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•The constraints:

– Power/energy

– Time

– Money

– Correctness
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•Can’t work harder –

• have to work smarter
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•Can’t work harder –

• have to work smarter

•Efficient & Proportional
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•Multiple constraints and needs 

• Heterogeneity

• asymmetry 

• specialization
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•big.LITTLE and per core DvFS

– Static and dynamic asymmetry

•Accelerators

– Programmable and fixed-function
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•Throughput cores

•Latency cores

•Specialized cores

 proportionality of compute
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Great, we solved the easy part: 
proportional compute
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•Programming is hard

•Memory is hard
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•The memory challenge (outline)

– Why do memory systems look the way they do?

• Efficiency and reliability

• Abstractions for architects

– Role of heterogeneity and programs

– Some interesting mechanisms

– Where do we go from here?
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•Storage device options abound

– SRAM

– DRAM

– FLASH

– STT-/M- RAM

– PCM, Memristor, RRAM, …
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•Architects should think in abstractions

– Research should be general
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•The fundamentals

•Cheap

•Energy efficient

•High capacity

•Low latency

•High throughput

•Reliable

(c) Mattan Erez



•Memory must be cheap

– Memory is already too expensive

• 15 – 50% of system cost (or more)

– But, margins razor thin (commodity)
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•Memory must be energy efficient

– Memory accounts for 15 – 60+% 
of “compute” energy and getting worse

• More capacity

• Proportional compute
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•Memory must be high capacity

– Memory footprints keep growing

• More interesting data

• More data

• More specialized data structures
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•Memory must be high capacity
Many chips
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•Memory must be high capacity
Many chips Denser mem,

Fewer chips
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•Memory must be high capacity
Many chips Denser mem,

Fewer chips

Many dice,

Fewer chips

© Micron
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•Memory composed of

– Multiple modules

– Each module with N >=1  components

– Lots of cells per component

– Each cell >= 1 bit
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•Memory should be low latency

– Latency == performance

– Except when sufficient concurrency
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•Low latency conflicts with

– Cheap

– Capacity

– Sometimes with 

• Throughput

• Energy

• Reliability
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•Latency components:

– Memory cell access

– Data transfer

– Queuing
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•Latency impacted by cell access

•denser/efficient  higher latency

– Small cells  sensitive circuits  slow reads

– Writes even more complicated

+ latency

– density

– cost

– energy

– latency

+ density

+ cost

+ energy
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•Caching to the rescue

– Store some data somewhere fast
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•Short distances improve latency

– It’s all about the wires
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•Short distances improve latency

– It’s all about the wires

+ latency

+ energy

– latency

– energy
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•Short distances improve latency

– It’s all about the wires

+ latency

+ energy

– capacity

– latency

– energy

+ capacity
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•Hierarchy to the rescue
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•Hierarchy to the rescue

Processor
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•Hierarchy to the rescue

Processor
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•Memory system

– Modules, packages, components

– Arranged in a hierarchy

•Each memory component

– Has hierarchy

– Has caching/buffering
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•Latency impacted by queuing 
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•Deep queues improve locality

– Higher throughput

– Higher efficiency

– Often hurts latency
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•Memory must be high throughput

– More and more latency hiding
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•Memory must be high throughput
Many chips Fewer chips

High capacity per pin requires efficient access
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•Packaging/interfaces improve throughput

– 3D integration

– Limited capacity

TSV
Silicon 

Interposer
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•Packaging/interfaces improve throughput

– 3D integration

– Limited capacity

– More hierarchy levels

TSV
Silicon 

Interposer

Heterogeneity!
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•Latency + throughput + efficiency 
 parallelism

(c) Mattan Erez



•Latency + throughput + efficiency
 parallelism

Access cell
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•Latency + throughput + efficiency
 parallelism

Access many 

cells in parallel

Many pins 

in parallel
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•Latency + throughput + efficiency
 parallelism

Access even more 

cells in parallel

Many pins 

in parallel over

multiple cycles
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•Latency + throughput + efficiency
 parallelism

Access even more 

cells in parallel

Many pins 

in parallel over

multiple cycles

(c) Mattan Erez



•To recap

– Locality

– Hierarchy

– Parallelism
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•Memory must be reliable

– Written data must be recalled “correctly”
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•Reliability challenges

– “Natural” change in cell value

– Induced change in cell value

– Read errors

– Write errors

– Wearout and defects
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•Natural causes of value change
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– Retention control 

• Less dense

• Writes slower/higher-energy

• Can use different devices

•Decay

– Refresh / scrub

•Flip

– ECC + scrub
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•Induced change in value

– Writing or reading disturbs nearby cells

– Worse for writes

– Technology and design dependent
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•Read errors

– Because of small margins for efficiency
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•Write errors

– Writing implies changing a state or value

– Stochastic

P
ro

b
a

b
ili

ty
 c

o
rr

e
c

t

Time

(c) Mattan Erez



•Write errors

– Writing implies changing a state or value

– Stochastic

– Waiting inefficient and slow

– Write error control conflicts w/ other errors
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•Wearout and defects
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•Wearout and defects

– Sparing

– Extra margins

– Retirement

– Compensation (ECC)

(c) Mattan Erez



•Summary: no “good” memory

– It’s all about tradeoffs
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•Example: DRAM

– Efficient and reliable reads and writes

– Leaky

– Density problematic

– Fairly fast reads and writes

– Parallelism determined by cost

– Fast decay (short retention)

• High variability

– Rare, but important flips

– Very rare disturbs

– Slow wearout
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•Example: FLASH

– High-energy writes

– Very dense 

– Slow reads

– Very slow writes

– Parallelism determined by technology

– Very slow decay (good retention)

– Flips only on periphery

– Write disturbs problematic

– Fast wearout

(c) Mattan Erez



•Example: PCM

– High-energy writes

– Dense 

– Fast reads

– Fast-ish writes

– Parallelism determined by cost

– Slow decay (OK retention)

– Flips only on periphery

– Write disturbs problematic

– Fast wearout
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•Summary of heterogeneity:

• interrelated tradeoffs

– Efficiency

– Capacity

– Latency

– Bandwidth

– Parallelism (granularity)

– Reliability
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•The role of 
heterogeneous processors

• heterogeneous applications
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•Proportional compute

– Latency oriented

– Throughput oriented

– Specialized
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•Application characteristics

– Latency sensitive

– Bandwidth sensitive

– Few tasks or many tasks
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•Application compute styles

– Batch

– Realtime

– Response time
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•Application data usage

– Capacity

– Locality

– Precision

– Persistence
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•Memory must be heterogeneous
but illusion of homogeneity is nice
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•The solution:
Adaptive proportional memory systems
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•The solution:
Adaptive proportional memory systems
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•Adaptive reliability
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•Adaptive reliability

– Adapt the mechanism

– Adapt the error rate

• precision (stochastic precision)
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•Adaptive reliability

– By type

• Application guided

– By location (83)

• Machine-state guided
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•Example: Virtualized ECC

– Adapt the mechanism
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Physical Memory

Data ECC

Virtual Address space

Low
Virtual Page to 
Physical Frame 
mapping

Page frame – x

Page frame – y

Page frame – z

Virtual page – x

Virtual page – y

Virtual page – z

Protection 
Level

Medium

High
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Physical Memory

Data

Virtual Address space

Low
Virtual Page to 
Physical Frame 
mapping

Physical Frame 
to ECC Page 
mapping

ECC

Stronger
ECC

Page frame – x

Page frame – y

Page frame – z

ECC page – y

ECC page – z

Virtual page – x

Virtual page – y

Virtual page – z

Protection 
Level

Medium

High
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Physical Memory

Data T1EC

Virtual Address space

Low
Virtual Page to 
Physical Frame 
mapping

Physical Frame 
to ECC Page 
mapping

T2EC for 
Chipkill

T2EC for 
Double
Chipkill

Page frame – x

Page frame – y

Page frame – z

ECC page – y

ECC page – z

Virtual page – x

Virtual page – y

Virtual page – z

Protection 
Level

Medium

High
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Two-Tiered ECC

Write Read

T1EC
Decoding

Data T1EC

T1EC/T2EC
Encoding

T2EC
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Write Read

T1EC
Decoding

Data T1EC

Virtualized  

T2EC

T1EC/T2EC
Encoding

T2EC
Mapping



•Caching work great
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•Bonus: flexibility of ECC
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•Example: FREE-p

– Adapt to wearout state
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•FREE-p insights:

– Wearout is gradual

– Adapt ECC strength to wearout degree

– Limit ECC need with adaptive repair

• Retire and remap
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•Adapt ECC strength

– Multi-tiered ECC
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•Different cells need different protection
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•Fine-grain retirement is key
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•Adaptive FG repair

Page for 
remappingD/P flag

Data page

ptr

data
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•Impact of repair and remap is gradual
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•Adaptive granularity (parallelism)
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•Applications have diverse locality
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•Coarse- or fine-grained memory access?

CG-Only: Wide DRAM channel

FG-Only: Many narrow channels

ABUS

x8 x8 x8

DBUS
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•Coarse- or fine-grained memory access?
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Dynamically adapt granularity
 best of both worlds

Processor
Core

$I$D

L2

Last Level Cache

MC

DRAM

Core
0

Core
1

Core
N-1

…

SLP

Co-scheduling CG/FG w/ split CG

Sector cache 
(8 8B sectors per line)

Sub-Ranked DRAM w/ 2X ABUS 
Support both CG and FG

Locality Predictor
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•Subranked memory

– Adapt parallelism
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•Sectored caches

– Track granularity
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tag sector 0D V sector 1D V sector 2D V sector 3D V

tag dataD V

Long cache line

Sector cache

tag dataD V

Short cache line



•Granularity information?

– Application provided (when allocated)

– System learned (when accessed)
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•Dynamically adapt granularity

•PROPORTIONALITY
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•Memory is heterogeneous

•Applications are heterogeneous

• this is a good thing
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•Adaptivity is key
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•Sometimes need application help

– Programming models and analyses crucial
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•Think abstractions rather than examples
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