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Abstract: In this paper, we present a relatively
primitive execution model for fine-grain parallelism, in
which all synchronization, scheduling, and storage man-
agement is explicit and under compiler control. This is
defined by a threaded abstract machine (TAM) with a
multilevel scheduling hierarchy. Considerable temporal
locality of logically related threads is demonstrated, pro-
viding an avenue for effective register use under quasi-
dynamic scheduling.

A prototype TAM instruction set, TLO, has been de-
veloped, along with a translator to a variety of exist-
ing sequential and parallel machines. Compilation of
Id, an extended functional language requiring fine-grain
synchronization, under this model yields performance
approaching that of conventional languages on current
uniprocessors.

Measurements suggest that the net cost of synchro-
nization on conventional multiprocessors can be reduced
to within a small factor of that on machines with elabo-
rate hardware support, such aa proposed dataflow archi-
tectures. This brings into question whether tolerance to
latency and inexpensive synchronization require specific
hardware support or merely an appropriate compilation
strategy and program representation.

1 Introduction

Multithreading at the instruction level may provide
the key to general purpose parallel computing[26], be-
cause it allows the processor to tolerate long, unpre-
dictable communication latency [2,4, 17,24,29]. In addi-
tion, this level of multithreading is required to support
certain modern parallel programming languages[28],
such as Id[20] and Multilisp[18], and extensions of more
conventional languages with synchronizing data struc-
tures, e.g. I-structures[6]. On the other hand, asyn-
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chronous transfer of control (context switching) is no-
toriously expensive on current machines, leading many
researchers to examine asynchronous parallel execution
models through the study of real machines[l 1,13,15,22,
25,27], paper architectures[l ,5,14,16,19], and abstract
machines [21]. In all of these proposals, the scheduling
of threads is viewed as a property of the machine, in-
visible to the compiler. While we share the view that
asynchronous events are the rule, not the exception,
in large-scale multiprocessors, we claim that relieving
the compiler of responsibility for scheduling low-level
program entities squanders critical processor resources,
such as high-speed register storage, and places unrea-
sonable demands on the hardware, such as maintaining
scheduling queues of arbitrary size. By retaining some
of this control, the compiler can optimize the use of pro-
cessor resources for the expected case, rather than the
worst case, and exploit considerable inter-thread execu-
tion locality. Thus, tolerance to latency and inexpen-
sive synchronization require that the compiler adopt a
suitable program representation, but this need not be
manifest in the processor architecture.

To investigate this view, we have formulated a rel-
atively primitive threaded abstract machine (TAM) in
which processor resources and thread scheduling are ex-
plicit at the instruction level and all storage manage-
ment is the responsibility of the language syst em, not
the machine. We have retargeted the compiler for Id,
an extended functional language that relies on dynamic
scheduling, to generate TLO (Thread Language Zero),
a first-cut instruction set for this machine, rather than
dataflow graphs. Although TAM could be realized di-
rectly in hardware, it is intended as a vehicle for study-
ing what architectural support is most important for
full-scale parallel programs on large parallel machines.
To this end, we have developed a versatile translator
for TI,O to a variety of existing parallel and sequential
machines.

Preliminary measurements indicate that this imple-
mentation of Id yields performance between C and Lisp
for comparable programs on the same uniprocessor.
This disspells the view that the implementation of lan-
guages with fine-grain synchronization on conventional
architectures must be essentially interpretive. Secondly,



dynamic instruction counts under this execution model
are comparable to dataflow models, which support syn-
chronization and generation of parallel threads as Dart
of every instructi~n. Third, th~ locality among ex~cu-
tion threads that are not, or cannot be, statically or-
dered appears to be substantial. Finally, a large fraction
of the potential synchronization events can be compiled
away or synthesized cheadv with little or no architec-
tur~l support. The key ‘a~chitectural challenge is an
intimate coupling of processor and network, with much
of the message decode task delegated to the compiler.

The following describes TAM and its current real-
ization in TLO. Section 2 outlines the basic structure
and scheduling mechanism supported by our model and
draws comparisons with proposed and existing threaded
execution models. Section 3 provides preliminary per-
formance measurements. Appendix A describes our
threaded machine language.

2 The TAM Execution Model

2.1 Storage model and basic structure

TAM recognizes three major storage resources—code-
blocks, frames and structures—and the existence of crit-
ical processor resources, such aa registers. A program is
represented by a collection of re-entrant code- blocks, cor-
responding roughly to individual functions or loop bod-
ies in the high-level program text. A code-block com-
prises a collection of threadq each thread is a sequence of
instructions. Invoking a code-block involves allocating a
frame—much like a conventional call frame—depositing
argument values into locations within the frame, and
enabling threads within the code-block for execution.
Figure 1 illustrates the relationship between the code-
block and the frame. Instructions may refer to registers
and to slots in the current frame; the compiler statically
determines the frame size for each code-block and is re-
sponsible for correctly using slots and registers under
all possible dynamic thread orderings. (This is some-
what more complex than traditional register allocation
via graph coloring [7].) The compiler also reserves a por-
tion of the frame as a continuation vector, used at run-
time to hold pointers to enabled threads. The continu-
ation vector must be large enough to describe the con-
currently enabled threads for a code-block. The global
scheduling pool is the set of frames that contain enabled
threads.

Structures are heap allocated data objects, accessed
through split-phase fetches and stores. That is, the in-
struction that issues a fetch request does not wait for
the data value to be returned, instead the response will
initiate a new execution thread[4,6]. This allows the
processor to be well utilized while remote requests are
outstanding. In addition, a synchronization event may
take place at the site of the accessed object, so the re-
quest latency is unbounded.

2.2 Activations

An executing code-block may invoke several code-blocks
concurrently, since the caller is not suspended as in a

conventional sequential language. Therefore, the set of
frames in existence at any time form a tree, the activa-
tion tree, rather than a stack, reflecting the dynamic call
structure (see Figure 2). We refer to a frame and the
set of threads executed relative to the frame as an acti-
vation. The basics of this parallel call scenario are well
described in the literature[5,9,21]. To allow greater par-
allelism and to support languages with non-strict func-
tion call semantics,l the arguments to a code-block may
be delivered asynchronously; each will initiate an exe-
cution thread within the code-block. An activation is
enabled if its frame contains any enabled threads. At
any time, a subset of the enabled activations may be
resident on processors, as discussed below.

2.3 Threads

Threads come in two forms, synchronizing and non-
synchronizing. A synchronizing thread specifies a frame
slot containing the entru count for the thread. Each fork
to a synchron~zing thre~d causes the entry count to be
decremented. but the thread executes onlv when the
count reaches zero.2 Synchronization occur; only at the
start of a thread; once successfully initiated, a thread
executes to completion. Fork operations mav occur anv-.
where in a thread, causing ad~itional threads to be e~-
abled for execution. An enabled thread is identified bv.
a continuation—its instruction pointer and its frame.
Because the continuation vector is contained within the
frame, a continuation is represented simply aa a pointer
to the first instruction of a thread.3 A thread ends with
an explicit stop instruction, which causes another en-
abled thread to be initiated, i.e., removes an element
from the current continuation vector and transfers con-
trol to it.

Conditional flow of execution is supported by switch,
which forks one of two threads based on a boolean input
value. and case. an indexed fork based on a small inte-
ger input. The’ compiler is responsible for establishing
correct entry counts for synchronizing threads prior to
any fork to the thread. This is facilitated by allowing
a distinguished initialization thread in each code-block,
which is the first thread executed in an activation of
the code-block. One of the threads contains a release
instruction that causes the frame to be reclaimed: the
compiler ensures that this is the last instruction exe-
cuted for the activation.

1In Id and other non-strict languages, it cannot be assumed

that all arguments to a function can be computed before invoking

the function. One or more of the arguments may, in fact, depend

on a result of the function.

2An implementation of the abstract machine may elect to as-

sociate the decrement with the fork, so a continuation is created
only when the thread is enabled, or to simply crest e a continua-

tion at the fork and perform the decrement as the first operation

in the thread; the thread is cancelled if the counter is not zero.

In either case, the decrement-and-test must be atomic relative to

other threads.

3This means the abstract machine can be easily implemented

with the word size equal to the address size. Many of the proposed

threaded architectures require two addresses per word.
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a frame for local variables and for the continuation vector holding

the list o~ enabled threads.

2.4 Quanta

Given that the execution model supports a tree of ac-
tivations, many of which may have several concurrently
enabled threads, the fundamental concerns are where
frames reside in the storage hierarchy, how the pool of
continuations is represented, and how threads are sched-
uled. Surprisingly, these concerns have received little
attention in the threaded execution models discussed
in the literature; TAM was developed to address these
issues directly. The key observation is that the activa-
tion tree and the continuation pool are typically quite
large, except on toy programs. This has been demon-
strated empirically for programs in Id[8], Sisal [23], and
Multilisp[18]. Minimizing the activation tree size while
exposing sufficient parallelism is an active area of re-
search, but even with advances in this area we cannot
expect the entire activation tree or the entire contin-
uation pool to be maintained in high-speed processor
storage. Therefore, the scheduling mechanism must rec-
ognize that only a subset of the activation frames are
resident on a processor and that a large number of con-
tinuations will exist for non-resident frames.

The storage hierarchy is explicit in TAM. In addition,
scheduling is explicit and reflects the storage hierarchy.
In order to execute threads from an activation, the ac-
tivation must be made resident. Only a limited number
of activations may be resident. When an activation is
made resident on a processor, it has access to processor
registers. Furthermore, it remains resident and execut-
ing until no enabled threads for the activation remain.
The set of threads executed during a single residency is
called a quantum. Recognition of this intermediate level
of scheduling is a major departure from dataflow ori-

ented execution models, such as ETS[22] and P-R1sc[21],
and is key to an efficient implementation on conven-
tional machines.

A non-resident frame may accumulate several contin-
uations, say as arguments are supplied, and when it be-
comes active all of these threads are executed, as well as
any that they enable. Processor registers are essentially
an extension to the frame with a lifetime of a single
quantum. They may carry values between instructions
within a thread or across threads in a quantum. All
threads enabled by fork instructions are guaranteed to
execute while the frame is resident. Therefore, the con-
tinuation vector is split into two parts: a remote contin-
uation vector, used to hold continuations generated ex-
ternal to the activation, and a local continuation vector,
used to hold internally generated continuations. The re-
mote continuation vector is part of the frame whereas
the local continuation vector should be viewed as a stack
of continuation registers. Fork and stop translate into
instruction pointer push and pop-jump respectively.

Quantum boundaries in TAM are visible to the com-
piler. When an activation is made resident, a distin-
guished initialization thread executes before any threads
in the remote continuation vector. In the simplest case,
the initialization thread for the first quantum of an ac-
tivation will establish entry counts for the synchroniz-
ing threads and nullify the initialization thread for later
quanta. Similarly, a distinguished completion thread is
executed when the local continuation vector is other-
wise empty. Again in the simplest case, this will ex-
tract a new enabled frame from the scheduling pool,
make it resident, and transfer cent rol to the init ializa-
tion thread for the new quantum. This mechanism al-
lows the compiler to control the use of processor regis-
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Figure 2: Basic Structure of an Executing TAM Program. An executing TAM program generates a tree of
frame activations. The set of light-gray frames represent activations that contain no enabled threads, and
thus are not included in the scheduling pool (not shown). The remaining activations are enabled. A subset of

these, indicated by the cross-hatch are the ones that are currently resident on a processor. Only the resident

activations can access processor registers and the local continuation vector.

ters. Frequently referenced frame slots maybe “cached”
in registers, with the initialization thread set up to re-
store them from the frame. Values judged likely, but not
proven, to have a lifetime of a single quantum may be
kept in registers, with the boundary threads configured
to save and restore them. (Our compiler does not yet
exploit this capability, but we expect this quasi-dynamic
scheduling will prove quite important in the long run.)

The representation of the scheduling pool is not speci-
fied by the model, but determined by the compiler. Suf-
ficient space is provided in each frame to represent what-
ever data structure the compiler uses to organize the
pool, e.g., queue, distributed queue, priority tree, etc.
The compiler may even elect to specialize the structure
to reflect different scheduling policies in different por-
tions of the program.

resource (a frame or a structure), or accessing a remote
structure. In each of these cases, the external entity
needs to transmit one or more values back to the activa-
tion, cause them to be deposited in frame slots and cause
a thread to be scheduled to indicate the arrival of the
values. Handling of such a response is usually viewed
as a machine primitive. For example, in P-R1sc[21] an
I-structure fetch instruction issues a request to the hard-
ware module containing the location to be read, passing
the frame pointer, slot number, and thread pointer. If
the location is empty, the request is stored in the mem-
ory module until the location is written, When the lo-
cation is full, the value it contains is sent back to the
requesting processor, along with the frame, thread, and
slot information. The hardware is expected to interpret
this message, store the value in the specified slot and
schedule the specified t bread. On Monsoon [22], only a

frame pointer and instruction pointer need be carried
with the request, since the slot number is specified by
the instruction. However, this relies on presence-bits
associated with each frame slot.

TAM attempts to minimize the amount of informa-
tion carried on such messages and to minimize the in-

2.5 Inlets and split-phase operations

Thus far, we have focused on the interactions of threads
internal to an activation. We now describe TAM facili-
ties for inter-frame interactions, i.e., passing arguments
to an activation, returning results, allocating a remote
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terpretation required upon their reception. To this end,
each code-block has a set of inlets, in addition to a col-
lection of threads. The inlets define its external inter-
face. By convention, the low numbered inlets are used to
receive argument values. The compiler generates an ad-
ditional inlet for each value returned to the activation
from a subordinate activation and for each reply to a
split-phase request. Thus, the I-structure fetch instruc-
tion sends the frame pointer and inlet number (in addi-
tion to the address to be read) to the remote memorv/ “

module. Each inlet is a simple sequence of instructions
that extract components of the corresponding message,
store values into slots of the sDecified frame and Dost
threads in the corresponding ~ontinuation vector.’ In
other words, an inlet is a specialized message handler
for exactly one kind of message. It is like a thread,
but extremely limited in its capability and may inter-
ruDt the currentlv active thread. An inlet can, however.
h&dle messages”of arbitrary length, network interface
permitting.4

2.6 Comparison with other models

The basic structure of TAM is similar to several of
the multithreaded architectures derived from dynamic
dataflow, with some key differences. Iannucci’s hybrid
architecture[16] has a similar storage hierarchy; instruc-
tions mav refer to mocessor registers or to slots in the
current frame. However, the hy=brid proposal associates
mesence bits with frame slots and when a thread at-.
tempts to read an empty slot it is suspende~ the con-
tinuation for the thread is placed in the empty slot and
rescheduled when the slot is written. Registers vanish
at a point of potential suspension. To allow multiple
references to frame slots, the hardware must suDDort
lists of suspended continuations.

. .

Monsoon[22] associates presence bits with frame slots,
but, when a thread attemDts to read an emDtv slot
the ‘value carried on the to~en is written into ~~e slot
and further processing of the instruction is cancelled.
The data is ~icked-u~ again when the instruction is re-.=
enabled by another token, at which point the instruc-
tion executes and enables one or two further instruc-
tions. The addressing capabilities of Monsoon instruc-
tions are rather limited: onlv one frame slot and the
data value carried on the cu~rent token can be refer-
enced. P-Rise, which strongly influenced TAM, uses
frame slots for synchronization, rather than presence
bits, and makes the synchronization operation explicit.
However P-Rise does not recognize a storage hierarchy
(there are no registers) or scheduling hierarchy (the next
thread may come from any frame).

Recent dataflow machines[12,22,25] allow several in-
structions, i.e., a thread, to be enabled by a single
dataflow synchronization. Registers are used to hold
values with a lifetime of a sinde such t bread, as these
values need never be placed in the frame. ‘However,
these machines do not allow registers to carry values

4 frdets provide a form of message handling similar to Dally’s

J-machine [IO], but are more limited. The dispatch is triviaf and

storage required for the inlet to complete its task is pre-allocated

in an activation frame.

across threads, which severely restricts the usefulness of
registers, as shown in Section 3. Also, the set of en-
abled threads is maintained in a special hardware token
queue.

Several multithreaded architectures have been pro-
posed as generalizations of conventional single-threaded
machines, with registers sets (i. e., frames) multiplexed
to hide memory and communication Iatency[l, 14,17,27,
29]. In most cases, only one thread of execution per
frame is supported. Thus, each outstanding reference
haa an entire register set standing idle behind it. With
the exception of MASA[14], the number of frames per
processor is static, thus the mechanism does not directly
support language models with dynamically generated
parallelism. By viewing memory as split-phase transac-
tions, TAM allows multiple outstanding references per
register set and minimizes the number of register set
switches. Although TAM does not rely on multiple
register sets in hardware, it could directly benefit from
them.

2.7 Summary

To summarize the abstract machine, the program is rep-
resented by a collection of code-blocks. The state of
the computation is described by the activation tree, the
heap of structures, and the extended “processor state”
of the resident activations. The scheduling pool con-
sists of a distributed data structure containing those
frames with non-empty continuation vectors. Proces-
sors execute threads from their resident activations as
long as possible. The abstract machine provides four
levels of synchronization of increasing cost and decreas-
ing frequency: simple sequencing of instructions within
a thread, scheduling of threads generated internal to
an activation, scheduling of threads generated exter-
nal to an activation, and scheduling of quanta. The
first two are represented directly in TLO instructions;
the latter two are synthesized in inlets and bound-
ary threads. When an activation becomes resident, as
much work as possible is done on the activation, using
the least expensive form of synchronization wherever
possible. Thread-to-thread and activation-to-activation
transitions are explicit in the model, so they can be con-
trolled to a large extent by the compiler. The compiler
produces specialized message handlers as inlets to each
code-block. Appendix A describes TLO, a simple in-
struction set that embodies this model and provides a
basis for comparison with other execution models.

3 Preliminary Measurements

To validate the TAM paradigm, a prototype back-end
was developed for the MIT Id88 compiler that gener-
ates TLO code, rather than dataflow graphs. A sec-
ond, rather simple compiler translates the TLO code to
C, and a conventional C compiler is used for final ma-
chine code generation. This approach provides conser-
vative execution times for a TAM-based implementa-
tion of a language requiring fine-grained dynamic syn-
chronization. Timing measurements for a collection of
small programs indicate that this implementation of Id
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is rough] y competitive with conventional languages, i.e.,
between C and Lisp on a single processor for similar pro-
grams. Further improvements will be realized in a more
sophisticated version of the compiler, currently under
development, by producing machine code directly and
by more sophisticated generation of TLO. High quality
compilation for conventional machines provides a base-
line for assessing the performance of novel architectures
with dynamic instruction scheduling.

In expanding the TLO code to C, instrumentation
code is inserted to collect TAM-level statistics. In
this section, dynamic instruction mix measurements are
compared with measurements of the MIT Tagged-Token
Dataflow Architecture obtained with the Id World
instruction-revel emulator. This shows that TLO in-
structions are essentially at the same level as TTDA
instructions and demonstrates the benefits of compiling
graphs into threads. Finally, dynamic TLO instruction
and scheduling data on large Id program runs is pre-
sented and used to derive the net cost of synchronization
under this approach and with direct hardware support.

3.1 Performance of Id on stock hard-

ware

Table 1 shows elapsed user time for several small pro-
grams written in Id, Lisp, and C and executed on a
MIPS R3000. The Id programs are compiled to TLO,
which is translated to C and compiled with optimiza-
tion level “-02”. No inter-thread register usage is ex-
ploited. The Lisp programs are compiled using Allegro
CL 3.1.0 (speed 3, safety O). User time reported for
the Lisp program is partitioned into program execution
time and garbage collection time (separated by ‘+” in
the table). The C programs are compiled with MIPS CC
version 2.11 wit h optimization level “-03”. This data
indicates that the net gain anticipated from hardware
support for dynamic synchronization is considerably less
than previously believed. Stock implementations need
not execute at “interpreter speeds” if the compiler struc-
tures the representation of the program to minimize the
cost of the most frequent forms of synchronization.

The data in Table 1 should be considered in light of
the different implementation requirements of the lan-
guages. Id is a strongly typed, polymorphic language;
thus no data tagging is required at run-time. However,
the current version of the type system does not distin-
guish between integers and reals, so in the Id imple-
mentation all numbers are represented as 64-bit IEEE
floats. Id version 90.0 remedies this situation. The TLO
code is translated into very unusual C, which defeats the
optimization and register allocation heuristics of the C
compiler. Direct translation to the host instruction set
could yield considerable improvement. Common Lisp is
dynamically typed and the implementation represents
values as 32-bit tagged quantities, thus floats are ac-
cessed indirectly. In C, types are explicit, neither dy-
namic typing nor dynamic synchronization is required.
Data structures in Id are non-strict, i.e., the structure
can be accessed before all its elements are defined, and
require element by element synchronization. The cur-
rent TLO implementation uses an array of tag bytes to

represent the status of an array of values.
MMT is a simple matrix operation test; it creates two

double precision identity matrices, multiplies them, and
subtracts a third identity matrix. Performance of the
Id version is within a factor of five of the C program
and substantially faster than the Lisp program. The C
compiler comprehends the simple inner loop and unrolls
it four-fold. These optimization are not attempted on
the C generated from TLO. The current version of the
Id compiler generates many unnecessary moves that are
easily eliminated. To simulate the compiler improve-
ment and the impact of the more precise type system,
we improved the inner loop by hand, bringing the time
down to 57 seconds. Carrying values in registers across
threads (at the TLO level) and transforming FORK-STOP

to a simple branch, brings this down to 31 seconds.

The next two columns show the user time for Quick-

Sort on a list of random numbers, using accumulation

lists. Here the relative difference with C is greater and

Id is faster than Lisp only when GC time is included.
The poorer performance of the Id version is due, in part,
to our conservative thread partitioning in conditionals
and the high frequency of calls, which currently involve a
request to the UNIX malloc for activation frame storage.

The final two columns show user time on an array
selection sort. The function used to compute the key is
passed as a argument to the sort routine. The Id lan-
guage system is designed to deal with higher order func-
tions and is able to perform optimizations that would be
difficult in the other languages. For the final column,
we optimized these programs by hand; the Id version
improves only slightly, while the other improve consid-
erably.

3.2 Threads versus dataflow graphs

To demonstrate the impact of compiling to threads,
Table 2 presents dynamic instruction frequencies for
Id programs compiled to TLO and compiled to graphs
for the MIT TTDA[5]. In addition to the small pro-
grams discussed above, this includes two larger pro-
grams. Gamteb is a Monte Carlo neutron transport
code. It is highly recursive with many conditionals.
Simple is a hydrodynamics and heat conduction code
widely used as an application benchmark, rewritten in
Id[3]. The TTDA numbers were obtained using the Id-
World graph interpreter, with the same suite of arith-
metic operators, structure operations, and the same re-
source management operations as in TLO. In the in-
struction counts, the STOP terminating each thread is

viewed as part of the FORK, IFETCIi, ALLOC, or RSEND

that enabled the thread. Similarly, the SYNC start-

ing each synchronizing thread is not counted, since the

decrement and test of the entry count is performed

where the thread is spawned.

The Ops row shows the TLO formulation performs
roughly 50~o more instructions than the TTDA. A sin-
gle TTDA instruction can synchronize two arguments,
compute a result, and generate several copies of the re-
sult. The token count measurements indicate that on
average an instruction produces 1.5 output tokens (and
consumes 1.5 input tokens). A direct thread-per-node
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Program MMT 200 QS 5,000 QS 50,000 AS 1,500 AS’ 1,500

Id 67 (57,31) 6.0 72 27 23
Lisp I 441+51 2.4+10 27+414 55+0 36+0

c 15 0.5 8.0 2.6 1.5 I
Table 1: User Time Comparison (in seconds) of compiled Id, Lisp, and C on a MIPS R3000

Dynamic Instruction Mix
Run as 1 100 gamteb 128 mmt 50 qs 512

TLO
simple 2 10

TTDA TLO TTDA TLO TTDA TLO TTDA TLO

Activations

TTDA

105 6,653 2,757 3,075
Ops 368,116

4,619
256,803 611,903 3s3,434 3,363,250 2,346,452

Threads
540,355 349,384 677,956 563,960

83,536 174,241 472,506 207,090 165,018
Tokens 386,969 564,030 3,248,537 540,979
Aborts 15.8

719,311
50.7 22.7 47.1 6.4 38.4 21.7 54.8 20.2 27.5

Arith 38.0 30.2 25.3 25.5 51.1 39.9 13.6 13.4 33.5 39.2
Ifetch 10.0 10.0 10.3 9.9 10.9 10.9 6.7 6.6
Istore

11.5
0.1

13.4
0.1 4.1 4.0 0.4 0.4 3.72 3.71 1.6 1.8

Raend/Tag 0.4 0.4 8.7 9.s 1.3 1.4 5.3 6.2 7.3 9.5
Allot/Resource 0.1 0.1 1.8 3.0 0.2 0.2 3.0 3.8 1.0 2.1
Move/Identity 56.5 13.1 61.4 24.1 65.1 4.5 56.4 21.7 35.1 23.6
Fork&Switch 37.9 21.9 47.2 12.0 14.3 12.3 66.2 25.4 29.5 3.3
-/D LOOp 24.2 10.7 30.0 19.4 5.2

L Ratio 1.43: 1 1.59: 1 1.43: 1 1.55: 1 1.20: 1

Table 2: Instruction Frequency comparisons between TLO and the MIT TTDA

transliteration to TLO would add 1.5 fork operations to

each TTDA instruction, resulting in an 15070increase in

instruction count with the accounting scheme used for
Table 2. Compilation to threads avoids a large fraction
of this overhead, without compromising the non-strict
semantics of the language.

The net reduction of synchronization events can be

seen in the row labeled aborts which shows the number
of unsatisfied entry count decrements, for the TLO case,
and match failures, for the TTDA, aa a percentage of the
total number of TTDA operations. The recent genera-
tion dataflow machines [12,22,25] all support some form
of thread, and the graph partitioning and elimination of
redundant arcs used in TLO compilation could be em-

ployed with similar benefits.

The lower two sections of Table 2 show the instruc-
tion counts broken down into classes as a percentage
of the number of TTDA instructions, i.e., the TLO en-

tries are normalized to the TTDA counts. The middle
section represents the essential computation; the counts
should be roughly equal under the two execution mod-
els. (The difference in arithmetic counts on MMT is due
to operations that convert the index used in structure
operations to an integer, which is not required under
the tagged execution model of the TTDA.) The lower

section includes the control and data movement “over-

head” operations, which differ in the two models. In the
TAM control-flow paradigm, it is necessary to move val-

ues to locations where they will be accessed, for exam-

ple, at the bottom of a loop or conditional. The current
TLO compiler introduces a large number of unnecessary
moves, which will be remedied in the next version. In
the dataflow paradigm, values are delivered directly to

the instructions that access them. Split-phase opera-

tions on the TTDA are limited to producing a single

result, so an identity instruction is ;ntroduc~d to f&-
out the result where needed. With the fan-out of nodes
in the dataflow graph limited to two, as on Monsoon[22],
a much larger number of identities would be required for
fan-out. Identity instructions are also introduced where
required synchronization is not implicit in the data flow,
e.g., determining when an activation is complete.

The row labeled fork&switch includes conditional and
unconditional forks in the TLO and switch instructions
in the TTDA, used to steer values into conditionals or

loop bodies. The D Loop row reflects instructions that
update tag fields and control unfolding in loops. The
TLO compilation uses l-bounded loops [8] and would in-

cur additional overhead with a more general parallel it-

eration strategy.
Compiling to threads compensates to a large measure

for the additional instructions introduced for explicit

scheduling in the TAM model. The increase in overall

instruction counts is modest compared to more com-

plex dataflow models. Still, if the remaining schedul-

ing operations carry the cost of a traditional context

switch, the cost of dynamic synchronization would be

tremendous. The recognition of threads alone does not

obviate the need for hardware support in implementing

fine-grained synchronization. Rather, it is the use of a

program representation that provides a very inexpensive

thread switch.

3.3 Scheduling hierarchy

To demonstrate the impact of the TAM scheduling
hierarchy, Table 3 presents instruction frequency and

scheduling frequency measurements for the Id programs
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discussed above on fairly large problem sizes. This data

provides preliminary estimates of thread size (1/’2’),

threads per quantum (T/Q), and the net cost of syn-

chronization under various degrees of hardware support.

Thread Partitioning: Although the partitioned is

primitive compared to the theoretical state-of-the-

art [28], thread sizes (l/T) are close to typical branch

distances, which provides an upper bound given that

fork is the only form of control transfer. The ob-

served thread sizes are comparable to run lengths re-

ported for hybrid dataflow machines, where conditionals

were treated as strict [16]. Partitioning eliminates more

than half of the dynamic synchronization points and,

by maintaining thread-local values in registers, elimi-

nates roughly half of the frame references and reduces

the frame size substantially. There is no fundamental

reason to exclude branching in the abstract machine,

although with branchimz the definition of a thread be-

comes ‘more subtle. Tab~e 3 separates out the forks that

could be transformed into simple jumps. In the absence

of hardware support for multiple threads, this is a more

appropriate accounting.

The non-strict semantics of the Id language place un-

usual constraints on thread Dartitionirw that would be.
absent in less powerful languages. Excluding this fac-

tor and the absence of branching, the primary limit

on the size of statically scheduled program entities is

the presence of long-latency operations, represented by

split-phase operations in TLO. On average, the dis-

tance between split-phase operations is between 10 and

15 instructions. Retiication of data. such as might be

achieved by caching, would reduce the number of these

operations that actually experience long latency, but not

the number that potentially do so. Thus, in any execu-

tion model that attempts to mask latency through split-

phase operations, thread-local values provide only lim-

ited opportunity for exploiting processor registers and

the frequency of thread switch is non-trivial.

Quanta: Although individual threads are usually

small, the number of logically related threads that can

be scheduled closely together in time is often substan-

tial. This is indicated by the row of Table 3 labeled T/Q,

which gives the average number of threads scheduled

per quantum. By recognizing this level in the schedul-

ing hierarchy, it is possible to carry values in registers

across threads. Observed average quantum size (l/Q)

indicates that there is substantial ov~ortunitv to uti-

lize high-speed registers at this leve~. - The completion

and initialization threads can be configured in conjunc-

tion with register allocation to save and restore regis-

ters when the compiler incorrectly predicts the quantum

boundaries. Register allocation becomes challen~ing in

this quasi-dynakic setting, as the cost metrics ar; prob-

abilistic.

The thread enabled by a fork instruction is guaran-

teed to execute within the same quantum as the fork.

Thus, the fork can be implemented by simply pushing

the instruction pointer of the target thread on the local

continuation vector. The thread switch (STOP) is simply

a pop-jump. The cost of this form of thread switch is

only a few instructions. The last fork in a thread can be

pulled to the end of the thread and elided with the STOP

to produce a jump or a fall-through, depending on the

ordering of threads in the code-block. As indicated by

Table 3, a large fraction of the forks can be transformed

into jumps.5

The quantum figures in Table 3 must be interpreted

with some caution, since this is scheduling dependent

and the numbers derive from uniprocessor runs. Table 4

provides preliminary scheduling measurements for the

quicksort program on multiple processors. This makes

extensive use of non-strict data structures. vet the aver-,.
age quantum size is roughly halved on multiple proces-

sors. We are developing a fully instrumented implemen-

tation of TLO on a 2048-node nCUBE/2 to determine

quantum sizes in a truly parallel setting on large pro-

grams.

Net Synchronization Cost: Based on the scheduling

data in Table 3, we can make preliminary estimates of

the net cost of synchronization with or without spe-

cial hardware support. Under a dataflow execution

model. the mimarv form of synchronization is match-

ing pairs o~ opera;ds. Thk ;equires one cycle on an

ETS dataflow architecture1221 or multide cvcles with., . .
a hash-based matching store [15], under the assumption

that the matching store and the token queue are main-

tained in high-speed processor storage.e We see that

1.5 tokens are processed per instruction, or one syn-

chronization event for everv two instructions. on aver-

age. The synchronization ;ost under a dataflow model

is roughly 0.51 times the match cost.

Since TAM employs a range of synchronization mech-

anisms, we must account for the possible relationships

of the participants. Suppose that A and B are two por-

tions of the program that must complete before portion

C is executed. If A and B are Dart of the same thread.

the cost of synchronization is ;ero, since it is implicit

in the thread ordering. With an average thread size

of four, roughly half of the dataflow synchronization

events (0.251) fall in this category. Thus, even with

extensive hardware support, compiling to threads can

reduce the net synchronization cost. If A and B are in

two threads in tie same code block, the synchronization

cost is the two entry count decrements and the fork/stop

or simple jump, depending on where the fork appears in

the thread. This case is represented by the instructions

counted in the rows labeled Fork and JumD in Table 3.

Taking the two large programs, simple an~ gamteb, as

representative, we see 12~0 of the TAM instructions are

subject to an overhead of roughly five machine instruc-

tions and 12% to 18% subject to an overhead of roughly

three instructions. Direct hardware support for this op-

eration can bring noticeable performance improvement,

but is unlikelv to movide more than a factor of two.

(The quicksor~ example indicates a more dramatic im-

provement, but is also most strongly influenced by the

immature state of our compiler.)

5On the other hand, the ability to separate the fork from the
stop provides a generalization of delayed branch and may be ad-
vantageous to support directly.

6The read-modify-write process associated with the match
may also stretch the machine cycle, so a small multiplicative
factor should be employed to account for this ahd an average
miss penalty should be included. Still, the basic argument is
unchanged.
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Dynamic Instruction Mix

Run simple 250 mmt 100 mmti4 100 gamteb 2048 QS 10,000 AS 500

Instructions (I) 18,000,274 25,426,150 14,476,154 9,303,069 14,767,096 8,940,066

Arith 28.6 36.5 50.8 16.1 9.1 26.7

Ifetch 10.2 7.9 14.0 6.5 4.7 7.0

Istore 1.1 0.2 0.3 2.6 2.5 0.0

Move 28.6 45.7 18.0 38.6 35.3 39.5

Fork 12.8 0.2 0.3 11.8 13.4 5.6

Jump 11.8 9.0 15.9 17.9 30,8 21.1

Rsend 5.8 0.5 0.8 5.4 2.4 0.1

Allot 1.6 0.0 0.1 1.1 1.7 0.0

Other 0.4 0.0 0.0 0.0 0.0 0.0

f ‘% SLdit-Dhase I 17.8 8.6 15.1 12.4 11.4 7.1

Dynamic Scheduling Mix

Activations (A) 122,619 10,507 10,507 69,324 60,003 505

Quanta (Q) 351,202 21,012 21,012 179,060 159,999 1,009

Threads (T) 3,832,724 3,379,906 3,379,806 2,360,911 5,381,855

% Synch

2,015,924

44.6 32.3 32.3 43.8 31.5 25

Ave Fan-in 3.3 2.1 2.1 2.9 2.7 3.0

Q/A 2.9 2.0 2.0 2.6 2.7 2.0

T/A 31.3 321.7 321.7 34.1 94.1 3,992

1/A 146.8 2,420 1,378 134.2 246.1 17,703

T/Q 10.9 160.9 159.4 10.1 52.0 1,997

I/Q 51.3 1,210 688.9 34.1 92.3 8,860

I/T 4.7 7.6 4.3 3.9 2.7 4.4

Table 3: TLO Instruction and Scheduling Measurements for Large Programs

QS(1OOO) 1 2 4 6 8 10 12

Defered Ifetches 3000 8973 15736 21021 23812 25006 26020

Q/A 3.0 4.0 5.3 6.3 6.9 7.3 7.8

T/Q 23.0 17.2 12.5 10.9 9.9 9.5 9.1

I/Q 63.9 47.6 36.3 30.2 27.6 26.3 25.2

Table 4: Dynamic Scheduling Measurements for 1 to 12 Processors on a Sequent Symmetry

The most costly form of synchronization is the inter-

action of threads in different code-blocks, either through

parameter and result passing or through structure op-

erations. These are the external messages handled by

inlets. The row labeled split-phase in Table 3 shows the
number of these events as a percentage of the instruc-

tions executed; roughly one in eight. We may sssume

the event is associated with the arrival of a message, the

first word of which identifies the inlet and the second

word specifies the activation frame. To process such

a message, the inlet is dispatched; it receives the rest
of the message, stores values into slots in the specified

frame, and posts a thread in the continuation vector.

Eventually, the frame will be made resident and its con-

stituent continuations processed. Thus, the cost of this

form of synchronization is net+ n + a/q, where n is the

cost of the inlet, a is the cost associated with schedul-

ing and perhaps copying state for the activation, q is

the number of split-phase operations per quantum, and

net is the cost of interacting with the network. Un-

der TAM, n and a are only a few instructions and dy-

namic measurements indicate that q can be fairly large.

Thus, by structuring the execution model in a man-
ner that promotes large quanta, even under dynamic

thread scheduling, the cost of this form of synchroniza-

tion is also reduced. By making the register level of

the storage hierarchy explicit and recognizing quantum

boundaries, the compiler may attempt to minimize a

while promoting use of registers.

The most significant synchronization cost is the ac-

tual transmission and reception of the message from

the network. This has been addressed in dataflow ma-

chines in the context of elaborate hardware support for

scheduling and synchronization. For example, on Mon-

soon a single 144-bit message packet can be transmit-

ted or received in a cycle or two. Upon reception, it is
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placed onalarge hardware managed scheduling queue.

In essentially every commercially available multiproces-

sor, a combination of awkward network interface and

operating system software places the cost of this oper-

ation on the order of hundreds of cycles. TAM demon-

strates that efficient processor/network interaction and

program level scheduling and synchronization can be

addressed independently. Issuing split-phase requests is

not unlike issuing instructions to a modern numeric co-

processor. Receiving requests requires little more than

dispatching to an inlet sequence; the message decode is

‘compiled in” and storage is preallocated.

4 Conclusion

In this paper, we have presented an execution model

for fine-grain parallelism, in which synchronization,

scheduling, and storage management is explicit and un-

der compiler control. This is defined by a simple ab-

stract machine with a multilevel scheduling hierarchy:

instructions within a thread, threads within a quantum,

quanta within an activation. This makes a range of syn-

chronization mechanisms available to the compiler, so

it can exploit frequently occuring special cases. Over-

all, the net cost of synchronization on conventional pro-

cessors is shown to be roughly comparable to that on

machines with elaborate hardware support, such as pro-

posed dataflow architectures. An implementation of the

dataflow language Id is shown to be roughly competitive

with conventional languages on current uniprocessors.

Empirical measurements show that threads are small,

but substantial temporal locality exists among logically

related threads, even under dynamic scheduling. With

scheduling made explicit, the compiler can make effec-

tive use of high-speed processor state across a sizable

collection of threads, provided that it manages that re-

source under a quasi-dynamic scheduling paradigm. Im-

plicit scheduling in hardware is shown to be of question-

able value, as it prevents register usage beyond thread

boundaries. Exposing scheduling to the compiler allows

it to synthesize particular scheduling policies in specific

portions of the program.

Tolerance to long, unpredictable communication la-

tency and inexpensive synchronization in a large names-

pace have been put forward aa fundamental architec-

tural issues for general purpose parallel computing. In

this paper, we have argued that these are primarily com-

pilation issues. In order to generate programs that per-

form well on large multiprocessors, the compiler must

represent the program in such a way that the most fre-

quent forms of synchronization and context switching

are extremely rapid. This can be achieved without elab-

orate hardware scheduling. Multiple register sets pro-
vide benefits under this execution model, but are not

essential. This suggests that the fundamental architec-

tural issues are simply: how many cycles does it take

to deliver data from the user program into the network

and how many cycles does it take to extract data from

the network and deliver it to a useful place in the user

program.

Arith/Logic al-opt

Transfer HOVE . S

Control SYNC

FORK

SWITCH

CASE

STOP

Structure IALLOC . S

IFREE

rd- op. s

wr-op.s

Call/Return RALLOC

RSEND

RETURN

RELEASE

hi’ = srcl src2

dst = src

src

thr

src thrl thr2

src thrl . . . thrN

inlet = src

src

inlet = srcl [src2]

srcl [src21 = src.9

inlet l-inletN = srcl

src, inlet = srcl.s . . . srcNs

res = srcl. s . . . srcN. s

res = srcl .s . . . srcN.s

Table 5: Overview of TLO Operations

A TLO

TAM is currently represented by TLO, a 3-address in-

struction set with somewhat unusual control and mem-

ory operations. An overview of TLO is provided in Ta-

ble 5. Operands indicated by src may be frame slots,

integer registers, floating-point registers, or literals. The

usual integer and floating-point arithmetic and logical

operations are provided in a three address form, where

dst maybe either a frame slot or a register. The opera-

tion code is qualified by type or size: . I for integer, . F

for floating point, . H for half-word, and . W for full-word

(64 bits).

In TLO a thread is a sequence of instructions brack-

eted by THREAD thr and END.THREAD. Synchronizing

threads start with a SYNC instruction which specifies a

frame slot that holds the thread entry count. The FORK

operation enables a thread for execution. The thread is

specified as an immediate operand. SWITCH is a condi-

tional fork; it enables one of two local threads for exe-

cution. CASE is a conditional fork that enables a thread

obtained by indexing into a static table. STOP causes

the current thread to be terminated and an enabled

thread from the current activation to be dispatched.

Each fork to a synchronizing thread causes the entry

count to be decremented. The thread executes when

the count reaches zero. The decrement and test may be

performed at the sync or as part of the fork, in which

case threads are placed on the continuation stack only

if they are guaranteed to execute.

The memory operations support split-phase access to

components of structures of various sizes. Thus, the

read operations specify an inlet as a destination. The
operation causes a request to be generated for the mem-

ory unit or processor containing the referenced element.

The corresponding inlet places the value contained in

the response into a specific frame slot and enables a spe-

cific thread. (Inlets may also process multiple values.)

Three read operations are provided: IREAD, IFETCH, and

ITAKE, that operate in tandem with the write opera-
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tions, IWRITE, ISTORE, and IPUT. The operation IREAD

simply reads the location; the split phase character is

solely to avoid waiting during a long-latency request.

IFETCH is a synchronizing form of read, that checks

status bits associated with the referenced location and

waits in the memory unit until an I STORE fills the loca-

tion. I STORE causes all waiting readers to be serviced.

This supports write-once data structures with element-

by-element synchronization. IPUT and ITAKE provide

exclusive access to a mutable location. IPUT stores a

value into a locations and if waiters exist, a single waiter

is serviced. ITAKE reads a full location and leaves it

empty. If the slot is empty ITAKE waits until it is made

full by a corresponding IPUT. Memory operations are

qualified by the size of the value transferred.

The Call/Return operations support an asynchronous

remote call mechanism. RALLOC is a split phase oper-

ation that requests a frame for a specified code-block

STCI, passing a range of inlets to be used for returning

function results and inlet 1 receives the pointer to the

allocated frame. The frame pointer is used in RSEND

to transfer values into an inlet of that frame. RETURN

sends result values back to its caller. The res field se-

lects which of the inlets specified in RALLOC to use. In

addition to the operations performed by RETURN, the op-

eration RELEASE also deallocates the frame. Typically

the value returned by RELEASE signals completion to the

parent.

Below is a simple Id function that computes the inner-

product of the two input vectors A and B, over the range

of subscripts 1 to n.

def inner.prod A B n = {
sum = o;

in {for i <- 1 to n do
next sum = sum + A[l]*B[i];

finally suit } ;

The TLO code shown in Figure 3 begins with static

declaration of frame slots, registers, and inlets, followed

by the definition of the initialization thread and eight

other threads. The initialization thread is executed by

the RALLOC operation in the calling activation prior

to any of the other threads.
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CBLOCX inner-prod
FRAHE LOCALS= 20, L. CVECT= 4, R-CVECT= 4
REGS IJEGS = 2, FJIEGS = 1

# Locals:
* LO A, L2 B,
* L4 n, L6 i, L7 unused,
* L8 sum, L1O A offset,
* L12 B offset, L14 A[i],
* L16 B[i] , L18 thr3 synch var, L19 thr6 synch vsr

# Inlet declarations:
lELET inletO = thrO
llLET inlet2 = L4. E thr3
I~ET inlet3 = L2 .W thr2
IMLET inlet4 = LO.W thrl
IliLET inlet5 = LIO. H thr3
IIILET inlet6 = L12. E thr3
llLET inlet7 = L14. U thr6
IHLET inlet8 = L16. U thr6

IIIIT-THREAD
HOVE. H L18 = 4

HOVE. H L19 = 2

STOP

EIID.TEREAD

*

# Threads receiving arguments

#

THREAD thrO

HOVE.U L8 = 0.0

HOVE. H L6 = 1

FORK thr3
STOP_- —-

EHD-THREAD

THREAD thrl

IFETCE. W inlet 5 = LO [01
STOP

EIiD.THREAD

THREAD thr2

IFETCH. W inlet6 = L2 [0]

STOP

EHD-THREAD

#

# Body threads

*

trigger

third argument (n)

second argument (B)

first argument (A)

A lower bound offset

B lower bound offset

A[i]

B[i]

Init synch vsrs

triger&A&Btn

9A[l & B[i]

Trigger

sum =0
i=l

Receive first arg (A)

fetch low bound offset

Receive second srg (B)

fetch low bound offset

TEREAD thr3

SYMCL18

FORK thr4

for all arguments* Wait

# enter loop

STOP

THREAD thr4 * Top of loop - test

HOVE.E IREGO= L6 # load i into register

LE. I IR1 = IREGO L4 #IRl=i<=n

SWITCH IR1 thr5 thr7 # if IRI fork 5

STOP * else fork 7

EliD_TEREAD

THREAD thr5 * Loop body - first half

ADD . I IREGI = L1O IREGO # A low bound offset+i

IFETCH. W inlet7 = LO [IREG1] # fetch A [i]

ADD. I IREG1 = L12 IREGO # B low bound offset+i

IFETCH.U inletS = L2 [IREG1] * fetch B[i]

ADD . I L6 = IREGO i #i=i+l

STDP

ERD_THREAD
TiiEEAD thr6 Z LOOP body - second half

SYIIC L19 # wait for A[i] end B[i]
HOVE. E L19 = 2 # re-init synch var

FORK thr4 # enable loop top

HUL . F FREGO = L14 L16 # A[i] * B[i]

AOD . F L8 = L8 FREGO # sum = sum + A[i]*B[i]

STOP

EliD-THREAD

THREAD thr7 * End - return reeult

RETURH resl = L8 .W * return result

RELEASE resO # return signal and dealloc

STOP

EliD-TIIREAD

EYID_BLDCK

Figure 3: Sample TLO code for inner product
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