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The constraints:
— Power/energy
— Time

— Money

— Correctness
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Can’'t work harder —
have to work smarter
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Can’'t work harder —
have to work smarter

Efficient & Proportional
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Multiple constraints and needs =
Heterogeneity
asymmetry

specialization
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pig.LITTLE and per core DVFS
— Static and dynamic asymmetry

Accelerators
— Programmable and fixed-function
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Throughput cores
Latency cores
Specialized cores

- proportionality of compute
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Great, we solved the easy part:
proportional compute
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Programming is hard
Memory iIs hard
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The memory challenge (outline)

— Why do memory systems look the way they doe
e Efficiency and reliability
e Abstractions for architects

— Role of heterogeneity and programs
— Some infteresting mechanisms
— Where do we go from heree¢
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Storage device options abound
- SRAM

— DRAM

— FLASH

— STT-/M- RAM

— PCM, Memristor, RRAM, ...
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Architects should think in abstractions
— Research should be general
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The fundamentals

Cheap

Energy efficient
High capacity
_ow |latency
High throughput
Reliable




%N (c) Mattan Erez

Memory must be cheap

— Memory is already foo expensive
e 15 -50% of system cost (or more)

— But, margins razor thin (commodity)
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Memory must be energy efficient

— Memory accounts for 15 - 60+%
of Ycompute” energy and getting worse
e More capacity
* Proportional compute
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Memory must be high capacity

— Memory footprints keep growing
 More interesting data
* More data
 More specialized data structures
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Memory must be high capacity
Many chips
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Memory must be high capacity

Many chips Denser mem,
Fewer chips

HE E A
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Memory must be high capacity

Many chips Denser mem, Many dice,
Fewer chips Fewer chips

HE E A

o © Micron
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Memory composed of

— Multiple modules

— Each module with N >=] components
— Lots of cells per component

— Each cell >=1 bit
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Memory should be low latency
— Latency == performance
— Except when sufficient concurrency
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Low latency conflicts with
— Cheap
— Capacity
— Sometimes with
* Throughput

* Energy
e Reliability
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Latency components:
— Memory cell access

— Data transfer

— Queuing
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Latency mpacted by cell access

denser/efficient = higher latency
— Small cells =2 sensitive circuits 2 slow reads
— Writes even more complicated
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+ latency - latency
- density + density

- cost + cost

- energy + energy
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Caching to the rescue
— Store some data somewhere fast
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Short distances improve latency
— |t's all about the wires
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Short distances improve latency
— |t's all about the wires

+ latency - latency
+ energy - energy
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Short distances improve latency
— |t's all about the wires
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+ latency - latency
+ energy - energy

— capacity + capacity
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Hierarchy to the rescue
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Hierarchy to the rescue

Processor
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Hierarchy to the rescue

Processor
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Memory system

— Modules, packages, components

— Arranged in a hierarchy

Each memory component
Has hierarchy
Has caching/buffering

Local

Row Addr |

Local

Column Addr

Sub-Array

Sense Amps

Global
Row Addr |

Global
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Latency impacted by queuving
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Deep queues improve locality
— Higher throughput

— Higher efficiency

— Often hurts latency
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Memory must be high throughput
— More and more latency hiding
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Memory must be high throughput

Many chips Fewer chips

High capacity per pin requires efficient access
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Packaging/interfaces improve throughput
— 3D Integration
— Limited capacity
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Packaging/interfaces improve throughput
— 3D intfegration
— Limited capacity
— More hierarchy leyels

Heterogeneity!
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Latency + throughput + efficiency
- parallelism



éﬁ,}' (c) Mattan Erez TEXAS

Latency + throughput + efficiency
- parallelism

A
O

Access cell
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Latency + throughput + efficiency
- parallelism

& []
[]
[]

Many pins

in parallel

AcCcess many
cells in parallel
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Latency + throughput + efficiency
- parallelism

Many pins
in parallel over
multiple cycles

0--- O >
B
]
[]

ACCeESS even more
cells in parallel
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Latency + throughput + efficiency
- parallelism

]

ACCeESS even more
cells in parallel

%

Many pins
in parallel over
multiple cycles
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Torecap
— Locality
— Hierarchy
— Parallelism
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Memory must be reliable
— Written data must be recalled “correctly”
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Reliability challenges

— “Natural” change in cell value
— Induced change in cell value
— Read errors

— Write errors

— Wearout and defects
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Natural causes of value change

Probability correct

Decqy Time
— Refresh
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Natural causes of value change

Probability correct
Probability correct

Time

Decay "me F
— Refresh — ECC + scrub

i.
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Natural causes of value change
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— Refresh / scrub — ECC + scrub
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Natural causes of value change
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Decqy Time Flip Time
— Refresh / scrub — ECC + scrub

— Retention control
e Less dense
e Writes slower/higher-energy
e Can use different devices
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Induced change in value

— Writing or reading disturbs nearby cells
— Worse for writes

— Technology and design dependent
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Read errors
— Because of small margins for efficiency
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Write errors
— Writing implies changing a state or value
— Stochastic

Probability correct

Time
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Write errors
— Writing implies changing a state or value
— Stochastic

Probability correct

Time
— Waiting inefficient and slow

— Write error control conflicts w/ other errors
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Wearout and defects
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Wearout and defects
— Sparing

— Extra margins

— Refirement

— Compensation (ECC)
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Summary: no *good” memory
— |t's all about tradeoffs
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Example: DRAM

— Efficient and reliable reads and writes
— Leaky
— Density problematic
— Fairly fast reads and writes
— Parallelism determined by cost
— Fast decay (short retention)
e High variabillity
— Rare, but important flips
— Very rare disturbs
— Slow wearout
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Example: FLASH

— High-energy writes

— Very dense

— Slow reads

— Very slow writes

— Parallelism determined by technology
— Very slow decay (good retention)

— Flips only on periphery

— Write disturlos problematic

— Fast wearout
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Example: PCM

High-energy writes
Dense

~Qst reads

-Qst-Ish writes

Parallelism determined by cost

— Slow decay (OK retention)
— Flips only on periphery

— Write disturlos problematic
— Fast wearout
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Summary of heterogeneity:

interrelated tradeoffs
— Efficiency

— Capacity

— Latency

— Bandwidth

— Parallelism (granularity)
— Reliabllity
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The role of
heterogeneous processors

heterogeneous applications
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Proportional compute
— Latency oriented

— Throughput oriented

— Specialized
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Application characteristics
— Latency sensitive

— Bandwidth sensitive

— Few tasks or many tasks
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Application compute styles
— Batch

— Realtime

— Response time
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Application data usage
— Capacity

— Locality

— Precision

— Persistence
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Memory must be heterogeneous
obut illusion of homogeneity is nice
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The solution:
Adaptive proportional memory systems



,é N (c) Mattan Erez TEXAS

The solution:
Adaptive proportional memory systems
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Adaptive reliability
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Adaptive reliability
— Adapt the mechanism

— Adapt the error rate
* precision (sfochastic precision)
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Adaptive reliability
— By type

e Application guided
— By location (83)

 Machine-state guided
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Example: Virtualized ECC
— Adapt the mechanism
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Virtual Address space Physical Memory

Protection
Level

Low

Medium

High

Virtual page - x Page frame - x

irtual Page to
Physical Frame
mapping |

Virtual page - y Page frame -y

Page frame - z

Virtual page - z

Data ECC
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Virtual Address space Physical Memory
Protection
Level
Low Virtual page - x Page frame - x
Virtual Page to
Physical Frame
mapping
Medium Virtual page - y Page frame -y

Page frame - z

High Virtual page - z ‘ ECC
\

ECC page -y
I

i ECC page - z
Physical Frame Stronger

to ECC Page ECC
mapping

Data
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Virtual Address space Physical Memory

Protection
Level

Low

Medium

High

Page frame - x

Virtual page - x
Virtual Page to
Physical Frame

mapping

Page frame -y

Virtual page - y
Page frame - z

Virtual page - z T2EC for
' Chipkill
\

ECC page -y I

Physical Frame” it

T2EC for
to ECC Page Double
mapping Chipkill

Data T1EC
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Write Read

T1EC
Decoding

T1EC/T2EC

-' Encoding -

pasavo-Tiered ECC T1EC T2EC
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Write Read

Virtualized
T2EC

A

Data T1EC
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Caching work great

1.02
1.01
1.00 -
0.99 -
0.98 -
Chipkill Detect Chipkill 2 Chipkill
Correct Correct

Normalized Execution Time
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Bonus: flexibility of ECC
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Chipkill Detect Chipkill Correct 2 Chipkill
Correct

Normalized Energy-Delay Product
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Example: FREE-p
— Adapt to wearout state
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FREE-p insights:
— Wearout is gradual
— Adapt ECC strength to wearout degree

— Limit ECC need with adapftive repair
e Retire and remap
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Adapt ECC strength
— Multi-tiered ECC
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Different cells need different protection

100%

90%
80%
70%

60%

slow-ECC (4 failures)
slow-ECC (3 failures)
quick-ECC (2 failures)
B quick-ECC (1 failure)

m quick-ECC (no failure)

50%
40%
30%
20%
10%

0%
0.0 0.9 1.9 2.8 3.7 4.6 5.6 6.5 7.4 8.4 9.3
Years
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Impact of repair and remap is gradual

64

0 | | | | | |
4 6 8 10
Year
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Adaptive granularity (parallelism)
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Applications have diverse locality

Low spatial locality ~50% is referenced mh spatial locality
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Coarse- or fine-grained memory accesse
CG-Only: Wide DRAM channel

ABUS

(c) Mattan Erez

DBUS

LI

FG-Only: Many narrow channels

ABUS

DBUS

ABUS

DBUS

ABUS

DBUS

ABUS

DBUS

TEXAS
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Coarse- or fine-grained memory accesse

G E I Data
cccccccc
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Dynamically adapt granularity
- best of bothworlds..oo

_ _ Processor
Locality Predictor { Core [

Sector cache
(8 8B sectors per line)

Last Level Cache

Core Core Core
0 1 B N-1

Co-scheduling CG/FG w/ split CG

Sub-Ranked DRAM w/ 2X ABUS
Support both CG and FG
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Subranked memory
— Adapt parallelism

ABUS DBUS

X
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&
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Sectored caches
— Track granularity

Long cache line

Short cache line

Sector cache

DV sectorO0 gD V sector 1 §D V sector 2 §D V sector 3
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Granularity information?
— Application provided (when allocated)
— System learned (when accessed)
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Dynamically adapt granularity
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PROPORTIONALITY
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Memory is heterogeneous
Applications are heterogeneous
this is a good thing
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Adaptivity is key
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Sometimes need application help
— Programming models and analyses crucial
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Think abstractions rather than examples
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Memory is heterogeneous
Applications are heterogeneous
this is a good thing

Adapftivity is key

Sometimes need application help
— Programming models and analyses crucial

Think albstractions rather than examples



