EE382N (20): Computer Architecture - Parallelism and Locality Spring 2015
Lecture 13 - Parallelism in Software I

Mattan Erez

UT
The University of Texas at Austin

Credits

- Most of the slides courtesy Dr. Rodric Rabbah (IBM)
- Taken from 6.189 IAP taught at MIT in 2007
- Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
- Taken from EE493-AI taught at UIUC in Sprig 2007

Reductions

- Many to one
- Many to many
- Simply multiple reductions
- Also known as scatter-add and subset of parallel prefix sums
- Use
- Histograms
- Superposition
- Physical properties

Serial Reduction

Tree-based Reduction

- n steps for 2^{n} units of execution
- When reduction operator is associative
- Especially attractive when only one task needs result

Vector Reduction with Bank Conflicts

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois,
Urbana-Champaign

No Bank Conflicts

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois,
Urbana-Champaign
and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Recursive-doubling Reduction

- n steps for 2^{n} units of execution
- If all units of execution need the result of the reduction

Recursive-doubling Reduction

- Better than tree-based approach with broadcast
- Each units of execution has a copy of the reduced value at the end of n steps
- In tree-based approach with broadcast
- Reduction takes n steps
- Broadcast cannot begin until reduction is complete
- Broadcast can take n steps (architecture dependent)

Parallel Prefix Sum (Scan)

- Definition:

The all-prefix-sums operation takes a binary associative operator \oplus with identity l, and an array of n elements

$$
\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]
$$

and returns the ordered set

$$
\left[l, a_{0},\left(a_{0} \oplus a_{1}\right), \ldots,\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n-2}\right)\right] .
$$

- Example:
if \oplus is addition, then scan on the se

returns the set

Exclusive scan: last input element is not

$$
\text { [0 } 34111111516 \text { 22] }
$$

Applications of Scan

- Scan is a simple and useful parallel building block
- Convert recurrences from sequential :

```
for(j=1;j<n;j++)
                out[j] = out[j-1] + f(j);
```

- into parallel:

```
forall(j) { temp[j] = f(j) };
scan(out, temp);
```

- Useful for many parallel algorithms:
- radix sort
- quicksort
- String comparison
- Lexical analysis
- Stream
compaction
- Polynomial evaluation
- Solving recurrences
- Tree operations
- Building data structures
- Etc.

Scan on a serial CPU

```
void scan( float* scanned, float* input, int length)
{
    scanned[0] = 0;
    for(int i = 1; i < length; ++i)
    {
        scanned[i] = input[i-1] + scanned[i-1];
    }
}
```

- Just add each element to the sum of the elements before it
- Trivial, but sequential
- Exactly \boldsymbol{n} adds: optimal

A First-Attempt Parallel Scan Algorithm

1. Read input to shared memory. Set first element to zero and shift others right by one.

A First-Attempt Parallel Scan Algorithm

Iteration \#1
Stride $=1$

- Active UEs: stride to n - 1 (n-stride UEs)
- UE j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#2
Stride $=2$
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#3

Stride $=4$

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
3. Write output.

What is wrong with our first-attempt parallel scan?

- Work Efficient:
- A parallel algorithm is work efficient if it does the same amount of work as an optimal sequential complexity
- Scan executes log(n) parallel iterations
- The steps do n-1, n-2, n-4,... n/2 adds each
- Total adds: n * (log(n) - 1) + $1 \rightarrow$ O(n*log(n)) work
- This scan algorithm is NOT work efficient
- Sequential scan algorithm does n adds
- A factor of log(n) hurts: 20x for 10^6 elements!

Improving Efficiency

- A common parallel algorithm pattern: Balanced Trees
- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each UE does at each step
- For scan:
- Traverse down from leaves to root building partial sums at internal nodes in the tree
- Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

Build the Sum Tree

Assume array is already in shared memory

Build the Sum Tree

Iteration 1, n/2 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value

Build the Sum Tree

Iteration 2, n/4 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value

Build the Sum Tree

Iteration $\log (n), 1$ UE

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value.
Note that this algorithm operates in-place: no need for double buffering

Zero the Last Element

We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

Build Scan From Partial Sums

Build Scan From Partial Sums

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value, and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Iteration 2

2 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value, and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Done! We now have a completed scan that we can write out to device memory.
Total steps: 2 * $\log (n)$.
Total work: 2 * $(n-1)$ adds $=O(n) \quad$ Work Efficient!
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

Building Data Structures with Scans

- Fun on the board

