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Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA) 
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007
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Parallel programming from scratch

• Start with an algorithm

– Formal representation of problem solution

– Sequence of steps

• Make sure there is parallelism

– In each algorithm step

– Minimize synchronization points

• Don’t forget locality

– Communication is costly

• Performance, Energy, System cost

• More often start with existing sequential code
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Reengineering for Parallelism

• Define a testing protocol

• Identify program hot spots: where is most of the 
time spent?
– Look at code

– Use profiling tools

• Parallelization
– Start with hot spots first

– Make sequences of small changes, each followed by testing

– Patterns provide guidance



N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14   (c) Rodric Rabbah, Mattan Erez

54 Common Steps to 
Creating a Parallel Program

Tasks Units of

Execution

Processors

Partitioning

Sequential

Computation
Parallel
program

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3



N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14   (c) Rodric Rabbah, Mattan Erez

6

Decomposition

• Identify concurrency and decide at what level to 
exploit it

• Break up computation into tasks to be divided 
among processes
– Tasks may become available dynamically

– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on 

achievable speedup

Main consideration: coverage and Amdahl’s Law
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Coverage

• Amdahl's Law: The performance improvement to 
be gained from using some faster mode of 
execution is limited by the fraction of the time the 
faster mode can be used.

– Demonstration of the law of diminishing returns
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Amdahl’s Law

• Potential program speedup is defined by the 
fraction of code that can be parallelized

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time
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Amdahl’s Law

• Speedup= old running time / new running time

= 100 seconds / 60 seconds

= 1.67
(parallel version is 1.67 times faster)
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• p = fraction of work that can be parallelized

• n = the number of processor

Amdahl’s Law 

fraction of time to

complete sequential

work

fraction of time to 

complete parallel work

n
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speedup
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Implications of Amdahl’s Law

• Speedup tends to        as number of processors 
tends to infinity p1

1

Super linear speedups 

are possible due to 

registers and caches

Typical speedup is 

less than linear

number of processors

s
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Parallelism only worthwhile 

when it dominates execution
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Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication 

• Structured approaches usually work well
– Code inspection or understanding of application

– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?

– Complexity often affects decisions

– Architectural model affects decisions

Main considerations: granularity and locality
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Fine vs. Coarse Granularity

• Fine-grain Parallelism
– Low computation to 

communication ratio

– Small amounts of 

computational work between 

communication stages 

– High communication 
overhead

• Potential HW assist

• Coarse-grain Parallelism
– High computation to 

communication ratio 

– Large amounts of 

computational work between 

communication events 

– Harder to load balance 
efficiently 
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Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1
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Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Expensive sync  coarse granularity

Few units of exec + time disparity  fine granularity
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Orchestration and Mapping

• Computation and communication concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target system

Main considerations: locality, parallelism, 

mechanisms (efficiency and dangers)
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Parallel Programming by Pattern

• Provides a cookbook to systematically guide programmers 

– Decompose, Assign, Orchestrate, Map

– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming 
community

– Each pattern has a name, providing a vocabulary for 
discussing solutions

• Helps with software reusability, malleability, and modularity

– Written in prescribed format to allow the reader to quickly 
understand the solution and its context

• Otherwise, too difficult for programmers, and software will 
not fully exploit parallel hardware
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History

• Berkeley architecture professor 
Christopher Alexander

• In 1977, patterns for city 
planning, landscaping, and 
architecture in an attempt to 
capture principles for “living” 
design
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Example 167 (p. 783): 6ft Balcony
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Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral
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Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 

architecture

Software Construction

• Supporting Structures
– Code and data structuring 

patterns

• Implementation 

Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 

Mattson, Sanders, and Massingill 

(2005).
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• Task decomposition
– Independent coarse-grained 

computation

– Inherent to algorithm

• Sequence of statements 

(instructions) that operate 

together as a group
– Corresponds to some logical part 

of program

– Usually follows from the way 

programmer thinks about a 

problem
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• Task decomposition
– Parallelism in the application 

• Pipeline task decomposition
– Data assembly lines 

– Producer-consumer chains

Motion 
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• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines 

– Producer-consumer chains

• Data decomposition
– Same computation is applied to 

small data chunks derived from 

large data set
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Guidelines for Task Decomposition

• Algorithms start with a good understanding of the 
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and 

• Distinct loop iterations

• Easier to start with many tasks and later fuse them, 
rather than too few tasks and later try to split them
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Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and 

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of 

creating and managing them

– Tasks should be sufficiently independent so that 
managing dependencies doesn’t become the 
bottleneck

• Simplicity
– The code has to remain readable and easy to 

understand, and debug
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Case for Pipeline Decomposition

• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in 
computer architecture? 

– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?

– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples

– Signal processing

– Graphics

IDCT

IQuantization

ZigZag

Saturation



N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 14   (c) Rodric Rabbah, Mattan Erez

29

Guidelines for Data Decomposition

• Data decomposition is often implied by task 
decomposition 

• Programmers need to address task and data 
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large 

data structure

– Similar operations are applied to different parts of the data 
structure
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Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains
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Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide 
range of executions

• Efficiency

– Data chunks should generate comparable amounts of 
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage 
and debug
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Data Decomposition Examples

• Molecular dynamics

– Compute forces

– Update accelerations and
velocities

– Update positions

• Decomposition

– Baseline  algorithm is N2

• All-to-all communication

– Best decomposition is to treat
mols. as a set 

– Some advantages to
geometric discussed in future
lecture
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Data Decomposition Examples

• Molecular dynamics

– Geometric decomposition

• Merge sort

– Recursive decomposition

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split


