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Arch-focused whole-system approach

• Efficiency requirements require crossing layers

• Algorithms are key
– Compute less, move less, store less

• Proportional systems
– Minimize waste

• Utilize and improve emerging technologies

• Explore (and act) up and down
– Programming model to circuits 

• Preferably implement at micro-arch/system
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Big problems and emerging platforms

• Memory systems
– Capacity, bandwidth, efficiency – impossible to balance

– Adaptive and dynamic management helps

– New technologies to the rescue?

– Opportunities for in-memory computing

• GPUs, clouds, and more
– Throughput oriented designs are a must

– Centralization trend is interesting

• Reliability and resilience
– More, smaller devices – danger of poor reliability

– Trimmed margins – less room for error

– Hard constraints – efficiency is a must

– Scale exacerbates reliability and resilience concerns
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Regularity is good for hardware

• Regularity exploited to amortize overheads

• SIMD/vectors

• Long(ish) cache lines and memory transfers
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Good algorithms often irregular

• Graphs

• Sparse structures

• Early-exit conditions

• Specialization

• …
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What to do?

• Tune and regularize algorithm implementation
– Works great

– Hard to do

– Sometimes impossible

• Build hardware for irregularity
– Fine-grained control and access

– Need to make it cheap enough

• Need to not penalize regular(ized) algorithms!

• Need a robust architecture
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Dynamic adaptivity and flexibility

• Hardware mostly designed for regularity
– Negligible impact on regular portions 

• Low-overhead structures support irregularity
– Performance and efficiency gains on irregular parts

• Improving irregular control on wide-SIMD GPUs
– Dynamically “regularize” diverged branches

– Utilize divergence to increase TLP

• Improving fine-grain memory access
– Locality-aware memory hierarchy

– Dynamic granularity accesses
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Outline

• Robust control for wide-SIMD GPUs
– Brief “GPU” overview

– Dynamically “regularize” diverged branches
• Warp compaction

• Eliminating its impact on regular code

– Utilize divergence to increase TLP
• Dual-path execution

• Robust memory access
– Dynamic granularity accesses

– Locality-aware memory hierarchy for GPUs

– Robust caching

• The real credit belongs to the students
– Min Kyu Jeong, Minsoo Rhu, 

Michael Sullivan, Doe Hyun Yoon, Dong Li
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BRIEF GPU OVERVIEW



Graphic Processing Units (GPUs)

• General-purpose many-core accelerators
– Use 100s of simple in-order shader cores

– Shader core == streaming multiprocessor (SM) in NVIDIA GPUs

• Scalar frontend (fetch & decode) + parallel backend
– Amortize the cost of frontend and control
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Exposed hierarchy of data-parallel threads

• SPMD: single kernel executed by numerous scalar threads 

• Kernel / Thread-block hierarchy
– Kernel composed of many thread-blocks

(a.k.a. cooperative-thread-arrays (CTAs) or work-groups)
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CUDA exposes hierarchy of data-parallel threads

• SPMD: single kernel executed by numerous scalar threads 

• Kernel / Thread-block / Warp / Thread
– Multiple warps compose a thread-block (OpenCL wavefronts)

– Multiple threads (32) compose a warp (OpenCL work-items)
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A warp is scheduled as a batch of threads
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CUDA exposes hierarchy of data-parallel threads

• SPMD: single kernel executed by numerous scalar threads 

• Kernel / Thread-block / Warp / Thread
– Multiple warps compose a thread-block

– Multiple threads (32) compose a warp
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Each thread execute in 

designated home SIMD lane: 

(thread-ID) mod (SIMD width)

: Thread-ID 0, 32, 64 … execute in physical lane #0

: Thread-ID 2, 34, 66 … execute in physical lane #2
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GPUs have HW support for conditional branches

• SIMT: Single-Instruction Multiple-Thread
– Underlying hardware uses vector SIMD pipelines (lanes)

– Programmer writes code to be executed by scalar threads

– Hardware/software supports conditional branches
• Each thread can follow its own control flow
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SIMT stack-based reconvergence model

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point

17

(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management
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SIMT stack-based reconvergence model
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SIMT stack-based reconvergence model
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(a)Example Control Flow Graph

1: Active, 0: Inactive

(b) Using the stack for 

control flow management

Stack entries 

for paths B and 

C are PUSHED

• Current GPUs use per-warp HW stack to manage control flow
– Always execute active-threads at the top-of-stack (TOS)

– Active bitmasks of taken/not-taken path dynamically derived

– Reconverge taken/not-taken path at reconvergence point

– Reconvergence PC (RPC) point derived at compile-time
• RPC: immediate post-dominator (PDOM) of the branching-point
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SIMT stack-based reconvergence model
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SIMT stack-based reconvergence model
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Is this dynamic adaptive HW?

• Yes!
– Tuned for regularity

– Supports irregular

• But irregular control often performs poorly
– Only fraction of lanes is active

– Reduced effective TLP
• Paths serialized and each has fraction of active threads

– Reduced performance and efficiency
• SIMD units under utilized

(c) Minsoo Rhu & Mattan Erez 22



DUAL PATH EXECUTION
Exploiting irregular control to improve parallelism 

(c) Minsoo Rhu & Mattan Erez 23



Serialization of execution paths

• Execution can transition to the 
next path only when all the 
instructions in the current path 
(basic-block) are executed.
– CFG is managed with STACK!

• Misses opportunities to schedule 
from other concurrent paths
– e.g., paths B/C
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(a)Example Control Flow Graph

(b) Execution flow using baseline mechanism.

idle

idle cycles: phases where the scheduler is short of warps to schedule (i.e. cache miss, long-latency ops)
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Dual-Path Execution Model (DPE)

• Increase thread-level parallelism 
(or path-parallelism) 
– Without sacrificing SIMD lane utilization

• Maintains the simplicity of the baseline stack model

• Minimal implementation overhead
– Purely a microarchitectural solution

– No additional compiler support needed

25(c) Minsoo Rhu & Mattan Erez



Dual-Path Execution Model (DPE)

• Increase thread-level parallelism 
(or path-parallelism) 
– Without sacrificing SIMD lane utilization

– Previous work compromises SIMD efficiency for enhanced TLP

• Maintains the simplicity of the baseline stack model

• Minimal implementation overhead
– Purely a microarchitectural solution

– No additional compiler support needed
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- Meng et al., “Dynamic Warp Subdivision for Integrated Branch and Memory Divergence”, ISCA-2010
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DPE components: dual-path stack

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

27

RPC value is shared by both Left & 

Right paths (always at PDOM)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.
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DPE components: dual-path stack

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE
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(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.
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DPE components: dual-path stack
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PUSH paths

B and C as a 

single operation

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE
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DPE components: dual-path stack
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PUSH paths 

D and E as a 

single operation

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE

(c) Minsoo Rhu & Mattan Erez



DPE components: dual-path stack
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Invalidate D

when reaching 

RPC (F)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE
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DPE components: dual-path stack
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POP stack when 

E reaches 

RPC (F)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE
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DPE components: dual-path stack
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Reconverge at 

path G

(same as SPE)

(a)Example Control Flow Graph

(b) Using the DPE stack

for control flow management

(c)Execution flow using DPE.

• DPE stack microarchitecture
– Each entry accommodates both paths of a branching point

– Single dual-path entry instead of two separate entries in SPE
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DPE components: scoreboard

• Current GPUs execute intra-warp threads back-to-back

• DPE complications because T/NT paths share registers
– Separate Left/Right scoreboards

– Shadow-bits for pre-/post-divergence dependencies

34(c) Minsoo Rhu & Mattan Erez

(b) DPE Scoreboard(a) SPE Scoreboard



DPE components: warp scheduler

• Scheduler enhanced to cover both T/NT paths
– For maximal benefits of DPE, scheduler overhead is doubled

– ‘Constrained’ scheduler
• Warp-scheduler is fed with only a single path at the TOS

• Path to be sent to the scheduler is rotated when a long-latency 
operation is executed

• Benefits decrease from 14.9% to 11.7%

35(c) Minsoo Rhu & Mattan Erez



Simulation environment

• GPGPU-Sim
– Cycle-based performance simulator of a GPGPU

– 15 shader cores (Streaming Multiprocessors, SMs)

– 1536 threads per core, 32K registers per core

– Cache: 16kB L1, 768kB Unified L2

– Shared-memory: 48KB

– Memory Controller : FR-FCFS
• 29.6GB/s per channel, 6 channels overall

• Applications
– Chosen from CUDA-SDK, Rodinia, Parboil, Cuda Zone, etc

– Will focus on apps exhibiting distinct behavior across different 
schemes

36(c) Minsoo Rhu & Mattan Erez



Average path parallelism

• Num of concurrent paths exposed to the scheduler
– SPE: always ‘1’

– DPE: ‘2’ if both L/R path available, and ‘1’ otherwise 

37

• Interleavable branch
– Both “if”/“else” part active

– DPE scheduler sees ‘2’ paths

• Non-interleavable branch
– No ‘else’ part

– DPE scheduler sees ‘1’ path

(c) Minsoo Rhu & Mattan Erez



Avg. path parallelism / idle cycles / speedup
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(a) Average path parallelism (Higher is better)

(c) Speedup (Higher is better)

(b) Normalized idle cycles (Lower is better)
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Avg. path parallelism / idle cycles / speedup
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(a) Average path parallelism (Higher is better)

(c) Speedup (Higher is better)

(b) Normalized idle cycles (Lower is better)
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Avg. path parallelism / idle cycles / speedup
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(a) Average path parallelism (Higher is better)

(c) Speedup (Higher is better)

(b) Normalized idle cycles (Lower is better)
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IMPROVING SIMD EFFICIENCY

(c) Minsoo Rhu & Mattan Erez 41



Underutilization of SIMD units

• Number of active threads in a 
warp decreases every time 
control diverges

• Theoretically, only a single SIMD 
lane might be active at some 
point, for highly divergent apps.
– Nested divergent branches

42

(a)Example Control Flow Graph

: Threads (lanes) masked out due to control divergence, remaining idle.

(b) Execution flow using baseline mechanism.

(c) Minsoo Rhu & Mattan Erez



Thread-block compaction (TBC) [Fung’11] 

• Dynamically compact warps within a thread-block
– Synchronize all warps at branches and reconvergence points

– Threads with different home SIMD lanes compacted together

43

: [0,1… A,B] refers to active thread-IDs executing in that basic block
: [-] refers to inactive threads, masked out from execution
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Thread-block compaction (TBC) [Fung’11] 
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: [0,1… A,B] refers to active thread-IDs executing in that basic block
: [-] refers to inactive threads, masked out from execution
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Thread-block compaction (TBC) [Fung’11] 

• Dynamically compact warps within a thread-block
– Synchronize all warps at branches and reconvergence points

– Threads with different home SIMD lanes compacted together
• Path B is compacted, whereas Path C is non-compactable
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: [0,1… A,B] refers to active thread-IDs executing in that basic block
: [-] refers to inactive threads, masked out from execution
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Is compaction dynamic adaptive HW?

• Yes!
– Better support for diverged control flow

• But …
– Regular(ized) control may suffer

– Doesn’t work as is for many diverged branches

(c) Minsoo Rhu & Mattan Erez 46



Excessive synchronization overhead

• Compaction is applied at all branching points
– Effectively generates a HW-induced compaction-barrier

– Warps arriving at the end of BB must wait for other warps in its CTA

– Don’t compact at unconditional branches [Narasiman’11]
• TBC+ (TBC with no synchronization at unconditional branches)

47

: Compaction barrier

Warps must 

always sync. 

even if 

compaction 

is not 

effective
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Branch divergence & ideal compactability*

• Conditional branches, categorized as:
– Divergent and ideally compactable (D/C)

– Divergent but non-compactable even with ideal (D/NC)

– Non-divergent (ND)

48

* Ideally compactable branches: branches that can be compacted if threads can switch 

its executing SIMD lanes
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Branch divergence & ideal compactability*

• Conditional branches, categorized as:
– Divergent and ideally compactable (D/C)

– Divergent but non-compactable even with ideal (D/NC)

– Non-divergent (ND)
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* Ideally compactable branches: branches that can be compacted if threads can switch 

its executing SIMD lanes
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Most conditional branches 

are ND or D/NC !
: Why wait compaction ?
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CAPRI: Compaction-Adequacy PRedIction

• Intuition
– Not all branch points are likely to be compactable

– Speculate whether compaction is worth it

1) Activate compaction only when necessary

– When past history says compaction was beneficial

2) Bypass warps from compaction-barrier when inadequate

• Compaction-adequacy
– Compaction is adequate when the number of 

executing warps was reduced at a particular branch

• Microarchitecture*

– Per-core prediction table (32-entry, TAG: PC of branch)

– Works like a simple single-level branch predictor

50

* Rhu et al., “CAPRI: Prediction of Compaction-Adequacy for Handling Control-Divergence in GPGPU 

Architectures”, ISCA-2012
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CAPRI accuracy 
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(a) Divergent Benchmarks

(b) Non-divergent Benchmarks
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Average SIMD lane utilization*
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* Average number of SIMD lanes occupied when a warp is issued

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Higher is better
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Average SIMD lane utilization*
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* Average number of SIMD lanes occupied when a warp is issued

(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Higher is better
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Idle cycles (normalized)
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(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Lower is better
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Overall performance
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(a) Divergent Benchmarks

(b) Non-divergent Benchmarks

Higher is better
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Limited applicability of compaction

• Average SIMD lanes occupied for execution
– No_TBC : Baseline architecture without compaction

– TBC : baseline compaction mechanism

• Threads maintain execution in its home SIMD lane
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Higher is better
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Limited applicability of compaction

• Average SIMD lanes occupied for execution
– No_TBC : Baseline architecture without compaction

– TBC : baseline compaction mechanism
• Threads maintain execution in its home SIMD lane

57

Higher is better
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TBC, in general, only effective for 

highly divergent applications
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Why does compaction fail?

• Most (or all) of SIMD lanes already occupied
– Compaction inherently impossible

• Active threads aligned (clustered)on certain lanes

– Compaction theoretically feasible, if crossbars can distribute operands across 
different SIMD lanes

58

Non-divergent Divergent, but non-compactable

(c) Minsoo Rhu & Mattan Erez



Why does compaction fail?

• Most (or all) of SIMD lanes already occupied
– Compaction inherently impossible

• Active threads aligned (clustered)on certain lanes
– Compaction theoretically feasible, if crossbars can allow threads to 

execute in different SIMD lanes

59(c) Minsoo Rhu & Mattan Erez



• Most (or all) of SIMD lanes already occupied
– Compaction inherently impossible

• Active threads aligned (clustered)on certain lanes
– Compaction theoretically feasible, if crossbars can allow threads to 

execute in different SIMD lanes

Why does compaction fail?

60

Aligned Divergence!

(c) Minsoo Rhu & Mattan Erez



Aligned divergence – (1)

• Case 1: Branch condition depends on data array
– Each thread references different element of the array

– Unlikely to cause aligned divergence

61(c) Minsoo Rhu & Mattan Erez



Aligned divergence – (1)

• Case 1: Branch condition depends on data array
– Each thread references different element of the array

– Unlikely to cause aligned divergence

62(c) Minsoo Rhu & Mattan Erez

D-Branches



Aligned divergence – (2)

• Case 2: Branch cond. depends on programmatic value
– Indices of thread-ID, warp-ID, CTA-ID, width/height of CTA  

– Scalar input parameters to the kernel, constants

– Threads sharing home SIMD lane likely to reference same value

63(c) Minsoo Rhu & Mattan Erez



Aligned divergence – (2)

• Case 2: Branch cond. depends on programmatic value
– Indices of thread-ID, warp-ID, CTA-ID, width/height of CTA  

– Scalar input parameters to the kernel, constants

– Threads sharing home SIMD lane likely to reference same value

64(c) Minsoo Rhu & Mattan Erez

P-Branches



Compaction rate of p-/d-branches (with TBC)

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

65(c) Minsoo Rhu & Mattan Erez

Branch categorization done with GPUOcelot

using Taint-analysis (detailed in paper)
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Compaction rate of p-/d-branches (with TBC)

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

66(c) Minsoo Rhu & Mattan Erez

Ideal: TBC with crossbar Higher is better
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Compaction rate of p-/d-branches (with TBC)

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

67(c) Minsoo Rhu & Mattan Erez

Ideal: TBC with crossbar Higher is better
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TBC with crossbar (ideal compaction)

• Average SIMD lanes occupied for execution
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Higher is better
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TBC with crossbar (Ideal Compaction)

• Average SIMD lanes occupied for execution
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SIMD Lane Permutation (SLP)*

• Motivation: Permute home SIMD lanes to 
alleviate aligned divergence

70

* Rhu et al., “Maximizing SIMD Resource Utilization in GPGPUs with SIMD Lane Permutation”, ISCA-2013

(c) Minsoo Rhu & Mattan Erez



Balanced permutation

• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes
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Balanced permutation

72
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Balanced permutation

73
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• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

Balanced permutation

74

0
Lane-ID

000

For W0

For W1

For W2

For W3

1

001

2

010

3

011

3
3

3
3

4

100

5

101

5
5

5
5

6

110

7

111

7
7

7
7

For W0

For W1

For W2

For W3

For W4

For W5

For W6

For W7

1
1

1
1

1
1

1
1

3
3

3
3

5
5

5
5

7
7

7
7

For W4

For W5

For W6

For W7

0
0

0
0

2
2

2
2

4
4

4
4

6
6

6
6

0
0

0
0

2
2

2
2

4
4

4
4

6
6

6
6

1
1

1
1

1
1

1
1

< Balanced permutation algorithm >

- Even-ID warps: XOR lane-ID by (Warp-ID >> 1)
- Odd-ID warps: XOR lane-ID by ~(Warp-ID >> 1)
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• Observation: Divergence frequently exhibits a 
highly skewed concentration of active lanes

• Intuition: Evenly balance active threads across all lanes

Balanced permutation
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< Balanced permutation algorithm >

- Even-ID warps: XOR lane-ID by (Warp-ID >> 1)
- Odd-ID warps: XOR lane-ID by ~(Warp-ID >> 1)
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Compaction rate

• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

• SLP: significantly improves P-branch compaction rate

76(c) Minsoo Rhu & Mattan Erez
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• Definition: Fraction of compactable paths among 

all paths generated by divergent branches

• SLP: significantly improves P-branch compaction rate

Compaction rate

77(c) Minsoo Rhu & Mattan Erez
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- P-branches

TBC: average 3.2%

Odd_Even: average 28.9%

Balanced: average 71.5%

Ideal: average 72.7%

- D-branches

TBC: average 42.5%

Odd_Even: average 45.2%

Balanced: average 59.3%

Ideal: average 68.5%



Average SIMD lane utilization

• Definition: average number of SIMD lanes actually executing

and committing results
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Higher is better
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Average SIMD lane utilization

• Definition: average number of SIMD lanes actually executing

and committing results

• Compaction rate doesn’t tell ‘how effectively’ warps are reduced
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Higher is better
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- TBC: lowest utilization due to un-compacted aligned divergence

- SLP:
Odd_Even: average 2.1% (max 18%) increase over TBC

Balanced: average 7.1% (max 34%) increase over TBC

(c) Minsoo Rhu & Mattan Erez



Speedup

• Baseline: no compaction

• TBC+CAPRI only effective for ‘irregular’ applications

• SLP widens the range of applications that benefit from 
compaction techniques
• 7.1% (max 34%) improvements on top of TBC+CAPRI
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IRREGULAR AND FINE-GRAIN 
MEMORY ACCESS

(c) Minsoo Rhu & Mattan Erez 81



CG-only and FG-only systems

82(c) Minsoo Rhu & Mattan Erez

CG-Only: Wide DRAM channel

FG-Only: Many narrow channels
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•Latency + throughput + efficiency
 parallelism

Access even more 

cells in parallel

Many pins 

in parallel over

multiple cycles

(C) Mattan Erez 83



•Hierarchy + parallelism
 potential waste

(c) Mattan Erez 84



CG access MAY Waste BW

•Waste BW on unused data

85

for( i=0; i<N; i++ ) {

a[ b[i] ] += x;

}

GUPS microbenchmark Buffer a

Initialized with random 

numbers

(C) Mattan Erez



Conventional CG-only always retrieves 64B
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FG-only is a very expensive solution

87(c) Minsoo Rhu & Mattan Erez
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CG and FG Access

• Coarse-grained access
– Control and ECC overheads are amortized over a large block

– Waste BW when spatial locality is low

• Fine-grained access
– Higher control and ECC overheads

– Potentially higher throughput when spatial locality is low

88(c) Minsoo Rhu & Mattan Erez
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Spatial locality in actual applications

89(c) Minsoo Rhu & Mattan Erez
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Dynamic granularity is best of both worlds
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Sub-ranked memory enables DGMS

• Control individual DRAM chips independently
– Originally proposed (mostly) for energy efficiency w/ CG

• Threaded module, MC-DIMM, Mini-rank, S/G DIMM

• Access granularity = 8B (8 bit x 8 burst)

91(c) Minsoo Rhu & Mattan Erez
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Sector Cache

• Caches also need to manage fine-grained data

• We use a simple sector cache
– Allow partially valid cache lines

– Low tag overhead

92(c) Minsoo Rhu & Mattan Erez
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Common data layout for CG and FG
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Common data layout for CG and FG
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Throughput & Power Efficiency (4-core)
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4-core results
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8-core results
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Irregularity even worse impact on a GPU

• Well-structured memory accesses 
are coalesced into a single memory 
transaction
– e.g., all the threads in a warp access the 

same cache block

• A single warp (32 threads) can 
generate upto 32 memory 
transactions
– e.g., threads in a warp access distinct

cache blocks

• Irregularity severely 
degrades efficiency
– Cache thrashing

– FG memory access
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(a)Regular memory accesses

(b)Irregular memory accesses
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Cache Block Locality (Spatial)
• Number of sectors referenced in L1/L2 cache blocks (CG-only 

memory-hierarchy, 128-Byte cache block)

99

0%

20%

40%

60%

80%

100%
1 2 3 4

0%

20%

40%

60%

80%

100%

1 2 3 4

(a) L1 cache

(b) L2 cache

(c) Minsoo Rhu & Mattan Erez



Cache Block Locality (Temporal)

• Number of repeated accesses to L1/L2 cache blocks, after fill 
(CG-only memory-hierarchy)
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Memory Hierarchy (CG-only)

• Fermi (GF110) / Keplar (GK110) / Southern-Island

– Each channel width: 64b

– 4 ~ 6 channels overall, depending on product variants

• 64B (64b x 8-bursts) minimum access granularity
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(a)Baseline cache and memory system (V: valid)

(c) Minsoo Rhu & Mattan Erez



Memory Hierarchy (FG-enabled)

• Each channel divided into two sub-ranks

– 32B (32b x 8-bursts) minimum access granularity 

– Allows finer control of data fetches from DRAM (64B vs 32B)
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(a) Memory hierarchy with a sectored cache and a sub-ranked memory system 

(128B cache block, V: valid)
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LAMAR: Locality-Aware Memory Hierarchy

• Sectored caches + sub-ranked memory system

– Motivation:  massive multithreading + memory divergence limits 
cache block lifetime

• Prefetching effectiveness 
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GDU: Granularity Decision Unit
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Bi-modal Predictor (all or on-demand) as GDU

• GPUs contain 10s / 100s number of cores

– Spatial-pattern predictor is heavy-weight / not scalable

• Dual-bitarray bloom-filter 
– Light-weight, temporally overlapped for history preservation

– Always maintain subset of insertion-history
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Off-chip byte traffic (normalized to # of instructions) 
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Off-chip byte traffic (normalized to # of instructions) 
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Off-chip byte traffic (normalized to # of instructions) 
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Off-chip byte traffic (normalized to # of instructions) 
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Off-chip byte traffic (normalized to # of instructions) 
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Performance improvement
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Performance improvement

Higher is better
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DRAM power consumption
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DRAM power consumption
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DRAM power consumption
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DRAM power consumption
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DRAM power consumption
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ROBUST GPU CACHING
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Memory divergence and caching don’t mix well

• Massive multithreading + irregular memory accesses
– Bursts of concurrent cache accesses within a given time frame 

• Cache capacity per thread very small
– Only 24B/thread

– Xeon has 16KB/thread!

0%

20%

40%

60%

80%

100%
32

21~31

11~20

4~10

3

2

1

Misses per warp

(c) Minsoo Rhu & Mattan Erez 118



Memory divergence and caching don’t mix well

• Massive multithreading + irregular memory accesses
– Bursts of concurrent cache accesses within a given time frame 

• Cache capacity per thread very small
– Most cache lines fetched and evicted before reused
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Possible solution: throttle parallelism

• Throttle number of schedulable threads
– Fewer threads  less thrashing

• Rogers et al., MICRO 2012

• Kayiran et al., PACT 2013

• But, sacrifice latency hiding
– Not robust

• No better than software tuning
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Better solution: Priority-based Cache ALlocation

• Bypass the cache instead of throttling parallelism

• Prioritize some warps for cache allocation/deallocation
– Oldest T warps get cache-use token

• Other warps use cache opportunistically
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PCAL hierarchy

W: schedulable warps

T: # available tokens

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 122



PCAL is robust and performant

• Two operating points:
– ITLP: increase TLP while maintaining hit rate

• T = Wopt, W > Wopt

– MTLP: maintain TLP and improve hit rate
• T > Wopt, W = Wopt

(C) Minsoo Rhu, Mattan Erez, and NVIDIA 123



Performance improvement (relative to throttling)
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L1 miss rate improvements
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Off-chip throughput improvement (rel. to throttling)
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Also working on …

• DGMS with chipkill

• LAMAR with ECC (and chipkill)

• Addressing memory divergence better on GPUs

• And:
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Resilience at scale

• Containment domains
– Elevate resilience to first-class abstraction

– Proportional, hierarchical, distributed, and cross-layer

– Programming model, runtime, compiler, and hardware

• Avoiding SDCs with proportional (low) overhead
– Approximate duplication

– Circuit-level detection

– Algorithm hints and compiler optimizations

• Proportional memory protection
– Adapt and tune protection

• Meet diverse and dynamic application and system requirements

– Virtualized and multi-tier ECC, other adaptations 
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Resilience for emerging technologies

• Proportional NVM wearout-protection
– Fine-grained NVM wearout-protection

– ECC schemes for MLC memories

• On-package memory protection
– Reliability a huge concern (replacement costs)

– Limited capacity and granularity concerns

– Rich design space

• Parallel pipelines with high process variation
– Effective SIMD timing speculation in near-threshold

• Energy-efficient STT-RAM (w/ Orshansky and Samsung)

– Dynamic write architecture for high-reliability writes

– Array islands and adaptive placement
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Proportional and adaptive memory

• Resilience schemes

• Adaptive and dynamic access granularity
– Efficiency of coarse-grained access for spatial locality

– Performance of fine-grained for highly irregular access

– Power savings with sub-row DRAM activation

• Reducing interference and improving locality
– Bank-partitioning eliminates inter-core row conflicts

– Constructively-interleaved page allocation creates locality in GPU 
context

• Adaptive QoS for heterogeneous processors
– Balancing QoS for real-time and best-effort cores

– Consistent and cooperative QoS prioritization
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Up-and-coming platforms

• Improved GPU march for divergent control glow
– Robust and effective thread compaction

– Increasing parallelism with dual-path execution

• Cloud Radio Access Network (C-RAN)
(w/ Heath, De Veciana, Evans, and Huawei)

– Wireless base-stations are expensive and inefficient

– Desire to co-process signals across base-stations

– Move processing to a specialized cloud
• Improved system and facilities

• Improved maintenance

• Enable joint processing
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Conclusions

• Regularity good for hardware

• Irregular good for (lots of) software

• Dynamic Adaptivity:
No-compromise robust architecture

• Support regularity as well as possible

• Introduce features for irregularity

• Can do a lot just at microarch level
– But even more if involving other parts of the system
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