’’ Proc. 12th IEEE Real-

Time and Embedded Technology and Ap-

plications Symp. (RTAS 06), IEEE CS Press,

2006, pp. 135-147.

10. A.S. Sedra and K.C. Smith, Microelectronic

Circuits, 5th ed., Oxford Univ. Press, 2004.

11. D.R. Engler, M.F. Kaashoek, and J. O’Toole,

‘‘Exokernel: An Operating System Archi-

tecture for Application-Level Resource

Management,’’ Proc. 15th ACM Symp.

Operating Systems Principles (SOSP 95),

ACM Press, Dec. 1995, pp. 251-266.

12. J. Smith and R. Nair, Virtual Machines:

Versatile Platforms for Systems and Pro-

cesses, Morgan Kaufmann, 2005.

13. S.K. Baruah et al., ‘‘Proportionate Progress:

A Notion of Fairness in Resource Alloca-

tion,’’ Proc. 25th ACM Symp. Theory of

Computing (STOC 93), ACM Press, 1993,

pp. 345-354.

14. G.E. Suh, S. Devadas, and L. Rudolph, ‘‘A

New Memory Monitoring Scheme for

Memory-Aware Scheduling and Partition-

ing,’’ Proc. 8th Int’l Symp. High-Perfor-

mance Computer Architecture (HPCA 02),

IEEE CS Press, 2002, pp. 117-128.

Kyle J. Nesbit is a PhD candidate in the
Department of Electrical and Computer
Engineering at the University of Wiscon-
sin–Madison. His research interests include
computer architecture and virtual machines,
particularly multicore architectures and
resource management for emerging plat-
forms. Nesbit received his BS in computer
engineering from the University of Wiscon-
sin–Madison.

Miquel Moreto is a PhD candidate in the
Computer Architecture Department at the
Polytechnic University of Catalonia, Spain.
His research interests include modeling
parallel computers and resource sharing in
multithreaded architectures. Moreto re-
ceived his MS in both mathematics and
electrical engineering from the Polytechnic
University of Catalonia.

Francisco J. Cazorla is the leader of the
Operating System/Computer Architecture
Interface group at the Barcelona Super-
computing Center. His research focuses on
multithreaded architectures for both high-
performance and real-time computing sys-
tems. Cazorla received his PhD in Com-
puter Architecture from the Polytechnic
University of Catalonia.

..

MAY–JUNE 2008 15
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

Alex Ramirez is an associate professor at the
Polytechnic University of Catalonia and
research manager at the Barcelona Super-
computing Center. Research interests in-
clude heterogeneous multicore architec-
tures, hardware support for programming
models, and simulation techniques. He
received his PhD in computer science from
the Polytechnic University of Catalonia.

Mateo Valero is a professor at the Poly-
technic University of Catalonia and director
of the Barcelona Supercomputer Center.
His research interests include high-perfor-
mance architectures. Valero has a PhD in
telecommunications from the Polytechnic
University of Catalonia. He is a recipient of
the Eckert-Mauchly Award and a founding
member of the Royal Spanish Academy of
Engineering. He is an IEEE Fellow, an Intel
Distinguished Research Fellow, and an
ACM Fellow.

James E. Smith is a professor emeritus in
the Department of Electrical and Computer
Engineering at the University of Wiscon-
sin–Madison and a member of the technical
staff at Google. His current research
interests include high-performance and
power-efficient processor implementations,
processor performance modeling, and vir-
tual machines. Smith has a PhD in
computer science from the University of
Illinois.

Direct questions and comments about
this article to Kyle J. Nesbit, Univ. of
Wisconsin–Madison, 2420 Engineering
Hall, 1415 Engineering Dr., Madison, WI
53706-1691; kjnesbit@wisc.edu.

For more information on this or any

other computing topic, please visit our

Digital Library at http://computer.org/

csdl.

...

ARCHITECTURE-OS INTERACTION

...

16 IEEE MICRO

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 01:51 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

