
N

EE382N (20): Computer Architecture - Parallelism and Locality
Spring 2015

Lecture 13 – Parallelism in Software I

EE382N: Parallelilsm and Locality, Spring 2015 --

Lecture 13 (c) Rodric Rabbah, Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

3

Reductions

• Many to one

• Many to many

– Simply multiple reductions

• Also known as scatter-add and subset of parallel prefix sums

• Use

– Histograms

– Superposition

• Physical properties

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

4

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction
operator is not
associative

• Usually followed by a
broadcast of result

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

5

Tree-based Reduction

• n steps for 2n units of execution

• When reduction operator is associative

• Especially attractive when only one task needs
result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

6

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

0 1 2 3 4 5 76 1098 11

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

7

No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

8

Recursive-doubling Reduction

• n steps for 2n units of execution

• If all units of execution need the result of the
reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

9

Recursive-doubling Reduction

• Better than tree-based approach with broadcast

– Each units of execution has a copy of the reduced value
at the end of n steps

– In tree-based approach with broadcast

• Reduction takes n steps

• Broadcast cannot begin until reduction is complete

• Broadcast can take n steps (architecture dependent)

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

10

Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative
operator with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set

[I, a0, (a0 a1), …, (a0 a1 … an-2)].

• Example:
if is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last

input element is not

included in the result

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

11

Applications of Scan

• Scan is a simple and useful parallel building block
– Convert recurrences from sequential :

for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:

forall(j) { temp[j] = f(j) };

scan(out, temp);

• Useful for many parallel algorithms:

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream

compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Building data structures

• Etc.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

12

Scan on a serial CPU

• Just add each element to the sum of the elements
before it

• Trivial, but sequential

• Exactly n adds: optimal

void scan(float* scanned, float* input, int length)

{

scanned[0] = 0;

for(int i = 1; i < length; ++i)

{

scanned[i] = input[i-1] + scanned[i-1];

}

}

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

13

A First-Attempt Parallel Scan Algorithm

1. Read input to

shared memory. Set

first element to zero

and shift others right

by one.

Each UE reads one value from the input

array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

14

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

• Active UEs: stride to n-1 (n-stride UEs)

• UE j adds elements j and j-stride from T0 and writes

result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 0 3 4 8 7 4 5 7

Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

15

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

Iteration #2

Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

16

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

Iteration #3

Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

17

A First-Attempt Parallel Scan Algorithm

Ou
t

0 3 4 11 11 15 16 22

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

3. Write output.

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

18

What is wrong with our first-attempt parallel scan?

• Work Efficient:
– A parallel algorithm is work efficient if it does the same amount

of work as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each

– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

19

Improving Efficiency

• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it

to and from the root

– Tree is not an actual data structure, but a concept to
determine what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at

internal nodes in the tree

• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial
sums

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

20

Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

21

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

22

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

23

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

24

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,

set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

25

Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

26

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 1

1 UE
Stride 4

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

27

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 2

2 UEs

Stride 4

Stride 2

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

28

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).

Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)

n/2 UEs

Stride 2

Stride 4

Stride 1

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

29

Building Data Structures with Scans

• Fun on the board

