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Recap

Streaming model

1. Use many “slimmed down cores” to run in 
parallel

2. Pack cores full of ALUs (by sharing instruction 
stream across groups of fragments)

– Option 1: Explicit SIMD vector instructions

– Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of 
many groups of fragments

– When one group stalls, work on another group

Kayvon Fatahalian, 2008Kayvon Fatahalian
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Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads

• Alternative operating mode specifically for computing
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• The future of GPUs is programmable processing

• So – build the architecture around the processor
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Manages thread blocks

Used to be only one kernel at a time
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Graphic Processing Units (GPUs)

• General-purpose many-core accelerators

– Use simple in-order shader cores in 10s / 100s numbers

– Shader core == Streaming Multiprocessor (SM) in NVIDIA GPUs

• Scalar frontend (fetch & decode) + parallel backend

– Amortizes the cost of frontend and control
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CUDA exposes hierarchy of data-parallel threads

• SPMD model: single kernel executed by all scalar threads 

• Kernel / Thread-block 

– Multiple thread-blocks (cooperative-thread-arrays (CTAs)) 
compose a kernel
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CUDA exposes hierarchy of data-parallel threads

• SPMD model: single kernel executed by all scalar threads 

• Kernel / Thread-block / Warp / Thread

– Multiple warps compose a thread-block

– Multiple threads (32) compose a warp

A warp is scheduled as a batch of threads
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SIMT for balanced programmability and HW-eff.

• SIMT: Single-Instruction Multiple-Thread

– Programmer writes code to be executed by scalar
threads

– Underlying hardware uses vector SIMD pipelines (lanes)

• HW/SW groups scalar threads to execute in vector lanes

• Enhanced programmability using SIMT

– Hardware/software supports conditional branches

• Each thread can follow its own control flow

– Per-thread load/store instructions are also supported

• Each thread can reference arbitrary address regions
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Older GPU, but high-level same

• Expand performance 
sweet spot of the GPU
– Caching

– Concurrent kernels

– FP64

– 512 cores

– GDDR5 memory

• Bring more users, more 
applications to the 
GPU
– C++

– Visual Studio 
Integration

– ECC
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Streaming Multiprocessor (SM)

• Objective – optimize for GPU computing

– New ISA

– Revamp issue / control flow

– New CUDA core architecture

• 16 SMs per Fermi chip

• 32 cores per SM 
(512 total)

• 64KB of configurable 
L1$ / shared memory
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SM Microarchitecture

• New IEEE 754-2008 
arithmetic standard

• Fused Multiply-Add
(FMA) for SP & DP

• New integer ALU 
optimized for 64-bit 
and extended 
precision ops
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Memory Hierarchy

• True cache hierarchy + on-chip shared RAM

– On-chip shared memory: good fit for regular 
memory access

• dense linear algebra, image processing, …

– Caches: good fit for irregular or unpredictable 
memory access

• ray tracing, sparse matrix multiply, physics …

• Separate L1 Cache for each SM (16/48 KB)

– Improves bandwidth and reduces latency

• Unified L2 Cache for all SMs (768 KB)

– Fast, coherent data sharing across all cores in 
the GPU
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GigaThread
TM

Hardware Thread 
Scheduler

• Hierarchically manages tens of 
thousands of simultaneously 
active threads

• 10x faster context switching on 
Fermi

• Overlapping kernel execution

HTS
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GigaThread Streaming Data Transfer 
Engine

• Dual DMA engines

• Simultaneous CPUGPU
and GPUCPU data 
transfer

• Fully overlapped with 
CPU/GPU processing
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Thread Life Cycle in HW

• Kernel is launched on the SPA
– Kernels known as grids of thread blocks

• Thread Blocks are serially distributed 
to all the SM’s

– Potentially >1 Thread Block per SM

– At least 96 threads per block

• Each SM launches Warps of Threads
– 2 levels of parallelism

• SM schedules and executes Warps 
that are ready to run

• As Warps and Thread Blocks 
complete, resources are freed

– SPA can distribute more Thread Blocks
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