EE382N (20). Computer Architecture - Parallelism and Locality
Spring 2015
Lecture 14 - Parallelism in Software |

Mattan Erez

[SEE=ECE

The University of Texas at Austin

EE382N: Parallelilsm and Locality, Spring 2015 --
Lecture 14 (c) Rodric Rabbah, Mattan Erez

Credits

 Most of the slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 IAP taught at MIT in 2007

e Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
— Taken from EE493-Al taught at UIUC in Sprig 2007

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lectur e 14 (c) Rodric Rabbah, Mattan Erez

Parallel programming from scratch

e Start with an algorithm
— Formal representation of problem solution
— Sequence of steps

e Make sure there is parallelism
— In each algorithm step
— Minimize synchronization points

e Don't forget locality

— Communication is costly
e Performance, Energy, System cost

 More often start with existing sequential code

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Reengineering for Parallelism

e Define a testing protocol

e |dentify program hot spofts: where is most of the
time spente
— Look at code
— Use profiling tools

e Parallelization

— Start with hot spots first
— Make sequences of small changes, each followed by testing

— Patterns provide guidance

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

4 Common Steps to
Creating a Parallel Program

Partitioning
|

| |
d O a 0 m
e S r a

{\ C - S C p
0o O | h P
° |
) - % g ‘ 'n UE, | | UE,
(0} c

—_— : O — ;n_, —ﬁ —— " —Y

|
t OO . ; | UE, || UE,
- O i

J | S :

Sequential Tasks Units of Parallel Processors
Computation Execution program

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Decomposition

e |dentify concurrency and decide at what level 1o
exploit it

e Break up computation into tasks to be divided
among Processes

— Tasks may become available dynamically
— Number of tasks may vary with time

e Enough tasks to keep processors busy

— Number of tasks available at a time is upper bound on
achievable speedup

Main consideration: coverage and Amdahl’s Law

Coverage

e Amdahl's Law: The performance improvement to
be gained from using some faster mode of
execution is imifed by the fraction of the time the
faster mode can be used.

— Demonstration of the law of diminishing returns

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Amdahl’s Law

e Potential program speedup is defined by the
fraction of code that can be parallelized

time Use 5 processors for parallel work

+ +
50 seconds 10 seconds [[[[
+ +

100 seconds Y 60 seconds

E z EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Amdahl’s Law

25 seconds
+

50 seconds
+

25 seconds

100 seconds

time

Use 5 processors for parallel work

+

10 seconds [[(R [(R
+

60 seconds

e Speedup= old running time / new running time
= 100 seconds / 60 seconds

= 1.6/

(parallel version is 1.67 times faster)

E z EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

10

Amdahl’'s Law

e p = fraction of work that can be parallelized
 n =the number of processor

old running time
new running time

1

‘mme to

fraction of time to I e ’
complete sequential complete parallel wor

work

speedup =

E382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

11

Implications of Amdahl’s Law

e Speedup tends to @S humber of processors
tends to infinity 1=p

Super linear speedups
are possible due to

registers and caches 7
/
S/
N4
O/
é{\‘/
7 o\o /
g—_ QQ /7
o (\ /7
o - Q7 . .
o 06"/ Typical speedup is
i R less than linear

Parallelism only worthwhile
when it dominates execution

12

Assignment

e Specify mechanism to divide work among PEs
— Balance work and reduce communication

e Structured approaches usually work well
— Code inspection or understanding of application
— Well-known design patterns

e As programmers, we worry about partitioning first
— Independent of architecture or programming modele
— Complexity often affects decisions
— Architectural model affects decisions

Main considerations: granularity and locality

13

Fine vs. Coarse Granularity

. Fine-grain Parallelism = Coarse-grain Parallelism

— Low computation to — High computation to
communication ratio communicafion rafio

— Small amounts of — Large amounts of
computational work between computational work between
communication stages communication events

_ High communication — Harder to load balance
overhead efficiently

« Potential HW assist

[] I 1
N N . .
[]
N N . .
[]
N N . .
[] []
E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Load Balancing vs. Synchronization

Coarse I I —

PE, PE,

61

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

14

15

Load Balancing vs. Synchronization

Coarse I I —

PE, PE,

61

Expensive sync = coarse granularity
Few units of exec + time disparity 2 fine granularity

16

Orchestration and Mapping

e Computation and communication concurrency

e Preserve locality of data
e Schedule tasks to satisty dependences early

e Survey available mechanisms on target system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

2

17

Parallel Programming by Patiern

* Provides a cookbook to systematically guide programmers
— Decompose, Assign, Orchestrate, Map
— Canlead to high quality solutions in some domains

 Provide common vocabulary to the programming
community

— Each pattern has a name, providing a vocabulary for
discussing solutions

e Helps with software reusability, malleability, and modularity
— Written in prescribed format to allow the reader to quickly

understand the solutfion and its context

e Oftherwise, too difficult for programmers, and software will
not fully exploit parallel hardware

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

History

N

Berkeley architecture professor
Christopher Alexander

In 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

18

A Pattern Language

1 Towns -Buildings - Construction

| Christopher Alexander
' SaraIshikawa - Murray Silverstein

' Max Jacobson - Ingrid Fiksdahl-King |
Shlomo Angel

Example 167 (p. 783): 6ft Balcony

N

‘Therefore:

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a
simple line, and enclose it partially.

six feet deep

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

19

20

Patterns in Object-Oriented Programming

e Design Patterns: Elements of Reusable Object-
Oriented Software (1995)
— Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
— Catalogue of patterns
— Creation, structural, behavioral

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

>
@)
O
7
A
&
=
=
w
=
=
=
192)
w
®)
¥
>
~
-
<
C
Z
0O
2]
=
w

Cover st IFMMC Esches / ¢ n

Foreword by Grady Booch

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

« Finding Concurrency
— Expose concurrent tasks

« Algorithm Structure

— Map tasks to processes 1o
exploif parallel |
architecture PATTERNS

FOR PARALLBL
PROGRAMMING

Software Construction

« Supporting Structures

— Code and data structuring
patterns

« Implementation
Mechanisms

— Low level mechanisms used
to write parallel programs

7 DRAR Patterns for Parallel Programming.

‘/"."‘- ’ W,
E EE382N: Parallelilsm and Locality, Spring zu

Mattson, Sanders, and Massingill
(2005).

) rRodric Rabbah, Mattan Erez

21

Here's my algorithm.
Where's the concurrency?

MPEG bit stream

MPEG Decoder l
(VLD)
l macroblocks, motion vectors
[split]
frequency encoded] .
macroblocks differentially coded
motion vectors
[ZigZag]
[IQuantization] [Motion Vector Decode]
- — :
IDCT
Repeat
c ()
[Saturation]

spatially encoded macroblocks motion vectors

Motion
Compensation

recovered picture

\ 4
[Picture Reorder]

v

[Color Conversion]

!

Display]

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Here's my algorithm. 23
Where’s the concurrency?

MPEG bit stream

MPEG Decoder -
N S . Task decomposition
[Siii“a"“’b"":]ks’”‘°“°”V‘*C‘°rs — Independent coarse-grained
Masopasecoded differentially coded compu tation

motion vectors

spatially encoded macroblocks

— Inherent to algorithm

Motion Vector Decode

- Sequence of statements
(instructions) that operate

fom] together as a group
- j — Corresponds to some logical part
[ComMpoetimosr;tion ﬂ] Of progrom
| — Usually follows from the way
g cooveredpiene programmer thinks about a
[Picture+Reorder] problem

[Color Conversion]

!

[Display]

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Here's my algorithm.
Where’s the concurrency?

24

MPEG bit stream
MPEG Decoder

(g) « Task decomposition

l macroblocks, motion vectors

ST — Parallelism in the application
frequency encoded

macroblocks differentially coded / \

« Pipeline task decomposition
— Data assembly lines
SEr-a — Producer-consumer chains

4 Wy g
A
Motion
Compensation

recovered picture

Motion Vector Decode

\ 4
[Picture Reorder]

v

[Color Conversion]

!

[Display]

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Here's my algorithm.
Where’s the concurrency?

25

MPEG bit stream
MPEG Decoder

: l] « Task decomposition

l macroblocks, motion vectors

: : ! — Parallelism in the application
frequency encoded Spit

macroblocks differentially coded
motion vectors

= i
« Pipeline task decomposition
— Data assembly lines

(. | — Producer-consumer chains
join

Motion
Compensation

Motion Vector Decode

« Data decomposition

recovered picture — Same computation is applied to
(rotore reraer) small data chunks derived from
!

large data set
[Color Conversion] g \
v
w [Display]

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Guidelines for Task Decomposition

e Algorithms start with a good understanding of the
problem being solved

* Programs often naturally decompose into tasks

— Two common decompositions are
e Function calls and
e Distinct loop iteratfions

e Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

26

27

Guidelines for Task Decomposition

e Flexibility

— Program design should afford flexibility in the number and
size of tasks generated

e Tasks should not tied to a specific architecture
e Fixed tasks vs. Parameterized tasks

e Efficiency

— Tasks should have enough work 1o amortize the cost of
creating and managing them

— Tasks should be sufficiently independent so that
Mmanaging dependencies doesn't become the
bottleneck

o Simplicity
— The code has to remain readable and easy to
understand, and debug

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

28

Case for Pipeline Decomposition

e Datais flowing through a sequence of stages (zozg]
— Assembly line is a good analogy

e What's a prime example of pipeline decomposition’
computer architecturee

— Instruction pipeline in modern CPUs

What's an example pipeline you may use in your UNIX shelle
— Pipes in UNIX: cat foobar.c | grep bar | wc

e Other examples

— Signal processing
— Graphics

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

2

29

Guidelines for Data Decomposition

e Data decomposition is offen implied by task
decomposition

 Programmers need to address task and data
decomposition to create a parallel program
— Which decomposition to start withe

 Data decomposition is a good starting point when

— Main computation is organized around manipulation of a large
data structure

— Similar operations are applied to different parts of the data
structure

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

30

¥y 4
TATATA Y AV ey
e AT

Common Data Decompositions

e Geometric data structures

Decomposition of arrays along rows, columns, blocks

INfo domains

Decomposition of meshes

Vay,

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Common Data Decompositions

e Geometric data structures
— Decomposition of arrays along rows, columns, blocks
— Decomposition of meshes info domains

e Recursive data structures
— Example: decomposition of trees into sub-trees

split

subproblem

subproblem

split

merge

subproblem

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

subproblem

31

32

Guidelines for Data Decomposition

e Flexibility

— Size and number of data chunks should support a wide
range of executions

e Efficiency

— Data chunks should generate comparable amounts of
work (for load balancing)

o Simplicity
— Complex data compositions can get difficult to manage
and debug

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

33

Data Decomposition Examples

e Molecular dynamics
— Compute forces

— Update accelerations and
velocities

— Update positions
e Decomposition

— Baseline algorithm is N2
e All-to-all communication

— Best decomposition is to freat
mols. as a set

— Some advantages to
geometric discussed in future
lecture

E z EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

Data Decomposition Examples

e Molecular dynamics
— Geometric decomposition

* Merge sort
— Recursive decomposition

subproblem

split

split

merge

subproblem

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez

subproblem

subproblem

34

