
Robust GPU Architectures
Improving Irregular Execution on 
Architectures Tuned for Regularity

Mattan Erez

The University of Texas at Austin



Lots of interesting multi-level projects

Resilience/
Reliability

GPU/CPU/
Superscale

Memory

(C) Mattan Erez 2



Arch-focused whole-system approach

• Efficiency requirements require crossing layers

• Algorithms are key
– Compute less, move less, store less

• Proportional systems
– Minimize waste

• Utilize and improve emerging technologies

• Explore (and act) up and down
– Programming model to circuits 

• Preferably implement at micro-arch/system

(C) Mattan Erez 3



Big problems and emerging platforms

• Memory systems
– Capacity, bandwidth, efficiency – impossible to balance

– Adaptive and dynamic management helps

– New technologies to the rescue?

– Opportunities for in-memory computing

• GPUs, clouds, and more
– Throughput oriented designs are a must

– Centralization trend is interesting

• Reliability and resilience
– More, smaller devices – danger of poor reliability

– Trimmed margins – less room for error

– Hard constraints – efficiency is a must

– Scale exacerbates reliability and resilience concerns

(C) Mattan Erez 4



Lots of interesting multi-level projects

Resilience/
Reliability

GPU/CPU/
Superscale

Memory

(C) Mattan Erez 5



Regularity is good for hardware

• Regularity exploited to amortize overheads

• SIMD/vectors

• Long(ish) cache lines and memory transfers

D0 E0

DataC

C
0

C
1

D1 E1 D2 E2 D3 E3
C
2

C
3

C
4

D4 E4

CG

FG
C
5

C
6

C
7

D5 E5 D6 E6 D7 E7

ECC

control control

(C) Mattan Erez 6



Good algorithms often irregular

• Graphs

• Sparse structures

• Early-exit conditions

• Specialization

• …

(C) Mattan Erez 7



What to do?

• Tune and regularize algorithm implementation
– Works great

– Hard to do

– Sometimes impossible

• Build hardware for irregularity
– Fine-grained control and access

– Need to make it cheap enough

• Need to not penalize regular(ized) algorithms!

• Need a robust architecture

(C) Mattan Erez 8



Dynamic adaptivity and flexibility

• Hardware mostly designed for regularity
– Negligible impact on regular portions 

• Low-overhead structures support irregularity
– Performance and efficiency gains on irregular parts

• Improving irregular control on wide-SIMD GPUs
– Dynamically “regularize” diverged branches

– Utilize divergence to increase TLP

• Improving fine-grain memory access
– Locality-aware memory hierarchy

– Dynamic granularity accesses

(C) Mattan Erez 9



Outline

• Robust control for wide-SIMD GPUs
– Brief “GPU” overview

– Dynamically “regularize” diverged branches
• Warp compaction

• Eliminating its impact on regular code

– Utilize divergence to increase TLP
• Dual-path execution

• Robust memory access
– Dynamic granularity accesses

– Locality-aware memory hierarchy for GPUs

– Robust caching

• The real credit belongs to the students
– Min Kyu Jeong, Minsoo Rhu, 

Michael Sullivan, Doe Hyun Yoon, Dong Li

(C) Mattan Erez 10



BRIEF GPU OVERVIEW



Graphic Processing Units (GPUs)

• General-purpose many-core accelerators
– Use 100s of simple in-order shader cores

– Shader core == streaming multiprocessor (SM) in NVIDIA GPUs

• Scalar frontend (fetch & decode) + parallel backend
– Amortize the cost of frontend and control

12(c) Minsoo Rhu & Mattan Erez



Exposed hierarchy of data-parallel threads

• SPMD: single kernel executed by numerous scalar threads 

• Kernel / Thread-block hierarchy
– Kernel composed of many thread-blocks

(a.k.a. cooperative-thread-arrays (CTAs) or work-groups)

13(c) Minsoo Rhu & Mattan Erez



CUDA exposes hierarchy of data-parallel threads

• SPMD: single kernel executed by numerous scalar threads 

• Kernel / Thread-block / Warp / Thread
– Multiple warps compose a thread-block (OpenCL wavefronts)

– Multiple threads (32) compose a warp (OpenCL work-items)

14

A warp is scheduled as a batch of threads

(c) Minsoo Rhu & Mattan Erez



CUDA exposes hierarchy of data-parallel threads

• SPMD: single kernel executed by numerous scalar threads 

• Kernel / Thread-block / Warp / Thread
– Multiple warps compose a thread-block

– Multiple threads (32) compose a warp

15

Each thread execute in 

designated home SIMD lane: 

(thread-ID) mod (SIMD width)

: Thread-ID 0, 32, 64 … execute in physical lane #0

: Thread-ID 2, 34, 66 … execute in physical lane #2

(c) Minsoo Rhu & Mattan Erez



GPUs have HW support for conditional branches

• SIMT: Single-Instruction Multiple-Thread
– Underlying hardware uses vector SIMD pipelines (lanes)

– Programmer writes code to be executed by scalar threads

– Hardware/software supports conditional branches
• Each thread can follow its own control flow

16(c) Minsoo Rhu & Mattan Erez



SIMT stack-based reconvergence model

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point

17

(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management

(c) Minsoo Rhu & Mattan Erez



SIMT stack-based reconvergence model

18

(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point

(c) Minsoo Rhu & Mattan Erez



SIMT stack-based reconvergence model

19

(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management

Stack entries 

for paths B and 

C are PUSHED

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point

(c) Minsoo Rhu & Mattan Erez



SIMT stack-based reconvergence model

20

(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management

B POPPED

when reaching 

RPC (D)

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point

(c) Minsoo Rhu & Mattan Erez



SIMT stack-based reconvergence model

21

(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management

C POPPED

when reaching 

RPC (D)

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point

(c) Minsoo Rhu & Mattan Erez



Is this dynamic adaptive HW?

• Yes!
– Tuned for regularity

– Supports irregular

• But irregular control often performs poorly
– Only fraction of lanes is active

– Reduced effective TLP
• Paths serialized and each has fraction of active threads

– Reduced performance and efficiency
• SIMD units under utilized

(c) Minsoo Rhu & Mattan Erez 22



DUAL PATH EXECUTION
Exploiting irregular control to improve parallelism 

(c) Minsoo Rhu & Mattan Erez 23



Serialization of execution paths

• Execution can transition to the 
next path only when all the 
instructions in the current path 
(basic-block) are executed.
– CFG is managed with STACK!

• Misses opportunities to schedule 
from other concurrent paths
– e.g., paths B/C

24

(a)Example Control Flow Graph

(b) Execution flow using baseline mechanism.

idle

idle cycles: phases where the scheduler is short of warps to schedule (i.e. cache miss, long-latency ops)

(c) Minsoo Rhu & Mattan Erez



Dual-Path Execution Model (DPE)

• Increase thread-level parallelism 
(or path-parallelism) 
– Without sacrificing SIMD lane utilization

• Maintains the simplicity of the baseline stack model

• Minimal implementation overhead
– Purely a microarchitectural solution

– No additional compiler support needed

25(c) Minsoo Rhu & Mattan Erez



Dual-Path Execution Model (DPE)

• Increase thread-level parallelism 
(or path-parallelism) 
– Without sacrificing SIMD lane utilization

– Previous work compromises SIMD efficiency for enhanced TLP

• Maintains the simplicity of the baseline stack model

• Minimal implementation overhead
– Purely a microarchitectural solution

– No additional compiler support needed

26

- Meng et al., “Dynamic Warp Subdivision for Integrated Branch and Memory Divergence”, ISCA-2010

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

27

RPC value is shared by both Left & 

Right paths (always at PDOM)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

28

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

29

PUSH paths

B and C as a 

single operation

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

30

PUSH paths 

D and E as a 

single operation

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

31

Invalidate D

when reaching 

RPC (F)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

32

POP stack when 

E reaches 

RPC (F)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack

33

Reconverge at 

path G

(same as SPE)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

(c) Minsoo Rhu & Mattan Erez



DPE components: scoreboard

• Current GPUs execute intra-warp threads back-to-back

• DPE complications because T/NT paths share registers
– Separate Left/Right scoreboards

– Shadow-bits for pre-/post-divergence dependencies

34(c) Minsoo Rhu & Mattan Erez

(b) DPE Scoreboard(a) SPE Scoreboard



DPE components: warp scheduler

• Scheduler enhanced to cover both T/NT paths
– For maximal benefits of DPE, scheduler overhead is doubled

– ‘Constrained’ scheduler
• Warp-scheduler is fed with only a single path at the TOS

• Path to be sent to the scheduler is rotated when a long-latency 
operation is executed

• Benefits decrease from 14.9% to 11.7%

35(c) Minsoo Rhu & Mattan Erez



Simulation environment

• GPGPU-Sim
– Cycle-based performance simulator of a GPGPU

– 15 shader cores (Streaming Multiprocessors, SMs)

– 1536 threads per core, 32K registers per core

– Cache: 16kB L1, 768kB Unified L2

– Shared-memory: 48KB

– Memory Controller : FR-FCFS
• 29.6GB/s per channel, 6 channels overall

• Applications
– Chosen from CUDA-SDK, Rodinia, Parboil, Cuda Zone, etc

– Will focus on apps exhibiting distinct behavior across different 
schemes

36(c) Minsoo Rhu & Mattan Erez



Average path parallelism

• Num of concurrent paths exposed to the scheduler
– SPE: always ‘1’

– DPE: ‘2’ if both L/R path available, and ‘1’ otherwise 

37

• Interleavable branch
– Both “if”/“else” part active

– DPE scheduler sees ‘2’ paths

• Non-interleavable branch
– No ‘else’ part

– DPE scheduler sees ‘1’ path

(c) Minsoo Rhu & Mattan Erez



Avg. path parallelism / idle cycles / speedup

38

(a) Average path parallelism (Higher is better)

(c) Speedup (Higher is better)

(b) Normalized idle cycles (Lower is better)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

LUD QSort Stencil RAY LPS MUM MCML H-Mean

SPE

DPE

0
0.2
0.4
0.6
0.8
1

1.2

LUD QSort Stencil RAY LPS MUM MCML Average

SPE

DPE

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

LUD QSort Stencil RAY LPS MUM MCML H-Mean

SPE

DPE

Max: 42.5% ↑ 

Avg: 20.1% ↑

(c) Minsoo Rhu & Mattan Erez



Avg. path parallelism / idle cycles / speedup

39

(a) Average path parallelism (Higher is better)

(c) Speedup (Higher is better)

(b) Normalized idle cycles (Lower is better)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

LUD QSort Stencil RAY LPS MUM MCML H-Mean

SPE

DPE

0
0.2
0.4
0.6
0.8
1

1.2

LUD QSort Stencil RAY LPS MUM MCML Average

SPE

DPE

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

LUD QSort Stencil RAY LPS MUM MCML H-Mean

SPE

DPE

Max: 48.1% ↓ 

Avg: 10.2% ↓

(c) Minsoo Rhu & Mattan Erez



Avg. path parallelism / idle cycles / speedup

40

(a) Average path parallelism (Higher is better)

(c) Speedup (Higher is better)

(b) Normalized idle cycles (Lower is better)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

LUD QSort Stencil RAY LPS MUM MCML H-Mean

SPE

DPE

0
0.2
0.4
0.6
0.8
1

1.2

LUD QSort Stencil RAY LPS MUM MCML Average

SPE

DPE

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

LUD QSort Stencil RAY LPS MUM MCML H-Mean

SPE

DPE

Max: 41.9% ↑ 

Avg: 14.8% ↑

(c) Minsoo Rhu & Mattan Erez



IMPROVING SIMD EFFICIENCY

(c) Minsoo Rhu & Mattan Erez 41



Underutilization of SIMD units

• Number of active threads in a 
warp decreases every time 
control diverges

• Theoretically, only a single SIMD 
lane might be active at some 
point, for highly divergent apps.
– Nested divergent branches

42

(a)Example Control Flow Graph

: Threads (lanes) masked out due to control divergence, remaining idle.

(b) Execution flow using baseline mechanism.

(c) Minsoo Rhu & Mattan Erez



Thread-block compaction (TBC) [Fung’11] 

• Dynamically compact warps within a thread-block
– Synchronize all warps at branches and reconvergence points

– Threads with different home SIMD lanes compacted together

43

: [0,1… A,B] refers to active thread-IDs executing in that basic block
: [-] refers to inactive threads, masked out from execution

(c) Minsoo Rhu & Mattan Erez



Thread-block compaction (TBC) [Fung’11] 

• Dynamically compact warps within a thread-block
– Synchronize all warps at branches and reconvergence points

– Threads with different home SIMD lanes compacted together

44

: [0,1… A,B] refers to active thread-IDs executing in that basic block
: [-] refers to inactive threads, masked out from execution

(c) Minsoo Rhu & Mattan Erez



Thread-block compaction (TBC) [Fung’11] 

• Dynamically compact warps within a thread-block
– Synchronize all warps at branches and reconvergence points

– Threads with different home SIMD lanes compacted together
• Path B is compacted, whereas Path C is non-compactable

45

: [0,1… A,B] refers to active thread-IDs executing in that basic block
: [-] refers to inactive threads, masked out from execution

(c) Minsoo Rhu & Mattan Erez



Is compaction dynamic adaptive HW?

• Yes!
– Better support for diverged control flow

• But …
– Regular(ized) control may suffer

– Doesn’t work as is for many diverged branches

(c) Minsoo Rhu & Mattan Erez 46



Excessive synchronization overhead

• Compaction is applied at all branching points
– Effectively generates a HW-induced compaction-barrier

– Warps arriving at the end of BB must wait for other warps in its CTA

– Don’t compact at unconditional branches [Narasiman’11]
• TBC+ (TBC with no synchronization at unconditional branches)

47

: Compaction barrier

Warps must 

always sync. 

even if 

compaction 

is not 

effective

(c) Minsoo Rhu & Mattan Erez



Branch divergence & ideal compactability*

• Conditional branches, categorized as:
– Divergent and ideally compactable (D/C)

– Divergent but non-compactable even with ideal (D/NC)

– Non-divergent (ND)

48

* Ideally compactable branches: branches that can be compacted if threads can switch 

its executing SIMD lanes

0%

20%

40%

60%

80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
T

B
r
a
n
c
h
e
s

(c) Minsoo Rhu & Mattan Erez



Branch divergence & ideal compactability*

• Conditional branches, categorized as:
– Divergent and ideally compactable (D/C)

– Divergent but non-compactable even with ideal (D/NC)

– Non-divergent (ND)

49

* Ideally compactable branches: branches that can be compacted if threads can switch 

its executing SIMD lanes

0%

20%

40%

60%

80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
T

B
r
a
n
c
h
e
s

Most conditional branches 

are ND or D/NC !
: Why wait compaction ?

(c) Minsoo Rhu & Mattan Erez



CAPRI: Compaction-Adequacy PRedIction

• Intuition
– Not all branch points are likely to be compactable

– Speculate whether compaction is worth it

1) Activate compaction only when necessary

– When past history says compaction was beneficial

2) Bypass warps from compaction-barrier when inadequate

• Compaction-adequacy
– Compaction is adequate when the number of 

executing warps was reduced at a particular branch

• Microarchitecture*

– Per-core prediction table (32-entry, TAG: PC of branch)

– Works like a simple single-level branch predictor

50

* Rhu et al., “CAPRI: Prediction of Compaction-Adequacy for Handling Control-Divergence in GPGPU 

Architectures”, ISCA-2012

(c) Minsoo Rhu & Mattan Erez



CAPRI accuracy 

51

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

0%

25%

50%

75%

100%

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

DWTHARR LIB PFLT QSRDM

0%

25%

50%

75%

100%

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

N
o
_
T
B
C

T
B
C

T
B
C
+

C
A
P
R
I

BFS MUM LPS BACKP

Bypass/Bypass Stall/Stall Bypass/Stall Stall/Bypass

(c) Minsoo Rhu & Mattan Erez



Average SIMD lane utilization*

52

* Average number of SIMD lanes occupied when a warp is issued

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Higher is better

0%

20%

40%

60%

80%

100%

BFS MUM LPS BACKP

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

No_TBC TBC TBC+ CAPRI

0%

20%

40%

60%

80%

100%

DWTHARR LIB PFLT QSRDM

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

CAPRI: 2 ~ 5%  ↓ 

(c) Minsoo Rhu & Mattan Erez



Average SIMD lane utilization*

53

* Average number of SIMD lanes occupied when a warp is issued

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Higher is better

0%

20%

40%

60%

80%

100%

BFS MUM LPS BACKP

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

No_TBC TBC TBC+ CAPRI

0%

20%

40%

60%

80%

100%

DWTHARR LIB PFLT QSRDM

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

CAPRI: 2 ~ 5%  ↓ 

(c) Minsoo Rhu & Mattan Erez



Idle cycles (normalized)

54

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Lower is better

0

0.5

1

1.5

2

BFS MUM LPS BACKP

I
d
l
e
 
C
y
c
l
e
s

No_TBC TBC

TBC+ CAPRI

0

0.5

1

1.5

2

2.5

3

DWTHARR LIB PFLT QSRDM

I
d
l
e
 
C
y
c
l
e
s

No_TBC TBC

TBC+ CAPRI

(c) Minsoo Rhu & Mattan Erez



Overall performance

55

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Higher is better

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BFS MUM LPS BACKP

N
o
r
m
a
l
i
z
e
d
 
I
P
C No_TBC TBC TBC+ CAPRI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

DWTHARR LIB PFLT QSRDM

N
o
r
m
a
l
i
z
e
d
 
I
P
C

No_TBC TBC TBC+ CAPRI

(c) Minsoo Rhu & Mattan Erez



Limited applicability of compaction

• Average SIMD lanes occupied for execution
– No_TBC : Baseline architecture without compaction

– TBC : baseline compaction mechanism

• Threads maintain execution in its home SIMD lane

56

Higher is better

0%
20%
40%
60%
80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

S
I
M
D
 
L
a
n
e

U
t
i
l
i
z
a
t
i
o
n

No_TBC

TBC

0%
20%
40%
60%
80%

100%

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
TS
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

Higher is better

(c) Minsoo Rhu & Mattan Erez



Limited applicability of compaction

• Average SIMD lanes occupied for execution
– No_TBC : Baseline architecture without compaction

– TBC : baseline compaction mechanism
• Threads maintain execution in its home SIMD lane

57

Higher is better

0%
20%
40%
60%
80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

S
I
M
D
 
L
a
n
e

U
t
i
l
i
z
a
t
i
o
n

No_TBC

TBC

0%
20%
40%
60%
80%

100%

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
TS
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

Higher is better

TBC, in general, only effective for 

highly divergent applications

(c) Minsoo Rhu & Mattan Erez



Why does compaction fail?

• Most (or all) of SIMD lanes already occupied
– Compaction inherently impossible

• Active threads aligned (clustered)on certain lanes

– Compaction theoretically feasible, if crossbars can distribute operands across 
different SIMD lanes

58

Non-divergent Divergent, but non-compactable

(c) Minsoo Rhu & Mattan Erez



Why does compaction fail?

• Most (or all) of SIMD lanes already occupied
– Compaction inherently impossible

• Active threads aligned (clustered)on certain lanes
– Compaction theoretically feasible, if crossbars can allow threads to 

execute in different SIMD lanes

59(c) Minsoo Rhu & Mattan Erez



• Most (or all) of SIMD lanes already occupied
– Compaction inherently impossible

• Active threads aligned (clustered)on certain lanes
– Compaction theoretically feasible, if crossbars can allow threads to 

execute in different SIMD lanes

Why does compaction fail?

60

Aligned Divergence!

(c) Minsoo Rhu & Mattan Erez



Aligned divergence – (1)

• Case 1: Branch condition depends on data array
– Each thread references different element of the array

– Unlikely to cause aligned divergence

61(c) Minsoo Rhu & Mattan Erez



Aligned divergence – (1)

• Case 1: Branch condition depends on data array
– Each thread references different element of the array

– Unlikely to cause aligned divergence

62(c) Minsoo Rhu & Mattan Erez

D-Branches



Aligned divergence – (2)

• Case 2: Branch cond. depends on programmatic value
– Indices of thread-ID, warp-ID, CTA-ID, width/height of CTA  

– Scalar input parameters to the kernel, constants

– Threads sharing home SIMD lane likely to reference same value

63(c) Minsoo Rhu & Mattan Erez



Aligned divergence – (2)

• Case 2: Branch cond. depends on programmatic value
– Indices of thread-ID, warp-ID, CTA-ID, width/height of CTA  

– Scalar input parameters to the kernel, constants

– Threads sharing home SIMD lane likely to reference same value

64(c) Minsoo Rhu & Mattan Erez

P-Branches



Compaction rate of p-/d-branches (with TBC)

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

65(c) Minsoo Rhu & Mattan Erez

Branch categorization done with GPUOcelot

using Taint-analysis (detailed in paper)

0%

20%

40%

60%

80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
T

D
i
v
e
r
g
e
n
t
 
B
r
.

P-Branch D-Branch



Compaction rate of p-/d-branches (with TBC)

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

66(c) Minsoo Rhu & Mattan Erez

Ideal: TBC with crossbar Higher is better

0%

20%

40%

60%

80%

100%

P D P D P D P D P D P D P D P D P D

MUM BFS BITONIC REDUCT MDBROT LPS DXTC BACKP AOSSORT

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

Ideal

TBC

0%

20%

40%

60%

80%

100%

P D P D P D P D P D P D P D P D P D

FDTD3D SORTNW EIGENVL 3DFD DWTHARR QSRDM BINOM CONVSEPSOBFLT

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

Ideal

TBC



Compaction rate of p-/d-branches (with TBC)

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

67(c) Minsoo Rhu & Mattan Erez

Ideal: TBC with crossbar Higher is better

0%

20%

40%

60%

80%

100%

P D P D P D P D P D P D P D P D P D

MUM BFS BITONIC REDUCT MDBROT LPS DXTC BACKP AOSSORT

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

Ideal

TBC

0%

20%

40%

60%

80%

100%

P D P D P D P D P D P D P D P D P D

FDTD3D SORTNW EIGENVL 3DFD DWTHARR QSRDM BINOM CONVSEPSOBFLT

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

Ideal

TBC

D-branch compacts well with TBC

P-branch not so much compared to Ideal



TBC with crossbar (ideal compaction)

• Average SIMD lanes occupied for execution

68

Higher is better

0%

20%

40%

60%

80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

S
I
M
D
 
u
t
i
l

No_TBC
TBC
Ideal

0%

20%

40%

60%

80%

100%

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
T

S
I
M
D
 
u
t
i
l

(c) Minsoo Rhu & Mattan Erez



TBC with crossbar (Ideal Compaction)

• Average SIMD lanes occupied for execution

69

0%

20%

40%

60%

80%

100%

M
U
M

B
F
S

B
I
T
O
N
I
C

R
E
D
U
C
T

M
D
B
R
O
T

L
P
S

D
X
T
C

B
A
C
K
P

A
O
S
S
O
R
T

S
I
M
D
 
u
t
i
l

No_TBC
TBC
Ideal

0%

20%

40%

60%

80%

100%

F
D
T
D
3
D

S
O
R
T
N
W

E
I
G
E
N
V
L

3
D
F
D

D
W
T
H
A
R
R

Q
S
R
D
M

B
I
N
O
M

C
O
N
V
S
E
P

S
O
B
F
L
T

S
I
M
D
 
u
t
i
l

Significant opportunities to 

enhance SIMD efficiency by tackling 

aligned divergence.

But crossbars are expensive! Higher is better

(c) Minsoo Rhu & Mattan Erez



SIMD Lane Permutation (SLP)*

• Motivation: Permute home SIMD lanes to 
alleviate aligned divergence

70

* Rhu et al., “Maximizing SIMD Resource Utilization in GPGPUs with SIMD Lane Permutation”, ISCA-2013

(c) Minsoo Rhu & Mattan Erez



Balanced permutation

• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

71

0
Lane-ID

000

For W0 0

For W1 0

For W2 0

For W3 0

1

001

1

1

1

1

2

010

2

2

2

2

3

011

3

3

3

3

4

100

4

4

4

4

5

101

5

5

5

5

6

110

6

6

6

6

7

111

7

7

7

7

For W0

For W1

For W2

For W3

For W4 0

For W5 0

For W6 0

For W7 0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

For W4

For W5

For W6

For W7

(c) Minsoo Rhu & Mattan Erez



Balanced permutation

72

0
Lane-ID

000

For W0 0

For W1 0

For W2 0

For W3 0

1

001

1

1

1

1

2

010

2

2

2

2

3

011

3

3

3

3

4

100

4

4

4

4

5

101

5

5

5

5

6

110

6

6

6

6

7

111

7

7

7

7

For W0

For W1

For W2

For W3

For W4 0

For W5 0

For W6 0

For W7 0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

For W4

For W5

For W6

For W7

Baseline: assigns lane-IDs based on 

round-robin manner

• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

(c) Minsoo Rhu & Mattan Erez



Balanced permutation

73

0
Lane-ID

000

For W0

For W1

For W2

For W3

1

001

2

010

3

011

3
3

3
3

4

100

5

101

5
5

5
5

6

110

7

111

7
7

7
7

For W0

For W1

For W2

For W3

For W4

For W5

For W6

For W7

1
1

1
1

1
1

1
1

3
3

3
3

5
5

5
5

7
7

7
7

For W4

For W5

For W6

For W7

0
0

0
0

2
2

2
2

4
4

4
4

6
6

6
6

0
0

0
0

2
2

2
2

4
4

4
4

6
6

6
6

1
1

1
1

1
1

1
1

• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

(c) Minsoo Rhu & Mattan Erez



• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

Balanced permutation

74

0
Lane-ID

000

For W0

For W1

For W2

For W3

1

001

2

010

3

011

3
3

3
3

4

100

5

101

5
5

5
5

6

110

7

111

7
7

7
7

For W0

For W1

For W2

For W3

For W4

For W5

For W6

For W7

1
1

1
1

1
1

1
1

3
3

3
3

5
5

5
5

7
7

7
7

For W4

For W5

For W6

For W7

0
0

0
0

2
2

2
2

4
4

4
4

6
6

6
6

0
0

0
0

2
2

2
2

4
4

4
4

6
6

6
6

1
1

1
1

1
1

1
1

< Balanced permutation algorithm >

- Even-ID warps: XOR lane-ID by (Warp-ID >> 1)
- Odd-ID warps: XOR lane-ID by ~(Warp-ID >> 1)

(c) Minsoo Rhu & Mattan Erez



• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

Balanced permutation

75

0
Lane-ID

000

XOR-000

XOR-111

XOR-001

XOR-110

1

001

1
6

0
7

2

010

3

011

3
4

2
5

4

100

5

101

5
2

4
3

6

110

7

111

7
0

6
1

For W0

For W1

For W2

For W3

XOR-010

XOR-101

XOR-011

XOR-100

3
4

2
5

1
6

0
7

7
0

6
1

5
2

4
3

For W4

For W5

For W6

For W7

0
7

1
6

2
5

3
4

2
5

3
4

0
7

1
6

4
3

5
2

6
1

7
0

6
1

7
0

4
3

5
2

< Balanced permutation algorithm >

- Even-ID warps: XOR lane-ID by (Warp-ID >> 1)
- Odd-ID warps: XOR lane-ID by ~(Warp-ID >> 1)

(c) Minsoo Rhu & Mattan Erez



Compaction rate

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

• SLP: significantly improves P-branch compaction rate

76(c) Minsoo Rhu & Mattan Erez

0%

20%

40%

60%

80%

100%

P D P D P D P D

BITONIC REDUCT MDBROT LPS

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

TBC ROTATE_all ROTATE_odd_1 FLIP_odd WID

Rev_WID Odd_Even Balanced Ideal

0%

20%

40%

60%

80%

100%

P D P D P D P D

BACKP AOSSORT FDTD3D 3DFD

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

Higher is better



• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

• SLP: significantly improves P-branch compaction rate

Compaction rate

77(c) Minsoo Rhu & Mattan Erez

Higher is better

0%

20%

40%

60%

80%

100%

P D P D P D P D

BITONIC REDUCT MDBROT LPS

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

TBC ROTATE_all ROTATE_odd_1 FLIP_odd WID

Rev_WID Odd_Even Balanced Ideal

0%

20%

40%

60%

80%

100%

P D P D P D P D

BACKP AOSSORT FDTD3D 3DFD

C
o
m
p
a
c
t
i
o
n
 

R
a
t
e

- P-branches

TBC: average 3.2%

Odd_Even: average 28.9%

Balanced: average 71.5%

Ideal: average 72.7%

- D-branches

TBC: average 42.5%

Odd_Even: average 45.2%

Balanced: average 59.3%

Ideal: average 68.5%



Average SIMD lane utilization

• Definition: average number of SIMD lanes actually executing

and committing results

78

Higher is better

0%

20%

40%

60%

80%

100%

BITONIC REDUCT MDBROT LPS

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

TBC ROTATE_all ROTATE_odd_1 FLIP_odd WID

Rev_WID Odd_Even Balanced Ideal

0%

20%

40%

60%

80%

100%

BACKP AOSSORT FDTD3D 3DFD

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

(c) Minsoo Rhu & Mattan Erez



Average SIMD lane utilization

• Definition: average number of SIMD lanes actually executing

and committing results

• Compaction rate doesn’t tell ‘how effectively’ warps are reduced

79

Higher is better

0%

20%

40%

60%

80%

100%

BITONIC REDUCT MDBROT LPS

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

TBC ROTATE_all ROTATE_odd_1 FLIP_odd WID

Rev_WID Odd_Even Balanced Ideal

0%

20%

40%

60%

80%

100%

BACKP AOSSORT FDTD3D 3DFD

S
I
M
D
 
L
a
n
e
 

U
t
i
l
i
z
a
t
i
o
n

- TBC: lowest utilization due to un-compacted aligned divergence

- SLP:
Odd_Even: average 2.1% (max 18%) increase over TBC

Balanced: average 7.1% (max 34%) increase over TBC

(c) Minsoo Rhu & Mattan Erez



Speedup

• Baseline: no compaction

• TBC+CAPRI only effective for ‘irregular’ applications

• SLP widens the range of applications that benefit from 
compaction techniques
• 7.1% (max 34%) improvements on top of TBC+CAPRI

80

Higher is better

-0.1

0

0.1

0.2

0.3

MUM BFS BITONIC REDUCT LPS DXTC BACKP EIGENVL HarMean

S
p
e
e
d
u
p

CAPRI ROTATE_all ROTATE_odd_1 FLIP_odd

WID Rev_WID Odd_Even Balanced

Higher is better

(c) Minsoo Rhu & Mattan Erez



IRREGULAR AND FINE-GRAIN 
MEMORY ACCESS

(c) Minsoo Rhu & Mattan Erez 81



CG-only and FG-only systems

82(c) Minsoo Rhu & Mattan Erez

CG-Only: Wide DRAM channel

FG-Only: Many narrow channels

ABUS

x8 x8 x8

DBUS

ABUS

x8 x8 x8

DBUS

ABUS

x8 x8 x8

DBUS

ABUS

x8 x8 x8

DBUS

ABUS

DBUS

x8 x8 x8 x8 x8 x8 x8 x8 x8



•Latency + throughput + efficiency
 parallelism

Access even more 

cells in parallel

Many pins 

in parallel over

multiple cycles

(C) Mattan Erez 83



•Hierarchy + parallelism
 potential waste

(c) Mattan Erez 84



CG access MAY Waste BW

•Waste BW on unused data

85

for( i=0; i<N; i++ ) {

a[ b[i] ] += x;

}

GUPS microbenchmark Buffer a

Initialized with random 

numbers

(C) Mattan Erez



Conventional CG-only always retrieves 64B

86

ABUS DBUS

x8 x8x8 x8 x8 x8 x8 x8 x8

ABUS

DRAM 0

DRAM 1

DRAM 2

DRAM 3

DRAM 4

DRAM 5

DRAM 6

DRAM 7

DRAM 8

0

64B + 8B

1 2 3

Only 8B is 
useful

(c) Minsoo Rhu & Mattan Erez



FG-only is a very expensive solution

87(c) Minsoo Rhu & Mattan Erez

ABUS0

DBUS0

x8 x8

ABUS1

DBUS1

x8 x8

ABUS2

DBUS2

x8 x8

ABUS3

DBUS3

x8 x8

ABUS4

DBUS4

x8 x8

ABUS5

DBUS5

x8 x8

ABUS6

DBUS6

x8 x8

ABUS7

DBUS7

x8 x8

ABUSes

DBUS 0 Data

DBUS 1

DBUS 2

DBUS 3

0

ECC

8B + 8B

Data

ECC

Data

ECC

Data

ECC
...

...

1 2 3
Higher throughput for FG access
but, at higher cost (ABUS & ECC)



CG and FG Access

• Coarse-grained access
– Control and ECC overheads are amortized over a large block

– Waste BW when spatial locality is low

• Fine-grained access
– Higher control and ECC overheads

– Potentially higher throughput when spatial locality is low

88(c) Minsoo Rhu & Mattan Erez

D0 E0

DataC

C
0

C
1

D1 E1 D2 E2 D3 E3
C
2

C
3

C
4

D4 E4

CG

FG
C
5

C
6

C
7

D5 E5 D6 E6 D7 E7

ECC



Spatial locality in actual applications

89(c) Minsoo Rhu & Mattan Erez

0%

25%

50%

75%

100%

G
U

P
S

c
a

n
n

e
a

l

lin
k
e

d
 li

st

m
st

e
m

3
d

S
S
C

A
2

a
st

a
r

o
m

n
e

tp
p

b
zi

p
2

m
c

f

lb
m

lib
q

u
a

n
tu

m

O
C

E
A

N

st
re

a
m

c
lu

st
e

r

h
m

m
e

r

S
TR

E
A

M

Low spatial locality High spatial locality~50% is referenced

1~2 3~6 7~8

PIN-based profiling with a 1MB cache with a 64B cache line



Dynamic granularity is best of both worlds

90

Processor
Core

$I$D

L2

Last Level Cache

MC

DRAM

Core
0

Core
1

Core
N-1

…

SLP

Co-scheduling CG/FG w/ split CG

Sector cache 
(8 8B sectors per line)

Sub-Ranked DRAM w/ 2X ABUS 
Support both CG and FG

Locality Predictor

(c) Minsoo Rhu & Mattan Erez



Sub-ranked memory enables DGMS

• Control individual DRAM chips independently
– Originally proposed (mostly) for energy efficiency w/ CG

• Threaded module, MC-DIMM, Mini-rank, S/G DIMM

• Access granularity = 8B (8 bit x 8 burst)

91(c) Minsoo Rhu & Mattan Erez

DBUS

x8 x8 x8 x8 x8 x8 x8 x8 x8

ABUS

SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

R
e
g
/D

e
m

u
x



Sector Cache

• Caches also need to manage fine-grained data

• We use a simple sector cache
– Allow partially valid cache lines

– Low tag overhead

92(c) Minsoo Rhu & Mattan Erez

tag sector 0D V sector 1D V sector 2D V sector 3D V

tag dataD V

Long cache line

Sector cache

tag dataD V

Short cache line



Common data layout for CG and FG

93

x8 x8 x8 x8 x8 x8 x8 x8 x8

ABUS

R
e

g
/D

e
m

u
x

B8

B9

B10

B11

B12

B13

B14

B15

B0

B1

B2

B3

B4

B5

B6

B7

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32

B33

B34

B35

B36

B37

B38

B39

B40

B41

B42

B43

B44

B45

B46

B47

B48

B49

B50

B51

B52

B53

B54

B55

B56

B57

B58

B59

B60

B61

B62

B63

E 0-8

E 9-15

E 16-23

E 24-31

E 32-39

E 40-47

E 48-55

E 56-63

Burst 8

(c) Minsoo Rhu & Mattan Erez



Common data layout for CG and FG

94

x8 x8 x8 x8 x8 x8 x8 x8 x8

ABUS

R
e

g
/D

e
m

u
x

8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B ECC

ECC8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B

ECC

ECC

ECC

ECC

ECC

ECC

ECC

8 B 8 B 8 B 8 B 8 B 8 B

8 B 8 B 8 B 8 B 8 B

8 B 8 B 8 B 8 B

8 B 8 B 8 B

8 B 8 B

8 B

8 B 8 B

8 B 8 B 8 B

8 B 8 B 8 B 8 B

8 B 8 B 8 B 8 B 8 B

8 B 8 B 8 B 8 B 8 B 8 B

8 B 8 B 8 B 8 B 8 B 8 B 8 B

8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B

(c) Minsoo Rhu & Mattan Erez



Throughput & Power Efficiency (4-core)

95(c) Minsoo Rhu & Mattan Erez

0.0

1.0

2.0

3.0

4.0

5.0

mcf x4 omnetpp
x4

mst x4 em3d x4 canneal
x4

SSCA2
x4

linked list
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4

S
y
s
te

m
 t

h
ro

u
g

h
p

u
t

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

mcf x4 omnetpp
x4

mst x4 em3d x4 canneal
x4

SSCA2
x4

linked list
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4

MIX-1 MIX-2 MIX-3 MIX-4

CG+ECC

AG+ECC

T
h

ro
u

g
h

p
u

t 
p

e
r 

 p
o

w
e
r



4-core results

96(c) Minsoo Rhu & Mattan Erez

0.0

1.0

2.0

3.0

4.0

5.0

mst x4 em3d x4 canneal x4 SSCA2 x4 linked list x4 gups x4

CG+ECC

FG+ECC

AG+ECC

S
y
s
te

m
 t

h
ro

u
g

h
p

u
t

Apps with low spatial locality



8-core results

97

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

mcf x8 omnetpp

x8

mst x8 em3d x8 canneal

x8

SSCA2 x8 linked list

x8

gups x8 MIX-A MIX-B MIX-C MIX-D

S
y

st
e

m
 T

h
ro

u
g

h
p

u
t 

MIX-A: mcf x4, omnetpp x4
MIX-B: SSCA2 x2, mcf x2, omnetpp x2, mst x2

MIX-C: SSCA, mcf, omnetpp, mst, astar, hmmer, lbm, bzip2
MIX-D:libquantum x2, hmmer x2, mst x2, mcf x2

CG+ECC

FG+ECC

AG+ECC

(c) Minsoo Rhu & Mattan Erez



Irregularity even worse impact on a GPU

• Well-structured memory accesses 
are coalesced into a single memory 
transaction
– e.g., all the threads in a warp access the 

same cache block

• A single warp (32 threads) can 
generate upto 32 memory 
transactions
– e.g., threads in a warp access distinct

cache blocks

• Irregularity severely 
degrades efficiency
– Cache thrashing

– FG memory access

98

(a)Regular memory accesses

(b)Irregular memory accesses

(c) Minsoo Rhu & Mattan Erez



Cache Block Locality (Spatial)
• Number of sectors referenced in L1/L2 cache blocks (CG-only 

memory-hierarchy, 128-Byte cache block)

99

0%

20%

40%

60%

80%

100%
1 2 3 4

0%

20%

40%

60%

80%

100%

1 2 3 4

(a) L1 cache

(b) L2 cache

(c) Minsoo Rhu & Mattan Erez



Cache Block Locality (Temporal)

• Number of repeated accesses to L1/L2 cache blocks, after fill 
(CG-only memory-hierarchy)

100

(a) L1 cache

(b) L2 cache

0%

20%

40%

60%

80%

100%
0

1

2 ~ 4

5 ~ 9

10 ~ 19

20 ~

0%

20%

40%

60%

80%

100%

0

1

2 ~ 4

5 ~ 9

10 ~ 19

20 ~

(c) Minsoo Rhu & Mattan Erez



Memory Hierarchy (CG-only)

• Fermi (GF110) / Keplar (GK110) / Southern-Island

– Each channel width: 64b

– 4 ~ 6 channels overall, depending on product variants

• 64B (64b x 8-bursts) minimum access granularity

101

(a)Baseline cache and memory system (V: valid)

(c) Minsoo Rhu & Mattan Erez



Memory Hierarchy (FG-enabled)

• Each channel divided into two sub-ranks

– 32B (32b x 8-bursts) minimum access granularity 

– Allows finer control of data fetches from DRAM (64B vs 32B)

102

(a) Memory hierarchy with a sectored cache and a sub-ranked memory system 

(128B cache block, V: valid)

(c) Minsoo Rhu & Mattan Erez



LAMAR: Locality-Aware Memory Hierarchy

• Sectored caches + sub-ranked memory system

– Motivation:  massive multithreading + memory divergence limits 
cache block lifetime

• Prefetching effectiveness 

103

GDU: Granularity Decision Unit

(c) Minsoo Rhu & Mattan Erez



Bi-modal Predictor (all or on-demand) as GDU

• GPUs contain 10s / 100s number of cores

– Spatial-pattern predictor is heavy-weight / not scalable

• Dual-bitarray bloom-filter 
– Light-weight, temporally overlapped for history preservation

– Always maintain subset of insertion-history

104(c) Minsoo Rhu & Mattan Erez



Off-chip byte traffic (normalized to # of instructions) 

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

N
o
r
m
a
l
i
z
e
d
 
t
o
 
C
G
-
o
n
l
y

T
r
a
f
f
i
c
/
I
n
s
t
r

Traffic/Instr

Normalized

Lower is better

Applications: highly divergent ones which can 

benefit with FG-accesses

(c) Minsoo Rhu & Mattan Erez 105



Off-chip byte traffic (normalized to # of instructions) 

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

N
o
r
m
a
l
i
z
e
d
 
t
o
 
C
G
-
o
n
l
y

T
r
a
f
f
i
c
/
I
n
s
t
r

Traffic/Instr

Normalized

Lower is betterCG : Static-GDU with CG-only fetches (Baseline)

FG : Static-GDU with FG-only fetches

(c) Minsoo Rhu & Mattan Erez 106



Off-chip byte traffic (normalized to # of instructions) 

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

N
o
r
m
a
l
i
z
e
d
 
t
o
 
C
G
-
o
n
l
y

T
r
a
f
f
i
c
/
I
n
s
t
r

Traffic/Instr

Normalized

Lower is better

Traffic/Instr. (absolute number)

(c) Minsoo Rhu & Mattan Erez 107



Off-chip byte traffic (normalized to # of instructions) 

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

N
o
r
m
a
l
i
z
e
d
 
t
o
 
C
G
-
o
n
l
y

T
r
a
f
f
i
c
/
I
n
s
t
r

Traffic/Instr

Normalized

Lower is better

Traffic/Instr. (Normalized to CG)

(c) Minsoo Rhu & Mattan Erez 108



Off-chip byte traffic (normalized to # of instructions) 

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

N
o
r
m
a
l
i
z
e
d
 
t
o
 
C
G
-
o
n
l
y

T
r
a
f
f
i
c
/
I
n
s
t
r

Traffic/Instr

Normalized

Lower is better

FG: avg. 53% (max 71%) ↓

FG-fetches reduce number of

READ and WRITE transactions

through memory channels.

(c) Minsoo Rhu & Mattan Erez 109



Performance improvement

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP H-Mean

S
p
e
e
d
u
p

CG FG

Higher is better

(c) Minsoo Rhu & Mattan Erez 110



Performance improvement

Higher is better

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP H-Mean

S
p
e
e
d
u
p

CG FG

FG: avg. 13% (max 47%) ↑

(c) Minsoo Rhu & Mattan Erez 111



DRAM power consumption

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

P
e
r
f
/
W
a
t
t

(
N
o
r
m
a
l
i
z
e
d
)

P
o
w
e
r
 
(
W
a
t
t
s
)

Background ACT/PRE READ

WRITE REFRESH Perf/Watt

(c) Minsoo Rhu & Mattan Erez 112



DRAM power consumption

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

P
e
r
f
/
W
a
t
t

(
N
o
r
m
a
l
i
z
e
d
)

P
o
w
e
r
 
(
W
a
t
t
s
)

Background ACT/PRE READ

WRITE REFRESH Perf/Watt

Power (Watts): Lower is better

(c) Minsoo Rhu & Mattan Erez 113



DRAM power consumption

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

P
e
r
f
/
W
a
t
t

(
N
o
r
m
a
l
i
z
e
d
)

P
o
w
e
r
 
(
W
a
t
t
s
)

Background ACT/PRE READ

WRITE REFRESH Perf/Watt

Perf/Watt

: Higher is better

(c) Minsoo Rhu & Mattan Erez 114



DRAM power consumption

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

P
e
r
f
/
W
a
t
t

(
N
o
r
m
a
l
i
z
e
d
)

P
o
w
e
r
 
(
W
a
t
t
s
)

Background ACT/PRE READ

WRITE REFRESH Perf/Watt

< DRAM power >

FG: avg. 19% (max 42%) ↓

(c) Minsoo Rhu & Mattan Erez 115



DRAM power consumption

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

C
G

F
G

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP

P
e
r
f
/
W
a
t
t

(
N
o
r
m
a
l
i
z
e
d
)

P
o
w
e
r
 
(
W
a
t
t
s
)

Background ACT/PRE READ

WRITE REFRESH Perf/Watt

< Perf/Watt >

FG: avg. 42 % (max 121%) ↑

(c) Minsoo Rhu & Mattan Erez 116



ROBUST GPU CACHING

(c) Minsoo Rhu & Mattan Erez 117



Memory divergence and caching don’t mix well

• Massive multithreading + irregular memory accesses
– Bursts of concurrent cache accesses within a given time frame 

• Cache capacity per thread very small
– Only 24B/thread

– Xeon has 16KB/thread!

0%

20%

40%

60%

80%

100%
32

21~31

11~20

4~10

3

2

1

Misses per warp

(c) Minsoo Rhu & Mattan Erez 118



Memory divergence and caching don’t mix well

• Massive multithreading + irregular memory accesses
– Bursts of concurrent cache accesses within a given time frame 

• Cache capacity per thread very small
– Most cache lines fetched and evicted before reused

(a) L1 cache
0%

20%

40%

60%

80%

100%
0

1

2 ~ 4

5 ~ 9

10 ~ 19

20 ~

0%

20%

40%

60%

80%

100%

0

1

2 ~ 4

5 ~ 9

10 ~ 19

20 ~

L1

L2

(c) Minsoo Rhu & Mattan Erez 119



Possible solution: throttle parallelism

• Throttle number of schedulable threads
– Fewer threads  less thrashing

• Rogers et al., MICRO 2012

• Kayiran et al., PACT 2013

• But, sacrifice latency hiding
– Not robust

• No better than software tuning

(c) Minsoo Rhu & Mattan Erez 120



Better solution: Priority-based Cache ALlocation

• Bypass the cache instead of throttling parallelism

• Prioritize some warps for cache allocation/deallocation
– Oldest T warps get cache-use token

• Other warps use cache opportunistically

(c) Minsoo Rhu & Mattan Erez 121



PCAL hierarchy

W: schedulable warps

T: # available tokens

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 122



PCAL is robust and performant

• Two operating points:
– ITLP: increase TLP while maintaining hit rate

• T = Wopt, W > Wopt

– MTLP: maintain TLP and improve hit rate
• T > Wopt, W = Wopt

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 123



Performance improvement (relative to throttling)

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 124



L1 miss rate improvements

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 125



Off-chip throughput improvement (rel. to throttling)

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 126



Also working on …

• DGMS with chipkill

• LAMAR with ECC (and chipkill)

• Addressing memory divergence better on GPUs

• And:

(C) Mattan Erez 127



Resilience at scale

• Containment domains
– Elevate resilience to first-class abstraction

– Proportional, hierarchical, distributed, and cross-layer

– Programming model, runtime, compiler, and hardware

• Avoiding SDCs with proportional (low) overhead
– Approximate duplication

– Circuit-level detection

– Algorithm hints and compiler optimizations

• Proportional memory protection
– Adapt and tune protection

• Meet diverse and dynamic application and system requirements

– Virtualized and multi-tier ECC, other adaptations 

(C) Mattan Erez 128



Resilience for emerging technologies

• Proportional NVM wearout-protection
– Fine-grained NVM wearout-protection

– ECC schemes for MLC memories

• On-package memory protection
– Reliability a huge concern (replacement costs)

– Limited capacity and granularity concerns

– Rich design space

• Parallel pipelines with high process variation
– Effective SIMD timing speculation in near-threshold

• Energy-efficient STT-RAM (w/ Orshansky and Samsung)

– Dynamic write architecture for high-reliability writes

– Array islands and adaptive placement

(C) Mattan Erez 129



Proportional and adaptive memory

• Resilience schemes

• Adaptive and dynamic access granularity
– Efficiency of coarse-grained access for spatial locality

– Performance of fine-grained for highly irregular access

– Power savings with sub-row DRAM activation

• Reducing interference and improving locality
– Bank-partitioning eliminates inter-core row conflicts

– Constructively-interleaved page allocation creates locality in GPU 
context

• Adaptive QoS for heterogeneous processors
– Balancing QoS for real-time and best-effort cores

– Consistent and cooperative QoS prioritization

(C) Mattan Erez 130



Up-and-coming platforms

• Improved GPU march for divergent control glow
– Robust and effective thread compaction

– Increasing parallelism with dual-path execution

• Cloud Radio Access Network (C-RAN)
(w/ Heath, De Veciana, Evans, and Huawei)

– Wireless base-stations are expensive and inefficient

– Desire to co-process signals across base-stations

– Move processing to a specialized cloud
• Improved system and facilities

• Improved maintenance

• Enable joint processing

(C) Mattan Erez 131



Conclusions

• Regularity good for hardware

• Irregular good for (lots of) software

• Dynamic Adaptivity:
No-compromise robust architecture

• Support regularity as well as possible

• Introduce features for irregularity

• Can do a lot just at microarch level
– But even more if involving other parts of the system

(C) Mattan Erez 132


