EE382N (20). Computer Architecture - Parallelism and Locality
Spring 2015
Lecture 13 - Parallelism in Software |

Mattan Erez

[SEE=ECE

The University of Texas at Austin

EE382N: Parallelilsm and Locality, Spring 2015 --
Lecture 13 (c) Rodric Rabbah, Mattan Erez

Credits

 Most of the slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 IAP taught at MIT in 2007

e Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
— Taken from EE493-Al taught at UIUC in Sprig 2007

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

Reductions

e Many to one

* Many fo many

— Simply multiple reductions
e Also known as scatter-add and subset of parallel prefix sums

e Use

— Histograms

— Superposition
e Physical properties

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Serial Reduction

* When reduction
operator is not
associative

e Usually followed by a
broadcast of result

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Tree-based Reduction

e N steps for 2" units of execution
e When reduction operator is associative
e Especially attfractive when only one task needs

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Vector Reduction with Bank Conflicts

VARV ARV ERVERVaRVi
1 Il I B BN B
" _

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

No Bank Conflicts 7

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Recursive-doubling Reduction

e N steps for 2" units of execution

e |f all units of execution need the result of the
reduction

E z EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Recursive-doubling Reduction

e Better than tree-based approach with broadcast

— Each units of execution has a copy of the reduced value
at the end of n steps
— In free-based approach with broadcast
e Reduction takes n steps

e Broadcast cannot begin until reduction is complete
* Broadcast can take n steps (architecture dependent)

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

10

Parallel Prefix Sum (Scan)

e Definifion:
The all-prefix-sums operation takes a binary associative
operator @ with idenftity I, and an array of n elements

[Qg. Oy, ..o O]

and returns the ordered set
[, ag (0p® ay), (Qp@ Q@ ... ® q,,)].

e Example:
If @ is addition, then scan on the s

(317041 6 3]
returns the set
03411111516 22]

© pavd FeIVIDI and (From Blelloch, 1990, “Prefix
ECE 498AL, University of lllinois, Sums and Their Applications)

Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

11

Applications of Scan

 Scanis asimple and useful parallel building block

— Convertrecurrences from sequential :
for (j=1;j<n; j++)
out[j] = out[j-1]1 + £(3);

— Into parallel:

forall(j) { temp[j] = £(3) };
scan (out, temp)

e Useful for many parallel algorithms:

« radix sort « Polynomial evaluation
« quicksort « Solving recurrences

« String comparison Tree operations

« Lexical analysis Building data structures

« Sfream « FEfc.
compaction

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,

-

Urbana-Champalgn and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Scan on a serial CPU N

void scan(float* scanned, float* input, int length)

{
scanned[0] = O;
for(int i = 1; i < length; ++i)
{

scanned[i] = input[i-1] + scanned[i-1];
}
}

e Just add each element to the sum of the elements

before it

 Trivial, but sequential
e Exactly n adds: optimal

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,

Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

13

A First-Attempt Parallel Scan Algorithm

1. Read input to
olIn| 3|1 /10|41 6 | 3 shared memory. Set

\\\\\\\ \\ \ \ first element to zero

and shift others right

olol3li]7[ol4a]i]e] o

Each UE reads one value from the input
array in device memory into shared memory array TO.
UE 0 writes 0 into shared memory array.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

14

A First-Attempt Parallel Scan Algorithm

0 | In 3\ 1|7 0141]6]|3] 1 (previous slide)

2. lterate log(n)
10 | O 3] / 0 4] 6 times: UEs stride to n:
Stride 1 MM\M Add pairs of elements
stride elements apart.
T1T1O0 1314 |8\ / 1141517/ Double stride at each

iteration. (note must
double buffer shared
mem arrays)

teration #1 | | Active UEs: stride to n-1 (n-stride UES)
Setrgdlorl 1 » UE j adds elements j and j-stride from TO and writes
rde = result into shared memory buffer T1 (ping-pong)

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

A First-Attempt Parallel Scan Algorithm

0 —

0

4

]

6

N

AN

3
~
6

T0| O 710|14|1]6
T11 0 8| /714|517
T0| O 1T 1T 12012111
lteration #2
Stride = 2

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign

and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

15

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

A First-Attempt Parallel Scan Algorithm

o_f(In]3 014|163
TO| O 710141116
T1 10 S| /(4] 51/

Stride 2
T0| O T 1T 12012111
T1

Iteration #3

Stride = 4

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign

and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

16

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

A First-Attempt Parallel Scan Algorithm

ol 31 l7]0l4]1]6]3
TN N N NN NN
TO|0[3[1]7]0[4]1]6
Ty 3148|7457

Stride 2
OO0 | 3|4 [TT {11121 12]1]

|
Mmjoj3/ 4|1 . .
IR
Ou|l O | 3[4]11T]1T]15T16(22

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,

Urbana-Champaign

and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

17

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output.

18

What is wrong with our first-attempt parallel scan?

e Work Efficient:

— A parallel algorithm is work efficient if it does the same amount
of work as an optimal sequential complexity

e Scan executes log(n) parallel iterations
— The steps do n-1, N-2, n-4,... n/2 adds each
— Totaladds: n * (log(n) - 1) + 1 = O(n*log(n)) work

e This scan algorithm is NOT work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10A6 elements!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

19

Improving Efficiency

e A common parallel algorithm pattern:

Balanced Trees

Build a balanced binary tree on the input data and sweep it

to and from the root
Tree Is not an actual data structure, but a concept to
determine what each UE does at each step

e Forscan:
Traverse down from leaves to root building partial sums at
internal nodes in the free

e Root holds sum of all leaves
Traverse back up the tree building the scan from the partial

sUums

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,

Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Build the Sum Tree

T13[1 1710141]6]3

Assume array is already in shared memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

20

Build the Sum Tree

T[3l117/0l4]1]6]3
Stride 1 \>$ \>$ \>$ \>$ lteration 1, n/2 UEs
T34 |7 |/714|5]|6]|F9

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,

Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

21

22

Build the Sum Tree

T{3[1]7]/0]4]1]6]3

Stride 1 \é \é \é \é
T131417]714]5]6]9

Stride 2 \->$ \éé lteration 2, n/4 UEs
T34 71111 4]5]| 6|14

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

Build the Sum Tree

T|3|1]7]0]4|1]|6]|3
Stride 1 \é \é \é \é
1134774151619
Stride 2 \->$ \->é
T34 |7 (1145|614
| — % |
Stride 4 9¢ Iteration log(n), 1 UE

T1 31471111451 6 |25 Each @ corresponds

to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

23

Zero the Last Element

T34 |7(1114,5]|6]|0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

24

Build Scan From Partial Sums

4

/7 |11

4

0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,

Urbana-Champaign

and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

25

26

Build Scan From Partial Sums

113471111 4]5]¢

Stride 4 P

-

lteration 1

0
4
@
¥ 1 UE

T13[4|7([0]4|5]6]]

—l

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

27

Build Scan From Partial Sums

T34 |7 (111456 9
Stride 4 — ”3

b
T13114]|7 _9 5
Stride 2 >&->. /\g. Iteration 2
¥ v ¥
4

2 UEs
T3]0 7

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

28

Build Scan From Partial Sums

T]3/4]7/11/415]/610
Stride 4 =3
e 2
T13/4]7[0]4]5]6L1
Stride 2 @ T
¥ 2 ¥ 2
T|3(0|7|4|4[11]6]16
Stride 1 ,\y: ',\y‘ ,\>" \-ﬁ/‘ Iteration log(n)
y ¥ v ¥ v ¥ v ¥ n/2 UEs
T1O 31411111516 |22] Each @ corresponds

to a single UE.

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

2

Building Data Structures with Scans

e Fun on the board

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

29

