
N

EE382N (20): Computer Architecture - Parallelism and Locality
Spring 2015

Lecture 09 – GPUs (II)

1

Mattan Erez

The University of Texas at Austin



N

2

2

Recap

Streaming model

1. Use many “slimmed down cores” to run in 
parallel

2. Pack cores full of ALUs (by sharing instruction 
stream across groups of fragments)

– Option 1: Explicit SIMD vector instructions

– Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of 
many groups of fragments

– When one group stalls, work on another group

Kayvon Fatahalian, 2008Kayvon Fatahalian



N

3

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign

Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads

• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing

• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Manages thread blocks

Used to be only one kernel at a time



N

Graphic Processing Units (GPUs)

• General-purpose many-core accelerators

– Use simple in-order shader cores in 10s / 100s numbers

– Shader core == Streaming Multiprocessor (SM) in NVIDIA GPUs

• Scalar frontend (fetch & decode) + parallel backend

– Amortizes the cost of frontend and control

4



N

CUDA exposes hierarchy of data-parallel threads

• SPMD model: single kernel executed by all scalar threads 

• Kernel / Thread-block 

– Multiple thread-blocks (cooperative-thread-arrays (CTAs)) 
compose a kernel

5



N

CUDA exposes hierarchy of data-parallel threads

• SPMD model: single kernel executed by all scalar threads 

• Kernel / Thread-block / Warp / Thread

– Multiple warps compose a thread-block

– Multiple threads (32) compose a warp

A warp is scheduled as a batch of threads

6



N

SIMT for balanced programmability and HW-eff.

• SIMT: Single-Instruction Multiple-Thread

– Programmer writes code to be executed by scalar
threads

– Underlying hardware uses vector SIMD pipelines (lanes)

• HW/SW groups scalar threads to execute in vector lanes

• Enhanced programmability using SIMT

– Hardware/software supports conditional branches

• Each thread can follow its own control flow

– Per-thread load/store instructions are also supported

• Each thread can reference arbitrary address regions

7



N

Older GPU, but high-level same

• Expand performance 
sweet spot of the GPU
– Caching

– Concurrent kernels

– FP64

– 512 cores

– GDDR5 memory

• Bring more users, more 
applications to the 
GPU
– C++

– Visual Studio 
Integration

– ECC

D
R

A
M

 I
/F

H
O

S
T

 I
/F

G
ig

a
 T

h
re

a
d

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2

8



N

Streaming Multiprocessor (SM)

• Objective – optimize for GPU computing

– New ISA

– Revamp issue / control flow

– New CUDA core architecture

• 16 SMs per Fermi chip

• 32 cores per SM 
(512 total)

• 64KB of configurable 
L1$ / shared memory

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

FP32 FP64 INT SFU LD/ST

Ops / clk 32 16 32 4 16

9



N

SM Microarchitecture

• New IEEE 754-2008 
arithmetic standard

• Fused Multiply-Add
(FMA) for SP & DP

• New integer ALU 
optimized for 64-bit 
and extended 
precision ops

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit

10



N

Memory Hierarchy

• True cache hierarchy + on-chip shared RAM

– On-chip shared memory: good fit for regular 
memory access

• dense linear algebra, image processing, …

– Caches: good fit for irregular or unpredictable 
memory access

• ray tracing, sparse matrix multiply, physics …

• Separate L1 Cache for each SM (16/48 KB)

– Improves bandwidth and reduces latency

• Unified L2 Cache for all SMs (768 KB)

– Fast, coherent data sharing across all cores in 
the GPU

D
R

A
M

 I
/F

G
ig

a
 T

h
re

a
d

H
O

S
T

 I
/F

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2

11



N

GigaThread
TM

Hardware Thread 
Scheduler

• Hierarchically manages tens of 
thousands of simultaneously 
active threads

• 10x faster context switching on 
Fermi

• Overlapping kernel execution

HTS

12



N

GigaThread Streaming Data Transfer 
Engine

• Dual DMA engines

• Simultaneous CPUGPU
and GPUCPU data 
transfer

• Fully overlapped with 
CPU/GPU processing

SDT

SDT

Kernel 0

Kernel 1

Kernel 2

Kernel 3

CPU

CPU

CPU

CPU

SDT0

SDT0

SDT0

SDT0

GPU

GPU

GPU

GPU

SDT1

SDT1

SDT1

SDT1

13



N

14

Thread Life Cycle in HW

• Kernel is launched on the SPA
– Kernels known as grids of thread blocks

• Thread Blocks are serially distributed 
to all the SM’s

– Potentially >1 Thread Block per SM

– At least 96 threads per block

• Each SM launches Warps of Threads
– 2 levels of parallelism

• SM schedules and executes Warps 
that are ready to run

• As Warps and Thread Blocks 
complete, resources are freed

– SPA can distribute more Thread Blocks

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign


