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Are DRAM errors rare?
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Many errors per minute
(100k nodes, 1.5PB mem)



• Detect Correct Continue

– Error checking and correcting (ECC) codes
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Are DRAM faults rare?
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200+ years ~5 hours
(100k nodes, 1.5PB mem)
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Permanent faults are a big problem
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* FIT (Failure in Time): 
Number of failures expected in 1 billion device-hours of operation.

* Vilas Sridharan and Dean Liberty, “A Study of DRAM Failures in the Field”, SC 2012
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Most faults affect a small memory region
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* FIT (Failure in Time): 
Number of failures expected in 1 billion device-hours of operation.

* Vilas Sridharan and Dean Liberty, “A Study of DRAM Failures in the Field”, SC 2012

Single bit/word/row/column

Single bank, multi-bank, multi-rank



• ECC for permanent faults?
– Strong ECC correction possible

– Latency and energy overheads?
• Problematic if errors very frequent

– Detection compromised when 
redundancy relied on for correction?
• Will eventually fail
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• Detect Correct RepairContinue
– “Fixing” broken memory eliminates ECC deficiencies
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• Outline
– ECC

• “Theory”

• Common DRAM ECC organizations

• Single- vs. multi-tier ECC

– Repair
• Coarse-grained repair

• Fine-grained repair
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• Error checking and correcting requires redundancy
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• Easy start – parity 
– Guaranteed to detect any 1-bit error

• In fact, any odd number of errors (more on this later)

•

•

• 

•
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• Can parity correct that 1 bit?
– Yes, if error is location is known by some other means

• Erasure decoding

•

•
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Error Checking & Correcting (ECC) Codes 
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data redundancy 

k-bit r-bit

Encode

A codeword (CW) : a valid pair of data and redundancy

*   the figure represents a systematic code
** (k+r, r) code 
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How does ECC Correct/Detect an Error?

• Code distance (d)
– Any CW is at least d-symbols different from any other CW
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Conceptual code space
with d=4
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1-symbol Error in a Code with d=4

• Can be detected (not a CW)

• Can be corrected by finding the nearest CW

Detectable and Correctable Error (DCE)
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1-symbol errors on a CW
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2-symbol Error in a Code with d=4

• Can be detected (not a CW)

• Cannot be corrected due to multiple nearest CWs

 Detectable but Uncorrectable Error (DUE)
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2-symbol errors on a CW

Code with distance 4
 Single symbol correcting
– double symbol detecting 

(SSC-DSD) codes

Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez



• The challenges are:
– Finding implementable decoders and encoders

– Matching the code properties to DRAM properties and 
fault/error characteristics
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2-symbol Error in a Code with d=4

• Can be detected (not a CW)

• Cannot be corrected due to multiple nearest CWs

 Detectable but Uncorrectable Error (DUE)
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2-symbol errors on a CW

Code with distance 4
 Single symbol correcting
– double symbol detecting 

(SSC-DSD) codes
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• SEC-DED (Single Error Correcting – Double Error Detecting)

– On single ECC-DIMM
• 64-bit data + 8-bit redundancy

– Bit-level (weak) protection
• Hamming codes
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Reed Solomon codes

• A code with distance d
– Guaranteed to detect and correct up to          errors

– Minimum redundancy = (d-1) symbols

• Reed-Solomon (RS) codes
– Can provide minimum redundancy
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Min.
Redun.

d Correction Detection Name

2 3 1-sym 1-sym Single symbol correcting (SSC)

3 4 1-sym 2-sym Single symbol correcting 
– double symbol detecting (SSC-DSD)

4 5 2-sym 2-sym Double symbol correcting (DSC)

…

d−1

2

8-bit sym RS codes: 2t-sym redundancy for t-sym correction
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Stronger DRAM ECC

• Chipkill-correct
– Can restore data from a completely failed chip

– 99.94% correction of errors (vs. 91% in SEC-DED)1

• Chipkill-level corrects most chip errors (not 100%)
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[1] “Chipkill Memory”, IBM, 2001
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• Even stronger codes?
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Effective ECC coverage much better than guarantee

• What happens beyond detection coverage?
– E.g. 3+ symbol errors on SSC-DSD

• Silent Data Corruption (SDC)
– Miscorrected or undetected

– Iff a word also falls on correctable range of neighbors

• DUE otherwise
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SDC

A miscorrected 3-symbol error

An undetectable 4-symbol error

DUE
s

Larger code distance exponentially decreases SDC   
probability by making code space more sparse.
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DRAM error patterns are not random

• DRAM internal structure

24

 Rank
 Chip Chip

BK

Switch

BK

MM
M...

SerDes

Chip width (e.g. x4) Data Pins

Channel width (e.g. 72-bit)

...

 Bank (BK)

M M ...

P
re

d
ec

o
d

e
r

M M
M M

M M

Global word line

Sense-Amps

M M
M M
M M

M M

M M
M M
M M

M M

...

...

...

G
lo

b
al

 b
it

 li
n

es

..
.

... ... ...

Chip width x burst length

Row
addr

 mat (M)

R
o

w
 d

e
co

d
e

r

Sense-Amps

Local word line

Lo
ca

l b
it

 li
n

e

Row
addr

Column
addr

Prefetch depth
(=burst length)

...
Most errors affect only a single data pin (DQ)

Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez



Bamboo ECC (J. Kim et al. HPCA’15)

• ECC layout change

• A family of codes
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First Bamboo - Single Pin Correcting (SPC)

• Corrects 1 pin error
– Using 2 pin redundancy

• Compared to SEC-DED
– 1/4 redundancy (3.1% vs. 12.5%)

– Fewer uncorrectable errors from fewer raw errors
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ECC is tricky: SPC vs. SEC-DED

27

Which one
is better?

Note

Correction probability (A) SEC-DED

Raw error rate (B) SPC ~91%
(16.5 chips vs. 18 chips)

Overall:
uncorrected errors (B x (1-A)) SPC ~95%

SEC-DED SPC
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Single Pin Correcting – Triple Pin Detecting

• Corrects 1 pin error / detects up to 3 pin errors
– Using 4 pin redundancy

• Compared to SEC-DED
– 1/2 redundancy (6.3%)

– Fewer uncorrectable errors

– Safer detection (0.0004% SDC vs. up to 51%)
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Quadruple Pin Correcting (QPC/4PC)

• Corrects one x4 chip error
– Using 8 pin redundancy

• Compared to AMD Chipkill
– Same redundancy (8 pins / 12.5%)

– Stronger correction (e.g. two concurrent pin errors)

– Safer detection (99.9999%)
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• But, always tradeoffs …
– Bamboo correction somewhat more complex

– But some other benefits …
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• Some tricks of the trade
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• 1. Know your faults and errors 
– And the difference between them
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• 2. Erasures are your friend
– If you know what’s broken, no need to try and fix it

•

2*corrections + erasures < code-distance
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Fine-grained Retirement using Bamboo

• Permanent faults
– 71% of faults / 99.9% of errors

– Common solution: retirement

• Graceful downgrade of Bamboo family
– Can retire up to 6 sequential pin faults
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• 3. Multi-tier and concatenated codes
– When one code just isn’t enough
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• Channel constrains organization
– Granularity

– Chip kill

– …

36Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez



• Split the code up to fit the constraints
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• Common example:
– Detection as the inner first-tier code

– Correction as the outer second-tier code

– E.g., CRC + parity
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• 4. Shortened codes have “spare capacity”

• Maximum CW size of 8-bit RS codes
– 255-symbol

– Only parts are used and the rest are regarded as zeros
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...0 0 0 00 0 0 00 0 0 0 ...

Data 
(64-sym)

Redundancy
(8-sym)

Zeros 
(183-sym)

Encode

Data ECC using shortened code
- Only 72 symbols out of 255 are used
- Remaining symbols are regarded as zeros
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• Example: transmission errors
– Other examples do exist
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DDR DIMM Topology

41

DIMM 0
Rank 0

DIMM 1
Rank 1

Processor

CA transmission line

Data transmission line

CA buffer in 
RDIMM / LRDIMM

Data buffer
in LRDIMM

Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez



Current Transmission Protection

• Data is strongly protected

• Address/control
– Cmd/Addr are weakly protected by even parity in DDR4

– Clk/Ctrl are unprotected

42

Storage
errors

Memory Controller

DRAM

Clk Ctrl Cmd DataTransmission 
errors

Addr

Data ECC

Protection coverage

Write CRC CA Parity

New features in DDR4 for transmission errors
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• 5. Retry often works
– Repair and correction not always necessary

– Still need to detect the errors first
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CCCA Transmission Errors

• Clk/Ctrl/Cmd/Addr (CCCA)
– Half transfer rate than data

– More transmission errors than data
• Due to DDR3/4 DIMM topology

• CCCA error example
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7 Gbps

3.2 
Gbps

0 1 2 3 4 5 6 7 8
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GDDR4
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cmd/addr rate data rate

MemCon
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Data A ECC AAddress B

RX cmd: WR B

TX cmd: WR A

Write address error

@ address B: overwritten by another CW

@ address A: obsolete CW
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All-Inclusive ECC [J. Kim et al. ISCA’16]

• Augments current protection schemes
– No extra storage or pins

• Strong protection against CCCA errors
– Virtually 100% detection
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Address Protection – eDECC

• Extended Data ECC (eDECC)
– Augment DECC to protect (RD/WR) address

– ECC Redundancy over data and address
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Address Protection – eWCRC

• Pitfall of eDECC
– Late detection of WR address error

• Extended Write CRC (eWCRC)
– Augment WCRC to detect WR address error early

– 8-bit CRC over data and address
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Clk/Ctrl/Cmd Protection

• Command State & Timing Checker (CSTC)
– Detects  errors by tracking DRAM state and timing

• Extended CA Parity (eCAP)
– Detects missing write by tracking sent/received cmds

– Even-parity over {WrCmdToggle, CA}
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Command
Error Type

Extra Missing Timing

Activate CSTC CSTC CSTC

Precharge CSTC CSTC CSTC

Read eDECC eDECC CSTC

Write eWCRC eCAP CSTC

Refresh NoErr CSTC May not affect
correctness

Command error detection mechanism
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• Memory Repair
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MEMORY REPAIR MECHANISM

Coarse-grained
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Node/Channel/Rank Retirement

• Node retirement 
– Simple, and effective when

• Fault rate leading to this is low enough

• No critical data is lost

– Challenges
• Very high overhead

• Specific node’s availability can be critical

• Channel/Rank retirement
– Reduce memory capacity and possibly bandwidth

– Impact performance and power efficiency
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DRAM Device Retirement

• Utilize a part of ECC redundancy
– Bit-steering of IBM’s Memory ProteXion

– Bamboo ECC[1]

– Intel’s DDDC (Double Device Data Correction)
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* SP: spare, PAR: parity
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DRAM Device Retirement

• Utilize a part of ECC redundancy
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MEMORY REPAIR MECHANISMS

Fine-grained

56Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez



Memory Frame Retirement (Virtual Memory)

• Exploit page-based virtual memory support
– OS (or device driver) retires frames affected by faults
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Memory Frame Retirement (Virtual Memory)

• Exploit page-based virtual memory support
– OS (or device driver) retires frames affected by faults
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Memory Frame Retirement (Virtual Memory)

• Exploit page-based virtual memory support
– OS (or device driver) retires frames affected by faults
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Memory Frame Retirement (Virtual Memory)

• Challenge 1
– Physical to DRAM address mapping increases footprint of 

many DRAM faults
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E.g. Single Column faults in DRAM span many OS pages



Memory Frame Retirement (Virtual Memory)

• Challenge 2
– Huge-pages or segmentation
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Memory Frame Retirement (Virtual Memory)

• Challenge 3
– May be limited to a specific address space 

• Some OS components and peripheral devices do not fully utilize 
virtual memory facilities (e.g. IBM’s AIX)
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Remapping With Redundancy

• Row/Column sparing
– Available during manufacture/test/integration time

– PPR (Post Package Repair) in DDR4 and LPDDR4 repairs a 
faulty row in-the-fields
• Repair at most one row per bank or bank group

• Repair one-time only (fuse)

• Structure external to arrays
– Either adding storage (e.g. Fault Cache[1] and CiDRA[2]) or 

using a fraction of DRAM storage (e.g. ArchShield[3])

– Add substantial cost
• Each device or DIMM requires redundant storage and remapping 

logic
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[3] P. J. Nair et al., “ArchShield: architectural framework for assisting DRAM scaling by tolerating high error rates,” ISCA 2013
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72-bit x4 ECC DIMM
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Remapping Without Redundancy

• Utilize microarchitectural structures [Kim and Erez, HPCA’15]
[1]

– Caches as redundant storage
• A small fraction of LLC is used to remap data from faulty regions in 

DRAM

– Mechanism is transparent 

– Remapping storage size is determined as needed

– Due to limited size of LLC, it should be limited to repair 
faults that affect only small regions of DRAM
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[1] Dong Wan Kim and Mattan Erez, “Balancing reliability, cost, and performance tradeoffs with FreeFault," HPCA, 2015



FreeFault Architecture [DW Kim and M. Erez HPCA’15, ISCA’16]
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FreeFault Architecture
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FreeFault Architecture
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FreeFault Architecture
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FreeFault Architecture

71Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez

* MeET: Memory Error Tracker



• 7 key takeaway
• 0. Know the requirements

– SDCs? Availability? Graceful downgrade? Time-to-replace?

• 1. Know your faults and errors
– Transient, intermittent, permanent, single-bit, single-pin, single chip, multi-

chip/single-bit, …
– Inform ECC scheme, concatenation, repair needs, …

• If a bear is chasing you, you only need to run faster than slowest person – no such thing as perfectly 
reliable – just reliable enough

• 2. Erasures are your friend
– Knowing/assuming where the error is increases code correction capability –

significantly reduces redundancy

• 3. Concatenated/multi-tier codes overcome constraints
– Separate detection and correction
– Separate storage

• 4. Long codes have spare “coverage capacity”
– Longer symbols and longer codewords reduce SDCs
– Can add implicit information (e.g., for address error detection)

• 5. Retry can beat redundancy
– Transmission and read errors can simply be retried

• Possibly with different access parameters

• 6. Repair is very effective and can be very cheap
– Trade off redundancy of repair with redundancy for ECC
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DRAM RELIABILITY EVALUATION

Backup:
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Evaluation methodology

• System configuration
– 8 DIMMs per node

– SSC (Single symbol correction) chipkill level ECC

• DRAM reliability metric
– DUE, SDC rate, and number of replaced DIMMs
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[1] Vilas Sridharan and Dean Liberty, “A Study of DRAM Failures in the Field”, SC 2012

Table. Failure rate of DRAM device (FIT/device) [1]



Fault simulation

• Multi-stage Monte-Carlo fault simulator
– This is basically FaultSim
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Fault simulation

• Multi-stage Monte-Carlo fault simulator
– Stage 1: Faults are simulated as a Poisson process
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Fault simulation

• Multi-stage Monte-Carlo fault simulator
– Stage 1: Faults are simulated as a Poisson process

– Stage 2: Estimate affected memory region
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Fault simulation

• Multi-stage Monte-Carlo fault simulator
– Stage 1: Faults are simulated as a Poisson process

– Stage 2: Estimate affected memory region

– Stage 3: Repair memory
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Fault simulation [DW Kim et al. ISCA’16]

• Multi-stage Monte-Carlo fault simulator
– Stage 1: Faults are simulated as a Poisson process

– Stage 2: Estimate affected memory region/capacity

– Stage 3: Repair memory

– Stage 4: Estimate DUE/SDC
• Use single symbol correction Chipkill-correct ECC

• Double device errors are detected with very high likelihood

• DUE/SDC is probabilistically determined by simulation results[1]

79Memory Resilience Tutorial at HPCA'16    (c) Dongwan Kim, Jungrae Kim, and Mattan Erez

[1] Jungrae Kim, Michael Sullivan, and Mattan Erez,, “Bamboo ECC: Strong, Safe, and Flexible Codes for Reliable Computer Memory”, HPCA 2015



• FaultSim isn’t enough – misses true coverage of ECC
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Evaluation: Reliability with expected reliability
[J. Kim et al. HPCA15]

• 3-stage simulation
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Fault rate info2

MonteCarlo
Sim

FaultSim1

[1] “FAULTSIM: A fast, configurable memory-resilience simulator”, Roberts et al., The Memory Forum ’14
[2] “A study of DRAM failures in the field”, Sridharan and Liberty, SC’12

ResultFault history

MonteCarlo
Sim

ErrorSim

Error pattern

Decoder

Bamboo ECC
or

other ECC

Fault Mode Fault Rate

Single-bit 32.8 FIT

Single-word 1.7 FIT

Single-column 7.0 FIT

… …

DCE, 
DUE,
or SDC
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Example:
Bamboo System-level Reliability (72b channel)
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Example:
Bamboo System-level Reliability (72b channel)
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Don’t forget about power, area, and latency:
Bamboo Overheads
(coverage isn’t enough)Logic
overheads

AMD Chipkill Bamboo
QPC

Comparison

Area
(NAND2 gates)

1,600 25,000 16 x

Latency
(XOR2 gates)

8 10 + 2
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Performance

• 2% (H. mean) execution time 
increases1

• Due to +3 read/write latency to wait 
block transfer

Energy

• <1% (H.mean) DRAM energy 
increases1

[1] SPECcpu2006 on Gem5 simulator (2GHz 1-core / 2M LLC / 2GB (64+8)b DDR3-1600)

Logic overheads of encoder and decoder (error detection part), each
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