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Abstract
DRAM memory is a major resource shared among cores in a chip

multiprocessor (CMP) system. Memory requests from different threads
can interfere with each other. Existing memory access scheduling
techniques try to optimize the overall data throughput obtained from
the DRAM and thus do not take into account inter-thread interference.
Therefore, different threads running together on the same chip can ex-
perience extremely different memory system performance: one thread
can experience a severe slowdown or starvation while another is un-
fairly prioritized by the memory scheduler.

This paper proposes a new memory access scheduler, called the
Stall-Time Fair Memory scheduler (STFM), that provides quality of
service to different threads sharing the DRAM memory system. The
goal of the proposed scheduler is to “equalize” the DRAM-related
slowdown experienced by each thread due to interference from other
threads, without hurting overall system performance. As such, STFM
takes into account inherent memory characteristics of each thread and
does not unfairly penalize threads that use the DRAM system without
interfering with other threads.

We show that STFM significantly reduces the unfairness in the
DRAM system while also improving system throughput (i.e., weighted
speedup of threads) on a wide variety of workloads and systems. For
example, averaged over 32 different workloads running on an 8-core
CMP, the ratio between the highest DRAM-related slowdown and the
lowest DRAM-related slowdown reduces from 5.26X to 1.4X, while
the average system throughput improves by 7.6%. We qualitatively
and quantitatively compare STFM to one new and three previously-
proposed memory access scheduling algorithms, including network
fair queueing. Our results show that STFM provides the best fairness,
system throughput, and scalability.

1. Introduction
Chip multiprocessor (CMP) systems enable multiple threads to run

simultaneously on a single chip. A CMP system consists of multiple
independent processing cores that share parts of the memory subsys-
tem. This chip organization has benefits in terms of power-efficiency,
scalability, and system throughput compared to a single-core system.
However, shared hardware resources pose a significant resource man-
agement problem in designing CMP systems. Different threads can in-
terfere with each other while accessing the shared resources. If inter-
thread interference is not controlled, some threads could be unfairly
prioritized over others while other, perhaps higher priority, threads
could be starved for long time periods waiting to access shared re-
sources. There are at least four major problems with such unfair re-
source sharing in CMP systems:

• First, unfair resource sharing would render system software’s (op-
erating system or virtual machine) priority-based thread schedul-
ing policies ineffective [5] and therefore cause significant discom-
fort to the end user who naturally expects threads with higher
(equal) priorities to get higher (equal) shares of the performance
provided by the computing system.

• Malicious programs that intentionally deny service to other threads
can be devised by exploiting the unfairness in the resource sharing
schemes [20]. This would result in significant productivity loss
and degradation in system performance.

• Unfairness would reduce the performance predictability of appli-
cations since the performance of an application becomes much
more dependent on the characteristics of other applications run-
ning on other cores. This would make it difficult to analyze and
optimize system performance.

• In commercial grid computing systems (e.g. [30]), where users are
charged for CPU hours, unfair resource sharing would result in
very unfair billing procedures because the performance a user pro-
gram experiences would not necessarily correlate with CPU hours
it takes as it is dependent on other programs running on the CMP.

As processor designers put more processing cores on chip, the pres-
sure on the shared hardware resources will increase and inter-thread
interference in shared resources will become an even more severe
problem. Therefore, techniques to provide quality of service (or fair-
ness) to threads sharing CMP resources are necessary.

The DRAM memory subsystem is a major resource shared between
the processing cores in a CMP system. Unfortunately, conventional
high-performance DRAM memory controller designs do not take into
account interference between different threads when making schedul-
ing decisions. Instead, they try to maximize the data throughput ob-
tained from the DRAM using a first-ready first-come-first-serve (FR-
FCFS) policy [25, 24]. FR-FCFS prioritizes memory requests that
hit in the row-buffers of DRAM banks over other requests, including
older ones. If no request is a row-buffer hit, then FR-FCFS prioritizes
older requests over younger ones. This scheduling algorithm is thread-
unaware. Therefore, different threads running together on the same
chip can experience extremely different memory system performance:
one thread (e.g. one with a very low row-buffer hit rate) can expe-
rience a severe slowdown or starvation while another (e.g. one with
a very high row-buffer hit rate) is unfairly prioritized by the memory
scheduler.

Figure 1 illustrates the problem by showing the memory-related
slowdowns of different threads on a 4-core and an 8-core CMP sys-
tem. A thread’s memory-related slowdown is the memory stall time
(i.e. number of cycles in which a thread cannot commit instructions
due to a memory access) the thread experiences when running simul-
taneously with other threads, divided by the memory stall time it ex-
periences when running alone.1 There is a very large variance be-
tween the threads’ memory-related slowdowns in both systems. In the
4-core system, omnetpp experiences a slowdown of 7.74X whereas
libquantum experiences almost no slowdown at all (1.04X). The prob-
lem becomes even worse in the 8-core system with dealII experienc-
ing a slowdown of 11.35X while libquantum experiences only a 1.09X
slowdown.2 Clearly, trying to maximize DRAM throughput with FR-
FCFS scheduling results in significant unfairness across threads in a
CMP system.

In this paper we propose a new memory scheduling algorithm,
called the Stall-Time Fair Memory Scheduler (STFM), that provides
fairness to different threads sharing the DRAM memory system. We
define a memory scheduler to be fair if the memory-related slowdowns
of equal-priority threads running together on the CMP system are the
same. Hence, the quality of service (QoS) goal of the proposed sched-
uler is to “equalize” the memory-related slowdown each thread expe-

1The cores have private L2 caches, but they share the memory controller
and the DRAM memory. Our methodology is described in detail in Section 6.

2libquantum is a memory-intensive streaming application that has a very
high row-buffer locality (98.4% row-buffer hit rate). Other applications have
significantly lower row-buffer hit rates. Since libquantum can generate its row-
buffer-hit memory requests fast enough, its accesses are almost always unfairly
prioritized over other threads’ accesses by the FR-FCFS scheduling algorithm.
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Figure 1. Memory slowdown (normalized memory stall time) of programs in two workloads run on 4-core (left) and 8-core (right) CMP systems

riences due to interference from other threads, without hurting overall
system performance.

Basic idea: To achieve this QoS goal, the scheduler estimates two
values for each thread: 1) Tshared: Memory stall time the thread ex-
periences when running with others, 2) Talone: Memory stall time
the thread would have experienced had it been running alone. Based
on these estimates, the scheduler computes the memory-slowdown S
of each thread where S = Tshared/Talone. If the ratio between the
maximum slowdown value and the minimum slowdown value in the
system exceeds a threshold (the threshold of maximum tolerable un-
fairness), the scheduler prioritizes memory requests from threads that
are slowed down the most. Otherwise, the scheduler tries to maximize
DRAM throughput by using the baseline FR-FCFS scheduling policy.

We explain how the memory-slowdown of threads can be esti-
mated in hardware and describe the design and implementation of
STFM. We also describe how STFM can be exposed to the system
software to provide more flexibility and control to the system software
in thread scheduling and resource management. We compare and con-
trast STFM to scheduling techniques that try to equalize the memory
bandwidth utilized by different threads, such as in network fair queue-
ing [23, 22]. In contrast to these approaches, STFM takes into account
inherent memory-related performance of each thread. Therefore, it
does not unfairly penalize threads that use the DRAM memory system
without interfering with other threads (e.g. when other threads are not
issuing memory requests).
Contributions: We make the following contributions in this paper:

• We provide a new definition of DRAM fairness that takes into ac-
count inherent memory characteristics of each thread executing on
a CMP. We compare the merits of our definition with previously
proposed definitions and provide insights into why stall-time fair-
ness is a more meaningful fairness definition for DRAM systems.

• We introduce and describe the design and implementation of a new
memory access scheduler, STFM, that provides quality of service
to threads using the proposed definition of DRAM fairness.

• We qualitatively and quantitatively evaluate our new memory
access scheduler with extensive comparisons to one new and
three previously proposed schedulers (FR-FCFS, first-come-first-
serve, and network fair queueing) in terms of fairness and system
throughput. Our results show that STFM provides the best fair-
ness, throughput, and scalability as the number of cores increases
over a wide variety of workloads.

• We describe how the system software can utilize the flexible fair-
ness substrate provided by STFM to enforce thread weights and to
control the unfairness in the system.

2. Background on DRAM Memory Controllers
We provide the pertinent details of DRAM memory systems and

controllers. Our description is based on DDR2 SDRAM systems, but it
is generally applicable to other DRAM types that employ page-mode.
More details can be found in [3, 25, 4, 24].

2.1. SDRAM Organization and Access Latencies
A modern SDRAM system as shown in Figure 2 consists of one or

more DIMMs (dual in-line memory modules). A DIMM is comprised
of multiple SDRAM chips put together and accessed in parallel. Since

each SDRAM chip has a narrow data interface (e.g. 8 bits) due to
packaging constraints, combining several of them in a DIMM widens
the data interface (e.g. to 64 bits) to DRAM. An SDRAM chip consists
of multiple independent memory banks such that memory requests to
different banks can be serviced in parallel. Each bank is organized as
a two-dimensional array of DRAM cells, consisting of multiple rows
and columns. A location in the DRAM is thus accessed using a DRAM
address consisting of bank, row, and column fields.
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Figure 2. High-level organization of a DRAM system

Physically only one row in a bank can be accessed at any given
time. This row is stored in the row-buffer (i.e. sense amplifiers) ded-
icated for that bank. The size of the row buffer is typically 1-2 KB
in a DRAM chip, allowing it to hold tens of cache lines. To move a
row from the memory array to the row buffer (i.e. to open a row), an
activate command needs to be issued first. Once a row is in the row
buffer, then read or write commands can be issued to read/write data
from/into the memory addresses (columns) contained in the row. The
latency of a memory request therefore depends on whether or not the
requested row is in the row buffer of the bank. A memory request falls
into three different categories:

• Row hit: The request is accessing the row currently in the row
buffer. Only a read or a write command is needed. This case
results in the lowest bank access latency (called tCL in DRAM
nomenclature, e.g. [18]) as only a column access is required.

• Row closed: There is no row in the row buffer. An activate com-
mand needs to be issued to open the row followed by a read or
write command. The bank latency of this case is tRCD + tCL as
both a row access and a column access are required.

• Row conflict: The access is to a row different from the one cur-
rently in the row buffer. The contents of the row buffer first need
to be written back into the memory array using the precharge com-
mand (opening a row destroys the row’s contents in the memory
array). The required row then needs to be opened and accessed
using the activate and read/write commands. This results in the
highest bank access latency tRP + tRCD + tCL (We later provide
the values of these DRAM parameters in Table 2).
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In all cases, transferring an entire cache line from/to the DRAM
bank over the DRAM data bus incurs additional latency. The cache
line is transferred using burst mode and a programmable burst length
(BL) determines how many cycles the transfer takes.

2.2. DRAM Controller Organization
The DRAM controller is the mediator between processors and the

DRAM. Its job is to satisfy processors’ memory requests while obey-
ing the timing and resource constraints of the DRAM banks, chips,
and address/data buses. To do so, it translates processor requests into
DRAM commands. A DRAM controller consists of the following
structures:

• Request buffer holds state associated with each memory request
(e.g. the address, type, identifier, age of the request, readiness,
completion status). It can be organized as a single unified buffer
for all banks or multiple per-bank buffers.

• Read/Write data buffers hold the data that is read from/written to
the DRAM. Each memory read/write request is allocated an entry
in its respective buffer until the request is completely serviced.

• DRAM access scheduler decides which DRAM command to is-
sue every DRAM clock cycle. It consists of the logic that keeps
track of the state of the DRAM banks/bus and the timing con-
straints of the DRAM. It takes as input the state of the memory
requests in the request buffer along with the state of the DRAM
banks/buses, and decides which DRAM command should be is-
sued based on the implemented scheduling and access prioritiza-
tion policies (which usually try to optimize memory bandwidth
and latency). The structure of our baseline DRAM controller is
later depicted in Figure 4.

2.3. DRAM Access Schedulers
Modern high-performance DRAM schedulers are implemented

(logically and sometimes physically) as two-level structures [25]. The
first level consists of the per-bank schedulers. Each per-bank sched-
uler maintains a logical priority queue of the memory requests waiting
to be serviced in the bank it is associated with.3 It selects the highest-
priority request from that queue and issues DRAM commands to ser-
vice that request (while respecting the bank timing constraints). The
second level is the across-bank channel scheduler that takes as input
all the commands selected by the per-bank schedulers and chooses the
highest-priority command (while respecting the timing constraints and
scheduling conflicts in the DRAM address and data buses). The prior-
itization algorithms implemented in these two levels determine which
memory requests are prioritized over others.

2.4. State-of-the-art Scheduling Algorithms
DRAM schedulers can employ a variety of algorithms to priori-

tize the memory requests in the request buffer. The FR-FCFS algo-
rithm [25, 24] has been shown to be the best performing one overall
in single-threaded systems and it is used as the baseline in this paper
(however, we also evaluate other previously-proposed algorithms such
as a simple FCFS algorithm). FR-FCFS is designed to optimize the
throughput obtained from the DRAM. To do so, it prioritizes DRAM
commands in the following order:

1. Column-first: Ready column accesses (i.e. read and write
commands) are prioritized over ready row accesses (i.e. activate and

3The “logical” priority queue is adjusted every DRAM cycle to sort the
requests to the bank based on their priorities. The physical structure of the pri-
ority queue and the scheduler depend very much on the implementation. Many
implementations use multiple priority encoders and arbiters to implement the
priority-based selection of requests. Alternatively, some implementations use
hardware priority queues [19] that are sorted every DRAM cycle.

precharge commands).4 This policy improves throughput by maxi-
mizing the row-buffer hit rate.

2. Oldest-first: Ready DRAM commands from older requests (i.e.
requests that arrived earlier in the memory controller) are prioritized
over those from younger requests. Note that a simple FCFS algorithm
uses only this rule to prioritize commands.

Thus, with FR-FCFS, the oldest row-hit request has the highest
priority, whereas the youngest row-conflict request has the lowest.

2.5. Thread-Unfairness of FR-FCFS Scheduling
The DRAM command prioritization policies employed by the FR-

FCFS algorithm are unfair to different threads due to two reasons.
First, the column-first policy gives higher priority to threads that have
high row-buffer locality: If a thread generates a stream of requests
that access different columns in the same row, another thread that
needs to access a different row in the same bank will not be ser-
viced until the first thread’s column accesses are complete. For ex-
ample, assuming 2KB row-buffer size per DRAM chip, 8 DRAM
chips per DIMM, and 64-byte cache lines, 2KB ∗ 8/64B = 256
row-hit requests from a streaming thread can be serviced before a
row-closed/conflict request from another thread. Second, the oldest-
first policy implicitly gives higher priority to threads that can gener-
ate memory requests at a faster rate than others. Requests from less
memory-intensive threads are not serviced until all earlier-arriving
requests from more memory-intensive threads are serviced. There-
fore, less memory-intensive threads suffer relatively larger increases
in memory-related stalls.5

Our goal: Based on these observations, our goal in this paper is to
design a new memory access scheduler that is fair to threads executing
on different cores without sacrificing system throughput.

3. Stall-Time Fair Memory Scheduling:
Approach and Algorithm

3.1. Stall-Time Fairness in DRAM Systems
Defining fairness in DRAM systems is non-trivial. Simply divid-

ing the DRAM bandwidth evenly across all threads is insufficient, for
instance, because this would penalize threads with “good” row-buffer
locality, high parallelism, or in general, threads that by virtue of their
memory access behavior are able to achieve a higher throughput to the
DRAM system than others.

A thread’s performance degradation due to DRAM interference is
primarily characterized by its extra memory-related stall-time that is
caused due to contention with requests from other threads. Because
DRAM banks have limited bandwidth, simultaneously executing mul-
tiple threads on different cores inevitably causes the memory-related
stall-time of threads to increase. The goal of a fair DRAM scheduler
is therefore to balance these extra stall-times across different threads
such that all threads exhibit a similar slowdown. This intuition high-
lights the need for the following, fundamentally new definition of
DRAM fairness:

A stall-time fair DRAM scheduler schedules requests in such a way
that the extra memory-related slowdown (due to interference caused
by other threads) is equalized across all threads.6

In order to achieve stall-time fairness, we propose a novel DRAM
scheduler that is based on the following basic idea. For each thread, the
scheduler maintains two values: Tshared and Talone. Tshared captures
the memory-related stall-time (in processor cycles) experienced by the

4A DRAM command is said to be ready if it can be issued without violating
the timing constraints and without resulting in bank or bus conflicts. DRAM
commands that are not ready are not considered by the scheduler.

5The FCFS algorithm is also thread-unfair due to this second reason.
6The limitations of other notions of fairness in the context of shared DRAM

systems are discussed in Section 4.
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thread in the shared DRAM system, when running alongside other
threads. On the other hand, Talone expresses the estimated memory-
related stall-time the thread would have had if it had run alone (without
any contending threads on other cores). Based on these two estimates,
the scheduler can compute for each thread its memory-slowdown S =
Tshared/Talone. Intuitively, a thread has high memory-slowdown S
if its experienced memory-related stall-time is high, whereas without
the interference caused by other threads, its stall time would have been
low. Conversely, a thread’s memory-slowdown S is low if the thread’s
memory stall-time is similar to when it runs alone. Our scheduler
achieves stall-time fairness by prioritizing requests from threads with
very high memory-slowdown S, thereby equalizing the experienced
memory slowdown across all threads.

3.2. STFM: Stall-Time Fair Memory Scheduler
We first describe STFM assuming that all threads are equally im-

portant. We provide a discussion of how to incorporate thread weights
in Section 3.3. Section 5 shows STFM’s hardware implementation.

3.2.1. STFM Scheduling Policy: STFM estimates the two val-
ues Tshared and Talone for each thread. Obtaining accurate estimates
for Tshared is simple. The processor increases a counter when it can-
not commit instructions due to an L2-cache miss. This counter is com-
municated to the memory scheduler. Obtaining accurate estimates for
Talone is more difficult and we discuss our techniques in a separate
subsection. Assuming for now that the STFM scheduler knows each
thread’s slowdown S = Tshared/Talone, it uses the following policy
to determine the next command to be scheduled:

1) Determine Unfairness: From among all threads that have at least
one ready request in the request buffer, the scheduler determines
the thread with highest slowdown (Smax) and the thread with low-
est slowdown (Smin).

2a) Apply FR-FCFS-Rule: If the ratio Smax/Smin ≤ α, then the
acceptable level of unfairness is not exceeded and—in order to op-
timize throughput—the next DRAM command is selected accord-
ing to the FR-FCFS priority rules described in Section 2.4.

2b) Apply Fairness-Rule: If the ratio Smax/Smin > α, then STFM
decreases unfairness by prioritizing requests of thread Tmax with
largest slowdown Smax. In particular, DRAM commands are pri-
oritized in the following order:
2b-1) Tmax-first: Ready commands from requests issued by

Tmax over any command from requests issued by other
threads.

2b-2) Column-first: Ready column accesses over ready row ac-
cesses.

2b-3) Oldest-first: Ready commands from older requests over
those from younger requests.

In other words, STFM uses either the baseline FR-FCFS policy
(if the level of unfairness across threads with ready requests is ac-
ceptable), or a fair FR-FCFS policy in which requests from the most
slowed-down thread receive highest priority.

3.2.2. Maintaining Talone: Estimating Talone is challenging be-
cause STFM needs to determine how much memory stall-time a thread
would have accrued if it had executed by itself. Since directly deter-
mining Talone while the thread is running with other threads is diffi-
cult, we express Talone as Talone = Tshared − TInterference and es-
timate TInterference instead. TInterference is the extra stall-time the
thread experiences because requests from other threads are serviced
by the DRAM ahead of this thread’s requests. In order to compute
each thread’s memory slowdown S, the STFM scheduler maintains an
estimate of TInterference.

Initially, each thread’s TInterference value is zero. TInterference

of each thread is updated whenever the STFM scheduler schedules a

request. For instance, when a request is issued to a DRAM bank, the
extra stall-time TInterference of all other threads that have a ready
request (i.e. a request that can be scheduled by the controller without
violating timing constraints) to the same bank increases. These ready
requests could have been scheduled if the thread that generated them
had run by itself, but they were delayed due to interference from other
threads, thereby increasing the thread’s extra stall-time. Hence, the
scheduler needs to adjust its estimate of TInterference appropriately.

When a request R from thread C is scheduled, our mecha-
nism updates TInterference values of all threads. STFM updates
TInterference differently for the request’s own thread C versus for
other threads as we explain below:
1. Updating other threads’ TInterference values: The extra stall
time a scheduled request inflicts on another thread that has an out-
standing ready request consists of two portions: extra stall time due to
interference in the (a) DRAM bus and (b) DRAM bank.

a) Updating TInterference due to interference in DRAM bus:
When a read/write command is sent over the bus to a DRAM bank,
it keeps the DRAM data bus busy for tbus cycles.7 During this time,
no other thread is able to schedule a read/write command even though
the commands might otherwise be ready to be scheduled. Hence, the
TInterference of each thread (except thread C) that has at least one
ready read/write command in the request buffer increases by tbus.

b) Updating TInterference due to interference in DRAM bank:
Because thread C has issued a request, other threads with requests to
the same bank have to wait for R to be serviced and therefore expe-
rience an increased stall-time. However, increasing TInterference of
these threads by the service latency of R is too simplistic as it ignores
memory-level parallelism [8, 2] of threads. This is best illustrated
with an example. Assume two requests R1 and R2 are simultane-
ously being serviced in two different banks. Assume further that an-
other thread C′ has ready requests for both of these banks that are
waiting in the memory request buffer. As C′’s requests need to wait
for R1 and R2 to be serviced first, C′ accrues extra stall-time. How-
ever, it would be overly pessimistic to assume that the extra stall-time
caused by R1 and R2 is the sum of the latencies of R1 and R2. In-
stead, because they are serviced in parallel, these two requests cause
extra stall-time only in the order of one memory access latency. This
example highlights that our update mechanism needs to take into ac-
count the parallelism inherent to each thread. Our heuristic is that if
a thread C′ has ready requests waiting to be serviced in X different
banks, then the extra latency thread C′ incurs due to the scheduling
of request R from another thread is amortized across those waiting
requests. Hence, the extra stall-time of thread C ′ due to request R is
approximately R’s service latency divided by X. We call the value X
the BankWaitingParallelism(C ′) of thread C′.8

Concretely, STFM estimates the extra stall-time caused by a re-
quest to other threads as follows: When STFM schedules a DRAM
command R from thread C to bank B, it increases the TInterference

of any thread C′ �= C that has at least one ready command waiting to
be scheduled to bank B. If Latency(R) is the service latency of R,
the new T new

Interference(C′) =

T old
Interference(C′) +

Latency(R)

γ ∗ BankWaitingParallelism(C′)

7The value of tbus depends on the DRAM type, command type and burst
length. For a read or write command, tbus = BL/2 for DDR2 SDRAM.

8This is an approximation of the extra stall-time that is actually incurred.
Exactly determining the extra stall-time is very difficult because it requires the
determination of how much impact the delayed request has on a thread’s per-
formance (and how much BankWaitingParallelism matters). There are
more elaborate ways of approximating the extra stall-time (such as by deter-
mining whether the delayed request is on the critical path of execution), but
they are much more difficult to implement.
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The constant γ is a parameter that determines how aggressively
the scheduler should consider its (potentially inaccurate) estimate of
BankWaitingParallelism in its updates of TInterference. We use
γ as a scaling factor because the actual bank parallelism value is an
estimate: some of the waiting requests estimated to be serviced in
parallel might not actually be serviced in parallel in the future. We set
γ = 1

2
, which makes the logic to scale with γ trivial to implement.9

2. Updating own thread’s TInterference value: Even the thread
whose own request is being scheduled may experience extra stall-time,
i.e., may be delayed more than it would have been if it had run alone.
Consider a thread that has two consecutive requests R1 and R2 to the
same row in the same bank. If this thread was running alone, its sec-
ond request would result in a row-hit (with latency tCL). In a shared
DRAM system, however, it is possible that other requests from other
threads are serviced between R1 and R2 and, therefore, R2 could re-
sult in a row-conflict with much higher latency (tRP + tRCD + tCL).

To account for this potential extra stall time, STFM determines
whether a scheduled request would have been a row-hit or a row-
conflict had the thread run alone. Determining this is simple; we only
need to maintain the address of the last accessed row by each thread
in each bank. If the scheduled request is a row-conflict, but it would
have been a row-hit had thread C run alone, then C’s TInterference

increases by the difference in latency between a row-conflict and a
row-hit (ExtraLatency = tRP + tRCD)10 divided by the bank ac-
cess parallelism of C, i.e.,

T new
Interference(C) = T old

Interference(C) +
ExtraLatency

BankAccessParallelism(C)

We do not add the full ExtraLatency to TInterference because
the whole ExtraLatency might not manifest itself as extra stall time
for thread C. If more than one of C’s requests are being serviced
in parallel in different DRAM banks, some of the ExtraLatency
will remain hidden because it will be amortized across those con-
current requests [8, 2]. Therefore, we divide ExtraLatency by
BankAccessParallelism. BankAccessParallelism is the num-
ber of requests that are currently being serviced in DRAM banks by
this thread. In other words, it is the number of banks that are kept busy
due to Thread C’s requests.

3.3. Support for System Software & Thread Weights
So far, we have assumed that fairness should be enforced by equal-

izing the threads’ memory-related slowdowns. However, this may not
always be desirable at the system level as the system software (i.e.
operating system or virtual machine monitor) might:

1. not want fairness to be enforced by the hardware at all because that
could possibly interact adversely with the system software’s own
high-level fairness mechanisms (such as fair thread scheduling).

2. not want each and every thread to be treated equally because some
threads can be (and usually are) more/less important than others.
In this case, some threads should be allowed to be slowed down
more than others.

We adjust STFM to seamlessly incorporate enough flexibility to
support the system software. First, the threshold α that denotes the
maximum tolerable unfairness can be set by the system software via
a privileged instruction in the instruction set architecture. If the sys-
tem software does not need hardware-enforced fairness at the DRAM
controller it can simply supply a very large α value.

9We determined γ empirically. Our simulations show that setting γ = 1
2

captures the average degree of bank parallelism accurately.
10The row-closed case follows the same principle. For brevity, we explain

only the row-conflict case. Moreover, it is possible that the interference be-
tween two threads is positive especially if the threads share code or data. In
other words, a request might result in a row-hit in the shared system whereas
it would have been a row-conflict had the thread run alone. In that case,
ExtraLatency would be negative; our scheme considers all possibilities.

Second, to support different treatment of threads based on their
importance, we add the notion of thread weights to our mechanism.
The system software conveys the weight of each thread to STFM. The
smaller the weight, the less important the thread and the more tolera-
ble its slowdown. Threads with equal weights should still be slowed
down equally. To support this notion of thread weights and to pri-
oritize threads with larger weights, STFM scales the slowdown value
computed for the thread by the thread’s non-negative weight such that
the weighted slowdown is S = 1 + (S − 1) ∗ Weight. That is,
threads with higher weights are interpreted to be slowed down more
and thus they are prioritized by STFM. For example, for a thread with
weight 10, a measured slowdown of 1.1 is interpreted as a slowdown
of 2 whereas the same measured slowdown is interpreted as 1.1 for a
thread with weight 1. Note that even after this modification, it is the
ratio Smax/Smin that determines whether or not the fairness-rule is
applied. Measured slowdowns of equal-weight threads will be scaled
equally and thus those threads will be treated equally by the scheduler.

4. Comparison with Existing DRAM Schedulers
We compare the notion of stall-time fairness and the corresponding

STFM scheduler with other ways of defining and enforcing fairness
in shared DRAM memory systems. The existing DRAM schedulers
we are aware of suffer from the fact that they disregard the inherent
memory performance (properties) of different threads, which leads to
extremely variable behavior in terms of fairness for a given DRAM
scheduler. We already showed how this limitation manifests itself
in the FR-FCFS scheduling scheme. We now examine three other
scheduling schemes that could provide better fairness than FR-FCFS.

FCFS: The simplest fairness mechanism is to use a first-come
first-serve scheduling policy (among ready DRAM commands), dis-
regarding the current state of the row-buffer. However, FCFS starves
threads that do not issue a lot of memory accesses because their re-
quests get backed up in the request buffer behind the large number
of requests from memory-intensive threads. Since FCFS completely
neglects the potential performance gain from exploiting row-buffer lo-
cality, the achieved DRAM throughput deteriorates significantly. As a
result, the overall system performance degrades.

FR-FCFS with a Cap on Column-Over-Row Reordering (FR-
FCFS+Cap): This is a new algorithm that addresses one major source
of unfairness in FR-FCFS: the reordering of younger column (row-hit)
accesses over older row (row-closed/conflict) accesses. The algorithm
enforces a cap on the number of younger column accesses that can be
serviced before an older row access to the same bank. When the cap
is reached, the FCFS policy is applied. While such a cap alleviates
the problem that threads with poor row-buffer locality are penalized, it
does not solve the FCFS-inherent problem of penalizing non-memory-
intensive threads.

Network fair queueing (NFQ): A more involved alternative fair-
ness definition for shared DRAM memory systems has been proposed
in the form of network fair queueing [23]. The objective of a memory
scheduler based on network fair queueing is [22]: A thread i that is
allocated a fraction φi of the memory system bandwidth will run no
slower than the same thread on a private memory system running at
φi of the frequency of the shared physical memory system.

One problem with this fairness definition is that it may be impossi-
ble to enforce it. DRAM scheduling, as opposed to packet scheduling
on a wire, is not a pure bandwidth allocation problem. The funda-
mental observation is that sustained memory bandwidth does not cor-
respond to observed performance when different threads interfere. If
several threads access the shared memory system at the same time,
they can destroy each other’s row-buffer locality and bank parallelism
(i.e. the number of requests serviced in parallel in different banks),
and hence, all threads can be slowed down more than their “fair NFQ-
share” suggests. Therefore, even if a thread is guaranteed ”some”
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amount of bandwidth as indicated by its fair NFQ-share, it is not guar-
anteed ”some” amount of performance. For this very reason, the NFQ
notion of fairness also cannot provide performance isolation in shared
DRAM memory systems.11 As such, NFQ-based fairness definitions
are suited primarily for stateless systems that do not have parallelism
(such as a network wire) as opposed to shared DRAM memory sys-
tems that have state (row buffers) and parallelism (multiple banks),
which affect the performance impact of the scheduling decisions.

In practice, schedulers that enforce NFQ-fairness have typically
made use of earliest virtual deadline first schemes, e.g. [13, 22]. A
virtual deadline (or virtual finish-time) is the virtual time a thread’s
memory request will finish on the thread’s private virtual time memory
system. In the context of shared DRAM memory systems, Nesbit et
al. [22] propose an NFQ-based memory scheduler that maintains such
virtual deadlines for each thread in each bank as follows. When a
request of a thread is serviced, the thread’s virtual deadline in this
bank is increased by the request’s access latency times the number of
threads in the system. The intuition is that if a thread shares the DRAM
memory system with X other threads, it should get 1/X th of the total
DRAM bandwidth and hence, its requests can be slowed down by a
factor of X. The NFQ-based memory scheduler prioritizes requests
from threads that have an early deadline. The premise is that by doing
so, every thread’s requests will be scheduled within the time-limits set
by the NFQ definition, and hence, the resulting DRAM performance
would be fairly shared among all threads.

Unfortunately, in addition to the fact that NFQ-fairness may be
theoretically unachievable, these NFQ-deadline-based strategies suffer
from practical shortcomings as they fail to properly take into account
the inherent memory access characteristics of individual threads. This
problem manifests itself in several ways. For the sake of brevity, we
discuss two most important ones.

NFQ: Idleness Problem: A severe problem inherent to NFQ-
based approaches is the idleness problem. Consider the 4-core sce-
nario illustrated in Figure 3. Thread 1 continuously issues memory re-
quests, whereas the three remaining threads generate requests in bursts
with idle periods in between. Until time t1, only Thread 1 issues
requests. These requests are scheduled without interference; hence,
Thread 1’s virtual deadline advances. At time t1, Thread 1’s virtual
deadline is very large and Thread 2’s virtual deadline is zero; hence,
Thread 2’s requests are prioritized in the interval [t1, t2] and Thread 1
is starved. Similarly, in the interval [t2, t3], Thread 3’s requests are
prioritized over Thread 1, and so on. Overall, the non-bursty Thread 1
suffers significant performance loss over its bursty competitors even
though it fairly utilized the shared DRAM resources in the interval
[0, t1] when no other thread needed them. In fact, the problem can
be quite dramatic because Thread 1 may be completely denied access
to DRAM memory during certain intervals. In contrast, our stall-time
fair scheduler treats all four threads fairly: At time t1, for instance,
STFM realizes that neither Thread 1 nor Thread 2 has been slowed
down and hence, they are treated equally during [t1, t2]. The exam-
ple shows that NFQ-based schemes become unfair if some threads are
bursty and remain idle for some time. When such threads resume is-
suing memory requests, they capture the DRAM bandwidth, starving
threads that had run previously.

NFQ: Access Balance Problem: Another problem of NFQ-based
approaches arises when some threads spread their accesses across
many banks, while others mostly access a small number of banks

11NFQ does indeed provide performance isolation in networks where flows
are scheduled over a single, memoryless channel. In such ”stateless” systems,
fair scheduling is purely a fair bandwidth allocation problem—since bandwidth
directly correlates with performance (because what was scheduled previously
does not affect the latency of what is scheduled next). In contrast, the existence
of row-buffer state and multiple banks in the DRAM system eliminates the
direct relationship between bandwidth and performance.

time

Thread 1

t1 t2 t3

Thread 2

Thread 3

Thread 4

Figure 3. Idleness problem on a 4-core system. Each vertical line represents a
DRAM memory request. Memory schedulers based on network fair queueing
treat the non-bursty Thread 1 unfairly.

(good vs. poor bank access balance). Threads with unbalanced bank
usage are penalized because in the few banks they typically access
their virtual deadlines accrue much faster than deadlines of other
threads. In these critical banks, unbalanced threads are therefore depri-
oritized compared to threads whose requests are well-balanced across
all banks. This leads to starvation and high memory-related slowdown
for threads with poor bank access balance. In a sense, such threads
suffer from the idleness problem in an individual bank. STFM avoids
this problem because it implicitly takes into account any performance
slowdown incurred by a thread due to poor bank access balance.

In summary, all alternative memory access schedulers including the
NFQ-based approach suffer from the fact that they do not sufficiently
consider the inherent memory characteristics of different threads. As
our evaluations in Section 7 show, problems such as the idleness or
the access balance problem can result in significant unfairness and
performance loss in real workloads.

5. Implementation
STFM is implemented by modifying the baseline FR-FCFS sched-

uler to incorporate an additional priority policy: prioritization of com-
mands based on the slowdowns of the threads they belong to. The
basic structure of the memory controller (as explained in Sections 2.2
and 2.3) is not changed. However, additional circuitry is added to (1)
estimate the slowdown of each thread, (2) compute the unfairness in
the system, and (3) prioritize commands based on the slowdowns of
the threads they belong to.

Figure 4 shows the organization of the on-chip STFM memory con-
troller. Additional logic required for implementing STFM is boxed.
We briefly describe the key aspects of this logic. The logic of the
STFM controller is very similar to that of the baseline controller ex-
cept for the additional STFM logic which sits on the side and commu-
nicates with the baseline scheduling logic.

5.1. State Required to Estimate Unfairness
To estimate and store the memory-related slowdown S of each

thread, the STFM scheduler maintains a set of registers per hardware
thread. These per-thread registers are reset at every context switch
and at regular intervals (every IntervalLength cycles) to adapt to
threads’ time-varying phase behavior. Table 1 describes the set of
registers that need to be maintained in one implementation of STFM
(this is the implementation we evaluate in Section 7). Additionally,
each entry in the memory request buffer stores the ID of the thread
(thread-ID) that generated the memory request. With 8 threads, an
IntervalLength value of 224, 8 DRAM banks, 214 rows per bank,
and a 128-entry memory request buffer, the additional state required
by STFM is 1808 bits.

Tshared for each thread is the only counter computed in the pro-
cessor core and communicated to the DRAM scheduler periodically
(in our implementation, with every memory request). The proces-
sor core increments Tshared if the thread cannot commit instruc-
tions because the oldest instruction is an L2 miss. Tinterference and
Slowdown registers are updated when a DRAM command is sched-
uled. BankWaitingParallelism registers and IntervalCounter
are updated every DRAM cycle. BankAccessParallelism regis-
ter for a thread is incremented when a DRAM command for that
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Figure 4. Organization of the on-chip STFM memory controller. Only major control and data paths are shown to keep the figure simple.

Register Function Size (bits)

Per-thread registers used to compute and store slowdowns
Tshared Number of cycles in which the thread cannot commit instructions due to L2 miss (supplied by the core) log2IntervalLength (24)
Tinterference Number of extra stall cycles due to interference from other threads (computed in the memory controller) log2IntervalLength (24)
Slowdown Tshared/(Tshared-Tinterference) 8 (fixed point)
BankWaitingParallelism Number of banks that have at least one request that is waiting to be serviced for the thread log2NumBanks (3)
BankAccessParallelism Number of banks that are currently servicing requests from the thread log2NumBanks (3)

Per-thread per-bank registers used in estimating the extra latency due to inter-thread interference
LastRowAddress The last row address accessed by thread i in bank b log2NumRowsInBank (14)

Per-request registers stored in the memory request buffer to perform prioritization
ThreadID The ID of the thread that generated the memory request log2NumThreads (3)

Individual registers
IntervalCounter Counter used to reset other registers when it reaches a maximum threshold value IntervalLength log2IntervalLength (24)
Alpha Register used to store the α value (which can be set by system software) 8 (fixed point)

Table 1. Registers used in our STFM implementation

thread is scheduled and decremented when the command is com-
pletely serviced. When a thread initiates a row access in a bank,
the LastRowAddress register for that thread-bank pair is updated
to store the address of the accessed row. Slowdowns are computed
as described in Section 3.2. Logic required to update all the regis-
ters consists of adders/subtracters, muxes, and shifters (to approxi-
mate fixed-point division and multiplication). The update logic can
be pipelined (if needed) and components can be shared by different
threads. There is ample flexibility to accommodate these changes as
the on-chip DRAM controller is not on the critical path of execution
and it only needs to make a decision every DRAM cycle, which is
significantly longer than the processor core’s cycle time.

5.2. Prioritization and Scheduling Logic
Every DRAM cycle, the memory controller orders threads with at

least one ready command based on their Slowdown values. It also
computes unfairness by dividing the maximum slowdown value by
the minimum slowdown. If the unfairness computed in the previous
DRAM cycle is greater than α, the controller prioritizes commands
from threads with higher Slowdown values. Otherwise, it prioritizes
commands using the baseline FR-FCFS policy. Prioritization of com-
mands can be implemented in several different ways. Our baseline
FR-FCFS implementation assigns a single priority value to each ready
command based on its type (column or row access) and arrival time. A
priority encoder selects the command with the highest priority value.
STFM adds only one more variable into the computation of the pri-
ority value of each ready command. If unfairness is greater than α
at the beginning of a DRAM cycle, each ready command is assigned
a priority value based on its Thread-ID (i.e. slowdown), type, and
arrival time. Otherwise, baseline FR-FCFS priority assignments are

used. This implementation changes only the priority assignment logic
without affecting the structure of request buffers or priority encoders.

6. Experimental Evaluation Methodology
We evaluate STFM using a cycle-accurate x86 CMP simulator. The

functional front-end of the simulator is based on Pin [14]. The DRAM
memory system model and the performance model are loosely based
on DRAMsim [31] and Intel Pentium M [9], respectively. Table 2
presents the major parameters for both DRAM and processors. We
scale the number of DRAM channels with the number of cores so that
configurations with more cores are not unfairly penalized in terms of
DRAM bandwidth.

6.1. Benchmarks: Characteristics and Classification
We use the SPEC CPU2006 benchmarks as well as desktop appli-

cations (see Section 7.4) for evaluation.12 We classify the benchmarks
into four categories based on their memory intensiveness (low or high)
and row-buffer locality (low or high). Table 3 shows the category and
characteristics of the benchmarks when they run alone in the memory
system. Each benchmark was compiled using gcc 4.1.2 with -O3 opti-
mizations and run for 100 million instructions chosen from a phase as
determined by the SimPoint tool [27]. Benchmarks are ordered based
on their memory intensiveness in Table 3 and in all the figures.

We evaluate combinations of multiprogrammed workloads running
on 2, 4, 8, and 16-core CMPs. Obviously, evaluating each combination
of 4 benchmarks on a 4-core system requires an enormous amount of
simulation time. Therefore, we have evaluated combinations of bench-
marks from different categories. For 4-core simulations, we evaluated

12410.bwaves, 416.gamess, and 434.zeusmp are not included because we
were not able to collect representative traces for them.
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Processor pipeline 4 GHz processor, 128-entry instruction window, 12-stage pipeline
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte block size, 12-cycle latency, 64 MSHRs
DRAM controller on-chip; 128-entry req. buffer, FR-FCFS/open-page policy, 32-entry write data buffer, reads prioritized over writes, XOR-based addr-to-bank mapping [6, 32]
DRAM chip parameters Micron DDR2-800 timing parameters (see [18]), tCL=15ns, tRCD=15ns, tRP =15ns, BL/2=10ns; 8 banks, 2K-byte row-buffer per bank
DIMM configuration single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide a 64-bit wide data interface to the DRAM controller
Round-trip L2 miss latency For a 64-byte cache line, uncontended: row-buffer hit: 35ns (140 cycles), closed: 50ns (200 cycles), conflict: 70ns (280 cycles)
Cores and DRAM channels Channels scaled with cores: 1, 1, 2, 4 parallel lock-step 64-bit wide channels for respectively 2, 4, 8, 16 cores (1 channel has 6.4 GB/s peak bandwidth)

Table 2. Baseline processor and DRAM system configuration

# Benchmark Type MCPI L2 MPKI RB hit rate Category # Benchmark Type MCPI L2 MPKI RB hit rate Category

1 429.mcf INT 10.02 101.06 41.9% 2 14 464.h264ref INT 0.71 3.22 65.3% 1
2 462.libquantum INT 9.10 50.00 98.4% 3 15 401.bzip2 INT 0.55 3.55 41.4% 0
3 437.leslie3d FP 7.82 36.21 82.5% 3 16 435.gromacs FP 0.37 1.26 41.0% 1
4 450.soplex FP 7.48 45.66 63.9% 3 17 445.gobmk INT 0.19 0.94 56.8% 1
5 433.milc FP 6.74 51.05 91.77% 3 18 447.dealII FP 0.16 0.86 90.2% 1
6 470.lbm FP 6.44 43.46 54.6% 3 19 481.wrf FP 0.14 0.77 76.9% 1
7 482.sphinx3 FP 5.49 24.97 57.8% 3 20 458.sjeng INT 0.12 0.51 23.4% 0
8 459.GemsFDTD FP 3.87 17.62 0.2% 2 21 444.namd FP 0.11 0.54 72.6% 1
9 436.cactusADM FP 3.53 14.66 2.0% 2 22 465.tonto FP 0.07 0.39 34.5% 0
10 483.xalancbmk INT 3.18 21.66 54.8% 3 23 403.gcc INT 0.07 0.42 58.6% 1
11 473.astar INT 2.02 9.25 44.8% 0 24 454.calculix FP 0.05 0.29 71.8% 1
12 471.omnetpp INT 1.78 13.83 21.9% 0 25 400.perlbench INT 0.03 0.20 69.8% 1
13 456.hmmer INT 1.52 5.82 32.7% 0 26 453.povray FP 0.01 0.09 76.6% 1

Table 3. Characteristics of bench-
marks. MCPI: Memory Cycles Per
Instruction (i.e. cycles spent waiting
for memory divided by number of in-
structions), L2 MPKI: L2 Misses per
1000 Instructions, RB Hit Rate: Row-
buffer hit rate, Categories: 0 (Not-
intensive,Low RB hit rate), 1 (Not-
intensive,High RB hit rate), 2 (In-
tensive,Low RB hit rate), 3 (Inten-
sive,High RB hit rate)

256 combinations; for 8-core, 32 combinations; and for 16-core, 3
combinations. Space limitations prevent us from enumerating all eval-
uated combinations, but Section 7 tries to show as many results with
representative individual combinations as possible.13

6.2. Metrics for Fairness and System Throughput
Our fairness metric is the unfairness index of the system, which

is the ratio between the maximum memory-related slowdown and the
minimum memory-related slowdown among all threads sharing the
DRAM system.14 The unfairness index of a perfectly-fair system
is 1 and a perfectly-unfair system is infinity. Memory related slow-
down of each thread i is computed by dividing the memory stall time
per instruction a thread experiences when running together with other
threads with the memory stall time per instruction it experiences when
running alone in the same memory system using the FR-FCFS policy.

MemSlowdowni =
MCPIshared

i

MCPIalone
i

, Unfairness =
maxi MemSlowdowni

mini MemSlowdowni

We measure overall system throughput using the weighted speedup
metric [28], defined as the sum of relative IPC performances of
each thread in the evaluated workload: Weighted Speedup =
P

i

IPCshared
i

IPCalone
i

. We also report results using the hmean speedup met-

ric that balances fairness and throughput [15]. This is the harmonic
mean of the relative IPC performance of each thread in the workload:

Hmean Speedup = NumThreads/
X

i

1

IP Cshared
i /IPCalone

i

Finally, the sum of IPCs metric considers IPC throughput only,
without taking into account fairness (or forward progress) at all and
thus should be interpreted with extreme caution: Sum of IPCs =
P

i IP Cshared
i . This metric should not be used to evaluate system

throughput [28, 15] since even throughput-oriented realistic systems
need to consider fairness and ensure forward progress of individual
threads. We report results with this metric only to provide deeper in-
sights into some results and to show that some scheduling algorithms
unfairly speed up non-memory-intensive threads (thereby improving
sum-of-IPCs).

13The evaluated combinations are shown in http://research.
microsoft.com/∼onur/pub/stfm-workloads.txt.

14This metric is the inverse of the fairness metric proposed in [7]. We use
unfairness instead of fairness since we believe looking at unfairness is a more
intuitive way of understanding the system. A large unfairness value immedi-
ately shows the ratio of maximum and minimum slowdowns without requiring
any calculation.

6.3. Parameters Used in Evaluated Schemes
STFM: We set α = 1.10 and IntervalLength = 224 in the

proposed STFM scheme. Increasing α increases the amount of unfair-
ness. We found that IntervalLength value does not impact fairness
or throughput unless it is less than 218, in which case STFM becomes
less effective in enforcing fairness because its slowdown estimates
become less reliable due to the short sampling intervals. We evalu-
ate STFM in comparison to three other scheduling algorithms (FCFS,
FR-FCFS+Cap, and NFQ) described in Section 4. FR-FCFS+Cap:
In our implementation, the cap is set to 4 based on empirical evalu-
ation. Hence, only 4 younger column accesses can bypass an older
row access. NFQ-based scheduling (NFQ): We use Nesbit et al.’s
best scheme (FQ-VFTF) presented in [22]. We use the priority inver-
sion prevention optimization they propose in Section 3.3 of [22] with
a threshold of tRAS (the same threshold used in [22]). This optimiza-
tion limits the amount of prioritization of younger column accesses
over older row accesses.15

7. Experimental Results
7.1. STFM on Dual-core Systems

To evaluate STFM on 2-core systems, we run the mcf bench-
mark concurrently with every other benchmark. Figure 5(a) shows the
memory slowdowns experienced by mcf and the concurrently running
benchmark with the baseline FR-FCFS scheduler. Note the wide vari-
ance in the slowdowns of benchmarks. When mcf is run with dealII,
mcf experiences a slowdown of only 1.05X whereas dealII slows down
by 4.5X.16 In contrast, when mcf is run with libquantum, libquantum’s
slowdown is negligible (1.04X) while mcf slows down by 5.28X, re-
sulting in an unfairness of 5.08. This is due to the very high row-buffer
locality in libquantum. FR-FCFS prioritizes libquantum’s row-hit re-
quests over mcf’s row-conflict requests and starves mcf as libquan-
tum is memory-intensive enough to continuously generate DRAM re-
quests. Mcf’s impact and thus unfairness is drastic especially on non-
memory-intensive benchmarks (to the right of the figure): these bench-
marks’ slowdowns are almost always more than 2X because mcf is

15In fact, we found the behavior of NFQ (as implemented with the FR-VFTF
scheme of [22]) is similar to FR-FCFS without this optimization.

16We found that dealII’s DRAM accesses are heavily skewed to only two
DRAM banks. As mcf generates DRAM accesses much more frequently than
dealII, mcf’s DRAM requests that go to those two banks are almost always
prioritized over dealII’s requests by the FCFS nature of the FR-FCFS scheduler.
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Figure 5. Memory-slowdown of each of the two threads when mcf is run with all others in a 2-core system using FR-FCFS scheduling (a) and STFM (b).
Bottom figure compares FR-FCFS with STFM in terms of Weighted Speedup, Sum of IPCs, and Hmean Speedup.
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Figure 6. A memory intensive 4-core workload: memory slowdowns and unfairness (left), throughput metrics (right)

able to flood the memory system and get prioritized due to the first-
come-first-serve nature of FR-FCFS scheduling.

Figure 5(b) shows the corresponding slowdowns when STFM is
used. STFM brings the memory-slowdowns of the two threads to
very close values. The maximum unfairness observed is 1.74 and
the average (geometric mean) unfairness is reduced by 76%, from
2.02 to 1.24.17 Figure 5(c) provides insight into the balance between
throughput and fairness in STFM. STFM improves weighted speedup
by 1% and hmean-speedup by 6.5%. Hence, STFM improves not
only fairness but also performance. Performance improvement comes
mainly from better system utilization: without fair memory schedul-
ing, non-memory-intensive threads slow down too much and cannot
make progress when run with memory-intensive ones (in this case
mcf). STFM prevents the starvation of such threads’ infrequent re-
quests and thus allows them to make faster progress. This is supported
by the data in Figure 5(c): STFM’s throughput improvement is most
salient when mcf is run with non-intensive benchmarks.

7.2. STFM vs. Other Scheduling Techniques: Case
Studies and Results on 4-Core Systems

Fairness becomes a much larger problem as the number of cores
sharing the DRAM system increases and as the threads diversify in
terms of their memory behavior. We demonstrate this by comparing
STFM to other scheduling techniques on diverse workloads running on
4, 8, and 16-core systems. We start with case studies of three typical
workloads running on 4-core systems.

7.2.1. Case study I: Memory-intensive workload (3 inten-
sive benchmarks run with 1 non-intensive benchmark) Fig-
ure 6(left) shows the memory slowdown of each thread when five dif-

17Percentage reduction in unfairness is calculated relative to 1 since unfair-
ness cannot take a value less than 1.

ferent memory controllers are used. The unfairness of each controller
is denoted on top of the figure. Figure 6(right) compares the effect of
controllers on throughput using three different metrics. Several obser-
vations are in order:

• As seen before, FR-FCFS heavily prioritizes libquantum over
other threads due to its high row-buffer locality and memory inten-
siveness. GemsFDTD is heavily penalized because its row-buffer
hit rate is extremely low (0.2% as shown in Table 3).

• FCFS eliminates the unfairness due to row-buffer locality exploita-
tion, but it unfairly prioritizes heavily memory-intensive threads
(mcf and libquantum) over others (because older requests tend to
be from memory-intensive threads). FCFS results in a higher slow-
down for libquantum than mcf even though the L2 miss rate of
these two threads are very similar. This is because the baseline
memory performance of libquantum is much higher than that of
mcf due to libquantum’s high row-buffer locality. FCFS increases
fairness but degrades system performance (in terms of weighted
speedup) compared to FR-FCFS.

• FRFCFS+Cap improves throughput compared to FCFS because
it is able to better exploit row buffer locality. For this reason, it
slightly improves the slowdowns experienced by all threads except
GemsFDTD, which has the lowest row-buffer hit rate.

• NFQ provides better fairness and throughput than both FCFS and
FRFCFS+Cap for this workload. However, it penalizes (slows
down) mcf significantly (by 3.4X). We found that mcf continu-
ously generates memory requests whereas the other three bench-
marks have bursty memory access patterns. This is exactly the
idleness problem discussed in Section 4. Due to its design, NFQ
prioritizes bursty threads over non-bursty ones. Astar also slows
down significantly (by 3.3X) with NFQ, which is due to the access
balance problem (Section 4). Astar’s accesses are heavily con-
centrated in two DRAM banks whereas other threads have much
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Figure 7. A mixed-behavior 4-core workload: memory slowdowns and unfairness (left), throughput metrics (right)
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Figure 8. A non-memory-intensive 4-core workload: memory slowdowns and unfairness (left), throughput metrics (right)

more uniform access distribution to banks. Therefore, astar’s vir-
tual deadlines lag significantly on those two banks, which results
in its deprioritization when other threads also access those banks.

• STFM provides the best fairness substrate, improving unfairness
from 1.87 (NFQ) to 1.27. It also improves weighted speedup by
3% and hmean-speedup by 8% over NFQ. The sum-of-IPCs of
NFQ is slightly better than that of STFM because NFQ unfairly
prioritizes a less memory-intensive thread (GemsFDTD), which is
able to execute its instructions much faster. We found that STFM
is not able to achieve perfect fairness because it slightly under-
estimates the slowdown of libquantum in this case. Improving
STFM’s technique to estimate thread slowdowns could therefore
result in even better fairness.

7.2.2. Case study II: Mixed workload (2 intensive bench-
marks run with 2 non-intensive benchmarks) Figure 7 shows
the unfairness and throughput comparison of different schedulers for a
mixed-behavior workload that contains benchmarks from all four dif-
ferent categories. FR-FCFS is not as unfair for this workload as it was
for the previous one because the variance between the row-buffer lo-
cality of these four benchmarks is relatively low (see Table 3). There-
fore, eliminating or reducing row-buffer locality exploitation in the
scheduler by implementing FCFS or FRFCFS+Cap actually increases
unfairness while also reducing system performance! This shows that
the unfairness behavior of FR-FCFS is very much dependent on the
workload running on the system.

NFQ increases unfairness compared to FR-FCFS for this mixed
workload because it implicitly prioritizes the bursty and non-intensive
threads leslie3d and h264ref over the intensive thread mcf (idleness
problem). This improves sum-of-IPCs but degrades hmean-speedup
(i.e. it degrades the balance between fairness and throughput). STFM
achieves the best fairness (1.28) while improving weighted-speedup
by 4.8% and hmean-speedup by 8% over NFQ. As with the pre-
vious workload, STFM lags NFQ on sum-of-IPCs because it does
not unfairly prioritize non-intensive threads. On the contrary, STFM
tends to slightly favor intensive threads whose memory parallelism
and thus slowdown is more difficult to estimate (e.g. leslie3d) over
non-intensive ones.

7.2.3. Case study III: Non-memory-intensive Workload (1
intensive benchmark run with 3 non-intensive benchmarks)
As shown in Figure 8, FCFS significantly reduces unfairness and
improves sum-of-IPCs for this workload because it allows all three
non-intensive threads to make much faster progress rather than be-
ing starved until libquantum’s row-hit requests are serviced. FR-
FCFS+Cap further improves throughput (all three metrics) over FCFS
without significantly sacrificing fairness, as it enables faster progress

in libquantum and h264ref, which have high row-buffer hit rates.
NFQ is less fair than FCFS in this workload, resulting in a mem-

ory slowdown of 3.47X for omnetpp. The reason is that in the banks
accessed by both h264ref and omnetpp, NFQ prioritizes h264ref’s ac-
cesses because (1) h264ref’s accesses are bursty, (2) h264ref has bet-
ter row-buffer locality which is exploited by NFQ up to some static
threshold [22]. This unfair prioritization leads to a reduction in om-
netpp’s bank parallelism and thus serializes omnetpp’s requests. Such
serialization significantly degrades omnetpp’s performance because
the processor stalls for the latency of each miss rather than amortiz-
ing the memory latency by overlapping multiple misses. A similar
behavior is also observed for hmmer.

In contrast, STFM results in the smallest unfairness value (1.21)
while also providing the best performance, improving weighted
speedup (2.7%) and hmean-speedup (11.3%) over NFQ.
Summary of Case Studies: These three case studies provide insight
into why previously proposed memory access scheduling techniques
cannot consistently provide sufficient fairness. As pointed out in Sec-
tion 4, the major reason is that these previous techniques do not take
into account the inherent memory behavior and performance of each
thread. This inherent performance is dependent on many properties,
including memory intensiveness, row-buffer locality, bank access bal-
ance, and memory parallelism. For this very reason, different schedul-
ing policies (other than STFM) provide widely varying fairness values
in different workloads. For example, the scheduling policy that pro-
vides the second-best fairness value is NFQ for the memory-intensive
workload whereas it is FCFS for the two other workloads. STFM in-
corporates the effect of all these machine-dependent properties in its
estimate of Slowdown for each thread and therefore it is able to pro-
vide much better fairness than any of the other techniques.
Average Results on 4-Core Systems: We conclude the section by
showing the unfairness of different scheduling techniques on 10 other
sample workloads along with the unfairness averaged across the 256
different combinations of benchmarks from the different categories
in Figure 9(left). The average unfairness of FR-FCFS, FCFS, FR-
FCFS+Cap, NFQ, and STFM techniques are respectively 5.31, 1.80,
1.65, 1.58, and 1.24. Hence, STFM provides the best fairness. As
shown in Figure 9(right), STFM also provides the best system through-
put: it improves weighted-speedup and hmean-speedup by respec-
tively 5.8% and 10.8% compared to NFQ.

7.3. Scaling to 8-Core and 16-Core Systems
Unfairness in the memory system will increase as the number of

cores sharing it increases. We evaluate how existing and new DRAM
scheduling techniques scale to 8 and 16 cores. Figure 10 shows the
comparison of different schedulers for a non-memory-intensive work-
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Figure 9. Unfairness (left) and throughput metrics (right) averaged (using geometric mean) over all 256 workloads run in the 4-core system
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Figure 10. A non-memory-intensive 8-core workload: memory slowdowns and unfairness (left), throughput metrics (right)
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Figure 11. Unfairness (left) and throughput metrics (right) averaged (using geometric mean) over all 32 workloads run in the 8-core system
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Figure 12. Unfairness (left) and throughput metrics (right) averaged (using geometric mean) over all workloads run in the 16-core system

load (1 intensive and 7 non-intensive benchmarks) running on an 8-
core system. Even in this non-intensive workload, the unfairness of
FR-FCFS is very high (3.46). NFQ reduces unfairness to 2.93. How-
ever, the memory-intensive thread, mcf, is very heavily penalized by
NFQ because the non-intensive threads have bursty access patterns.
Hence, NFQ’s idleness problem becomes more severe as we move on
to more cores. STFM reduces unfairness to 1.30 while also improving
system throughput.

Figure 11(left) shows the unfairness of different scheduling tech-
niques on 10 other sample workloads along with the average unfair-
ness over 32 diverse combinations of benchmarks selected from dif-
ferent categories. FR-FCFS’s average unfairness has increased signif-
icantly to 5.26 as compared to the 4-core system evaluated in Figure 9,
supporting our claim that DRAM unfairness will become more signifi-
cant in systems with more cores. Furthermore, the difference between
the unfairness of STFM and other techniques widens as other tech-
niques become increasingly ineffective at providing fairness: the av-
erage unfairness of FRFCFS+Cap and NFQ are respectively 2.64 and
2.53. In contrast, STFM’s unfairness is only 1.40.

Figure 12(left) shows the unfairness of different scheduling tech-
niques on 3 workloads run on the 16-core system. The workloads,
from left to right consist of 1) the most memory intensive 16 bench-
marks, 2) the most intensive 8 benchmarks run with the least intensive
8 benchmarks, and 3) the least intensive 16 benchmarks. NFQ be-
comes highly unfair in 16 cores due to two reasons. First, the idleness

problem becomes much more severe because more threads with bursty
access patterns can disrupt and unfairly get prioritized over a memory-
intensive thread. Second, a thread with poor bank access balance be-
comes much more likely to be penalized because more threads with
better access balance compete for the same banks that thread is heav-
ily accessing. Therefore, both FCFS and FRFCFS+Cap, which do not
suffer from these two problems, provide better fairness than NFQ.

In all 16-core workloads, STFM provides the best fairness, improv-
ing average unfairness from 2.23 (FCFS) to 1.75. STFM also provides
the best system throughput, improving weighted-speedup and hmean-
speedup respectively by 4.6% and 15% over NFQ. We conclude that
STFM scales better with the number of cores than the other DRAM
scheduling techniques.

7.4. Effect on Desktop Applications
We also evaluated STFM on Windows desktop workloads and

present one case study.18 Figure 13 considers a 4-core workload
scenario with two background threads (XML parser searching a file
database, and Matlab performing convolution on two images) and two
foreground threads the user is focusing on (Internet Explorer and In-
stant Messenger). Table 4 shows the application characteristics.

The baseline FR-FCFS scheduler significantly penalizes the non-
intensive threads because the background threads are very memory-

18We used iDNA [1] to trace the evaluated Windows applications.
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Figure 13. A mixed 4-core workload of desktop applications: memory slowdowns and unfairness (left), throughput metrics (right)
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Figure 14. Evaluation of STFM and NFQ with different thread weights

Benchmark Type MCPI L2 MPKI RB hit rate Category

matlab INT 11.06 60.26 97.8% 3
instant-messenger INT 1.56 7.72 22.8% 0
xml-parser INT 8.56 53.46 95.8% 3
iexplorer INT 0.55 3.55 41.4% 0

Table 4. Characteristics of the evaluated desktop applications

intensive and have very high row-buffer locality. NFQ reduces unfair-
ness to 1.75, but still penalizes both iexplorer and messenger signifi-
cantly because the accesses of these two applications are concentrated
only on two and three banks, respectively. STFM improves unfairness
to 1.37, while also improving system throughput: weighted-speedup
by 5.4% and hmean-speedup by 10.7%.

7.5. Evaluation of Support for System Software
As explained in Section 3.3, STFM can be configured by the sys-

tem software to assign different weights to different threads. We
present one typical result to show the effectiveness of STFM’s sup-
port for thread weights. Figure 14(left) shows the memory slowdowns
of threads with different weights running on a 4-core system using FR-
FCFS, NFQ, and STFM. Threads are assigned the following weights:
libquantum (1), cactusADM (16), astar (1), omnetpp (1). FR-FCFS
is thread-unaware and slows down the high-priority cactusADM by
4.5X. In contrast, NFQ takes into account thread weights by assigning
each thread a share of the DRAM bandwidth that is proportional to
the thread’s weight [22].19 NFQ succeeds in prioritizing the higher-
priority cactusADM, but fails to treat equal-priority threads equally
because, as shown in previous sections, equalizing DRAM throughput
of threads does not necessarily correlate with equalizing performance
slowdowns. STFM enforces thread weights more effectively, by prior-
itizing cactusADM such that its memory slowdown is only 1.2X while
at the same time treating equal-priority threads more fairly.

Figure 14(right) shows memory slowdowns when threads are as-
signed the following weights: libquantum (1), cactusADM (4), as-
tar (8), and omnetpp (1). Both NFQ and STFM manage to pri-
oritize higher-priority threads over lower-priority ones. However,
NFQ is again unable to ensure fairness across equal-priority threads,
slowing down omnetpp (6.2X) more than libquantum (2.07X). In
contrast, STFM preserves equal memory-slowdowns among equal-
priority threads (unfairness: 1.20).

Figure 15 shows the effect of STFM’s α parameter on unfairness
and throughput. Recall that α is set by system software and it de-
termines the maximum tolerable unfairness among threads. As α in-

19This bandwidth partitioning is performed dynamically by adjusting a
thread’s virtual deadlines inverse-proportionally to its share [22]. In Fig-
ure 14(left) cactusADM’s bandwidth share is 16/19, whereas the other three
threads have equal bandwidth shares of 1/19.

creases, STFM resembles FR-FCFS in terms of both unfairness and
throughput. Hence, if the system software does not need the enforce-
ment of fairness by the memory controller, it can set α to be very large
(in this case, to a value of 20) to maximize the throughput obtained
from the DRAM. Note that STFM provides better throughput when α
is set to 1.1 rather than 1.0, without sacrificing much fairness. An α
value of 1.0 causes the fairness-rule to be applied too often, thereby
disabling the DRAM controller’s ability to optimize for throughput
most of the time. An α value of 1.05 results in similar, but better,
behavior as STFM’s slowdown estimates are not always accurate.
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Figure 15. Effect of α on fairness and throughput

7.6. Sensitivity to DRAM Banks and Row-buffer Size
We have analyzed the sensitivity of STFM to the number of DRAM

banks and row-buffer size. Table 5 shows the fairness and throughput
comparison with FR-FCFS averaged over 32 diverse workloads on the
8-core system. Average unfairness of FR-FCFS decreases as the num-
ber of banks increases because the interference between threads be-
comes less prevalent due to reduced bank conflicts. On the other hand,
average unfairness of FR-FCFS increases as row-buffer size increases
because the probability of exploiting row-buffer locality (i.e. reorder-
ing younger column accesses over row accesses) increases. STFM
significantly improves both unfairness and weighted-speedup for all
row buffer sizes and DRAM bank counts. Furthermore, the fairness
provided by STFM is independent of the number of DRAM banks and
the size of the row-buffer. Even though these two parameters affect
the slowdowns experienced by threads, STFM is able to balance those
slowdowns without depending on these parameters.20

8. Related Work
Nesbit et al. [22] is the only work we are aware of that addresses

fairness issues at the DRAM controller level. We have already pro-
vided extensive qualitative and quantitative comparisons to this work.
Our previous work [20] describes how the unfairness in the DRAM
subsystem can be exploited by malicious programs to perform denial
of service against other programs sharing the memory system.

20Also note that STFM’s weighted-speedup improvement increases with the
number of DRAM banks. This is because a larger number of banks allows more
flexibility in scheduling DRAM commands and enables STFM to improve fair-
ness while sacrificing less of DRAM throughput.
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DRAM banks Row-buffer Size

4 8 16 1 KB 2 KB 4 KB
Unfairness W. Speedup Unfairness W. Speedup Unfairness W. Speedup Unfairness W. Speedup Unfairness W. Speedup Unfairness W. Speedup

FR-FCFS 5.47 2.41 5.26 2.75 5.01 3.14 4.98 2.53 5.26 2.75 5.51 2.81
STFM 1.41 2.54 1.40 2.96 1.39 3.49 1.37 2.71 1.40 2.96 1.38 3.03
Improvement 3.88X 5.4% 3.78X 7.6% 3.60X 11.1% 3.64X 7.1% 3.78X 7.6% 3.99X 7.8%

Table 5. Sensitivity of fairness and throughput of STFM to DRAM banks and row-buffer size

DRAM Throughput Optimizations for Multithreaded Systems:
Natarajan et al. [21] examine the effect of different memory controller
policies on the performance of multiprocessor server systems. Zhu and
Zhang [33] propose techniques to improve throughput in DRAM con-
trollers used for simultaneous multithreading processors. Their tech-
niques utilize SMT-specific information about threads, such as reorder
buffer or issue queue occupancies, to improve throughput, but they
do not consider fairness. Even though we evaluate STFM on CMP
systems, it is trivially applicable to multithreaded systems as well.
DRAM Access Scheduling: Several works [25, 24, 10, 26] proposed
and evaluated access scheduling algorithms to optimize throughput
and latency in DRAM. McKee et al. [17] proposed access reordering
to optimize bandwidth in streamed accesses. These techniques primar-
ily optimize throughput for single-threaded systems; they do not try to
provide fairness to accesses from different threads.
Real-Time Memory Schedulers: Several DRAM schedulers [12, 16]
provide hard real-time guarantees to be used in real-time embedded
systems. These schedulers provide QoS guarantees at the expense
of DRAM throughput and flexibility. The throughput degradation of
these schedulers is usually not acceptable in high-performance sys-
tems where such guarantees are not required.
Fairness Issues in Shared CMP Caches: Providing fair access to
threads sharing CMP caches has recently received increasing atten-
tion. Several studies (e.g. [29, 11]) proposed techniques for fair cache
partitioning. These are complementary to our work.
Fairness Issues in Multithreaded Systems: Although fairness issues
have been studied in multithreaded systems especially at the processor
level [28, 15, 7], the DRAM subsystem has received significantly less
attention. Our STFM scheduler is applicable not only to CMP sys-
tems; it can be used in the general case of multiple threads sharing the
DRAM subsystem.

9. Conclusion
We introduced, implemented, and evaluated the concept of stall-

time fair memory scheduling (STFM). STFM is a configurable sub-
strate that provides fair DRAM access to different threads sharing the
DRAM system. The key idea that makes STFM work is that equal-
priority threads, when run together, should experience equal amounts
of slowdown as compared to when they are run alone. We described
the design and implementation of STFM. We also showed how STFM
can be controlled by system software to control the unfairness in the
system and to enforce thread priorities.

Our qualitative and quantitative evaluations demonstrate that
STFM provides the best fairness and system throughput compared
to one new and three previously-proposed state-of-the-art DRAM
scheduling techniques, including FR-FCFS and Network Fair Queue-
ing. We provide insights into why this is the case via detailed case
studies of workloads. Previous techniques do not take into account
the inherent memory performance of threads and therefore the fair-
ness they provide is very much dependent on the workload mix, ac-
cess patterns, and system configuration. In contrast, we demonstrate
that STFM is able to consistently provide very high levels of fairness
across a wide variety of workloads in 2-, 4-, 8-, and 16-core systems,
while improving system throughput.

We conclude that STFM is a scalable, flexible, and high-throughput
fairness substrate for the DRAM subsystem. An important area of fu-
ture work is to research how STFM interacts with other fairness mech-
anisms at the shared caches or the operating system.
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