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Abstract

State of the art microprocessors achieve high performance
by executing multiple instructions per cycle. In an out-of-
order engine, the instruction scheduler is responsible for
dispatching instructions to execution units based on depend-
encies, latencies, and resource availability. Most existing
instruction schedulers are doing a less than optimal job of
scheduling memory accesses and instructions dependent on
them, for the following reasons:

• Memory dependencies cannot be resolved prior to exe-
cution, so loads are not advanced ahead of preceding
stores.

• The dynamic latencies of load instructions are unknown,
so scheduling dependent instructions is based on either
optimistic load-use delay (may cause re-scheduling and
re-execution) or pessimistic delay (creating unnecessary
delays).

• Memory pipelines are more expensive than other execu-
tion units, and as such, are a scarce resource. Cur-
rently, an increase in the memory execution bandwidth
is usually achieved through multi-banked caches where
bank conflicts limit efficiency.

In this paper we present three techniques to address these
scheduler limitations. One is to improve the scheduling of
load instructions by using a simple memory disambiguation
mechanism. The second is to improve the scheduling of load
dependent instructions by employing a Data Cache Hit-Miss
Predictor to predict the dynamic load latencies. And the
third is to improve the efficiency of load scheduling in a
multi-banked cache through Cache-Bank Prediction.

1. Introduction

One of the key elements in achieving higher performance
in microprocessors is executing more instructions per cycle.
Existing microprocessors are already capable of executing
several instructions concurrently. However, dependencies
among instructions, varying latencies of certain instructions,
and execution resources constraints, limit this parallelism
considerably. In particular, load instructions introduce three
scheduling problems.

The first problem arises from the fact that addresses of

memory operations are not known at schedule time. This
prominent problem, termed memory ambiguity, prevents the
scheduler from advancing loads ahead of preceding stores,
since a load’s dependency on a store is defined through their
memory addresses. Speculative memory disambiguation is a
technique that deals with this problem by predicting whether
a load is dependent on a specific store prior to execution. In
this paper we describe and test several simple, economic, yet
effective disambiguation mechanisms and show that there is
a large potential performance increase in employing them.

The second issue associated with loads is the scheduling
of load dependent instructions. Efficient instruction sched-
uling algorithms rely on the fixed execution duration of each
instruction. This is not the case for load instructions, since
the accessed data may reside in any one of several memory
hierarchies, having different latencies. We suggest data
cache hit-miss prediction as a method of predicting a load’s
latency through a prediction of the data’s hierarchical loca-
tion.

Another major hurdle to increasing performance is the
number of memory pipelines available. Currently, at most
two pipelines are available, and that at great cost. The multi-
banked cache has been suggested as a sub-ideal, yet eco-
nomic, solution to this problem. We offer cache-bank pre-
diction as a way of simplifying the pipeline and of avoiding
the bank conflict problem (increasing efficiency) by sched-
uling only independent loads to execute simultaneously.

The rest of section 1 presents a more elaborate introduc-
tion and prior work related to these ideas. Section 2 explains
the prediction mechanisms. Our simulation environment is
described in section 3 and the results appear in section 4.
Section 5 concludes the paper.

1.1 Memory Disambiguation

Current state-of-the-art processors are limited in perform-
ance due to true data dependencies. There are two types of
data dependencies between instructions, register and memory
dependencies. At schedule time true register dependencies
are known, but memory dependencies are yet to be resolved
(addresses are computed during execution). Memory de-
pendencies occur when the addresses referenced by a load
instruction and a preceding, in program order, store instruc-
tion are the same. Since the scheduler does not know this at



schedule time, a problem arises when trying to re-order a
load in front of a preceding store. Memory reference order-
ing may follow the conservative (traditional) approach in
which loads are dispatched as they appear in sequential pro-
gram order with respect to stores, introducing false data de-
pendencies. Such restrictions cause a significant loss of per-
formance, since, in practice, most loads can bypass prior
stores whereas in this scheme their execution is needlessly
delayed. The other extreme is the opportunistic approach in
which loads are dispatched as soon as possible assuming they
are not dependent on stores. In this approach most of the
load-store reordering cases result in improved performance,
but the high penalty for erroneously advancing loads that
truly depend on preceding stores offsets much of this per-
formance gain. Incorrect memory ordering may incur a large
performance penalty since the wrongly advanced load and all
its dependent instructions must be re-executed or even re-
scheduled.

The problem of not knowing whether a load should be de-
ferred until earlier stores execute motivates us to try to pre-
dict memory dependencies. We present a family of simple,
yet powerful, memory dependence predictors. The prediction
information may be kept either within a dedicated hardware
structure, or as a run-time hint along with the load op-code
(in the instruction or trace cache).

Prior Work: Memory disambiguation through depend-
ence prediction is an issue of active research. First let us de-
scribe how memory operation ordering is conducted in the
P6 processor family [Inte96]. A load instruction is decoded
into a single uop (micro-operation), whereas a store is de-
coded into two uops, a STA (Store Address) and a STD
(Store Data). Breaking stores into two uops increases paral-
lelism, since the store address is often calculated before the
data to be stored is. Traditional memory disambiguation
schemes (P6 processor family) follow two basic rules:

• A load can not be dispatched if an earlier, unresolved,
STA uop exists in the instruction window.

• A load cannot execute out-of-order with an earlier STD
coupled with a STA that references the same address as
the load. The problem is that to detect this case the load
must be dispatched without knowing whether it is truly
dependent on the earlier STD.
The first rule is a pessimistic rule for memory disam-

biguation, since it assumes that all prior stores are likely to
access the same address as subsequent loads. The second
rule is required for correctness.

In the P6 processor family there is a way of retaining the
instructions in the RSs, and re-dispatching in case of a colli-
sion. Newer implementations with no ability to stall would
need to re-execute the load and its data dependent instruc-
tions until the STD is successfully completed.

Previous work on memory disambiguation was done in
the context of compiler and hardware mechanisms for non-
speculative disambiguation ensuring program correctness.
These can be divided into four categories: static compiler
techniques in which disambiguation is statically performed
by the compiler; software only dynamic disambiguation, in

which the compiler inserts specific disambiguation code into
the command stream [Nico89][Huan94]; hardware assisted
disambiguation where the compiler uses special op-codes
which assist disambiguation and verification [Gall94]; hard-
ware only dynamic disambiguation as proposed by Franklin
and Sohi [Fran96].

More recently, work on speculative memory disambigua-
tion has been done in industry and academia.

Academic work done by Moshovos and Sohi [Mosh97]
advised a relatively complex memory dependence prediction
technique for improving memory ordering and store value
forwarding. The idea is to predict the load-store pairs and to
use this information to either bypass loads beyond stores or
to forward the store’s data value to the matching load. To
perform this load-store pairing, they use a set of fully-
associative tables holding pairs that were wrongly reordered
in the past. Similar work was done by Austin and Tyson
[Aust97]. Moshovos and Sohi [Mosh97b] also proposed to
improve the communication of data between the producer
and consumer by eliminating or bypassing store-load pairs. A
more thorough examination of such communication im-
provements is presented in [Jour98].

Chrysos and Emer proposed a simplification of the fully
associative tables [Chry98]. Their mechanism uses two ta-
bles, one for associating loads and stores into sets and the
other to track the use of these store sets. After receiving its
set ID the load checks when the last store of that set was dis-
patched and executes appropriately.

In industry, Hesson et al. suggested the Store Barrier
Cache [Hess95]. In this implementation each store that
caused an ordering violation increments a saturating counter
in the barrier cache. At fetch time of a store, the barrier
cache is queried and if the counter is set all following loads
are delayed until after the store is executed. If the store did
not cause a violation the counter is decremented.

Our mechanism is in a sense similar to [Hess95] yet more
refined, since it deals with specific loads, and to [Chry98]
but much more cost effective. In its most basic configuration
our proposed predictor stores only one bit per load, which
may modify, or be appended to, its entry in the
trace/instruction cache. In this way a significant performance
increase can be achieved at almost no added storage.

1.2 Hit Miss Prediction

It is the scheduler’s job to ensure that instructions are
executed as soon as possible. Most instructions have a static
latency, so instructions that are dependent on them can be
scheduled precisely. Load instruction latencies, on the other
hand, vary depending on the location of the data. If the data
resides in the highest cache level, latency is short, whereas
going to a lower hierarchy results in a longer delay. This
complicates and reduces the efficiency of scheduling load
dependent instructions, since the scheduler needs to schedule
the dependant instructions before the actual delay is known.
Therefore, predicting this latency allows for more efficient
use of CPU resources, achieving higher performance.

A possible implementation may assume all loads hit the



higher level cache. This is a reasonable assumption since
more than 95% of the dynamic loads are cache hits. Loads
that actually miss the cache will cause instructions that de-
pend on them to be re-scheduled and re-executed. Although
this method is quite effective, re-scheduling and re-execution
are still expensive in terms of performance, power, execution
bandwidth, and especially in increased hardware complexity.

The new concept presented here is to predict which loads
will miss the cache, thus delaying the dependent instructions
until the needed data is fetched. This increases performance
directly by saving a few clocks through the scheduling of
load-dependent instruction to execute at the exact time the
data is retrieved. More importantly, resource utilization is
improved and execution bandwidth requirements are re-
duced. The reduction in execution bandwidth is particularly
beneficial for multi-threaded architectures, where the tempo-
rarily available execution units can be used by other threads
of execution.

Related Work: Mowry and Luk [Mowr97] used software
profiling for load hit-miss behavior, in order to hide the la-
tency of cache misses (e.g. dispatching these loads earlier).

Recently, Compaq, when presenting the Alpha-21264
processor (Hot Chips 10 [Kess98]), mentioned the existence
of a hardware based hit-miss predictor.

 Our hardware approach is based on a per-load binary
prediction of a hit or miss in the cache, and employs adapted
versions of well-known branch predictors. Branch predictors
have received much attention in industry and academia. Ref-
erences to some of the predictors we tested can be found in
works by Yeh and Pat [Yeh97], McFarling [Mcfa93], and
Michaud and Seznec [Mich97].

1.3 Bank Prediction

In order to achieve high performance through the execu-
tion of multiple instructions in a single cycle, an implemen-
tation should allow for more than one concurrent memory
reference. There are several ways to accomplish this goal.
Ideally, the first-level cache should accommodate several
accesses in a single cycle. A truly multi-ported cache fulfills
this goal, but this solution increases latency and is quite
complex and expensive in terms of area and power. Another
well-known solution is a multi-banked cache. In this scheme,
the cache is split into several independently-addressed banks,
where each bank supports one access per cycle. This is a sub-
ideal implementation since only accesses to different banks
are possible concurrently. However, this reduces the com-
plexity and cost of the cache, while still allowing more than
one memory access in a single cycle. We suggest to mini-
mize the effects of this restricted access by avoiding simulta-
neous execution of bank-conflicting loads. Bank conflicts
may be avoided if the bank associated with each load in-
struction were known, then, the processor may schedule load
instructions in such a way, so as to maximize the utilization
of the banks. However, in current processors this is not done
since the scheduling precedes the bank determination. We
suggest a bank predictor to predict the bank associated with
each load thus allowing more efficient use of the cache. Also,

as will be explained later, a good bank predictor will allow
the simplification of the multi-banked memory pipeline as
well as other memory-related structures, reducing latencies.

Related Work: Several mechanisms have been suggested
to approximate the benefits of a true multi-ported cache,
without paying the power and area costs associated with it.
These can be divided into four basic categories:
• Single ported cache enhancements such as in [Wils95].
• Cache duplication, in which several single ported copies

of the cache are kept and accessed simultaneously
[Digi97].

• Single ported caches run at twice the core speed, thus
emulating a truly multi-ported cache [Weis94].

• Multi-banked cache designs such as [Simo95][Hunt95].
In these multi-banked designs a scheme was provided for
minimizing the bank conflict problem. In this scheme
load/store instructions undergo dual scheduling - after the
load’s address is calculated it enters a second level scheduler
for accessing the banked cache, in this way the bank utiliza-
tion is maximized. This scheme has been implemented, but it
increases the load execution latency and is exceedingly more
complex than our suggested design.

Recently, the Locality Based Interleaved Cache design
has been proposed as an enhanced multi-banked cache that
allows for scalability [Rive97].

To the best of our knowledge no previous work or pro-
posals have been made for Bank Prediction and its repercus-
sions on the memory subsystem described later.

2. Prediction Mechanisms

In this section we describe the prediction mechanisms
proposed for memory disambiguation, hit-miss prediction,
and bank prediction, as well as different design considera-
tions.

The predictors vary greatly in the way they are employed,
and are therefore affected differently by specific machine
parameters.

2.1 Memory Dependence Prediction

The memory dependence predictor presented here is an
accurate and implementable mechanism for performing
speculative memory disambiguation. The basic idea is not to
predict the load-store pairs, but rather just to predict whether
a given load collides with any preceding, not yet executed,
store in the scheduling window (inclusive collision predic-
tor). If the load is predicted not to collide, it can be advanced
prior to all stores in the scheduling window. This mechanism
enables the bypassing of stores by certain loads and delaying
colliding loads until the prior stores complete. Since it is es-
sentially a binary predictor that keeps no complex pairing
information and does not enable data forwarding, it is much
simpler to implement and may accommodate more elaborate
history information within a given area. Furthermore, since
the predictor needs to predict the collision of a load with a
non-specific store and not the exact load-store pair, its pre-
diction is more accurate.



The enhanced version of our memory dependence pre-
dictor (exclusive collision predictor) is more refined, thus it
is capable of creating more opportunities for advancing
loads. This is done by annotating the minimal distance to the
store that matches a certain load. This information enables a
colliding load to bypass some (but not all) the stores in the
scheduling window. This minimal distance may also provide
a simple way of performing load-store pairing, enabling data
value forwarding as well as better memory disambiguation.
For each load, in addition to its collision history, the infor-
mation of how far (measured by number of stores or instruc-
tions) a load can be safely advanced is kept. The prediction
tables used to hold the required information will be described
later. Even in this enhanced version, the predictor is much
simpler than fully-associative tables holding load-store pairs.

When predicting collisions of loads, the misprediction
penalty is not symmetric and depends on the direction of the
misprediction. To clarify this we will first classify loads into
two groups – conflicting and non-conflicting loads, and then
into several categories (Figure 1). A load is considered to be
conflicting if at schedule time (all source operands are ready
and there is a free execution unit) there is a prior store with
an unknown address. Colliding loads are conflicting loads
for which the conflicting store’s address matches that of the
load. Conflicting loads are further divided into four catego-
ries according to their predicted and actual collision status.
Our goal is to reduce the size of the two edge cases (wrong
predictions). We pay special interest in decreasing the AC-
PNC part: predicting an Actually-Colliding (AC) load as
Non-Colliding (PNC) may cost a full re-execution penalty (in
case the load was incorrectly advanced). On the other hand,
predicting an Actually-Non-Colliding (ANC) load as collid-
ing costs a lost opportunity to increase parallelism.
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• Actual:

– Colliding (AC)

–Not-colliding (ANC)

•Predicted:

–Colliding (PC)

–Not-colliding (PNC)

Figure 1 Load Classification Terminology

As explained later, in its simplest form our dependence
predictor needs only a single bit to operate. The idea is based
on a Collision History Table (CHT), which is organized as a
cache, and can use various associativity, indexing, and re-
placement policies. It collects the history of load-store colli-
sions to be used for subsequent predictions. A CHT may be
very similar to a branch history table that predicts the out-
come of a branch according to its previously seen behavior.
The main idea is to mark loads as "bad,” meaning they
should be delayed (predicted as colliding). Our observation
is that loads exhibit a recurrent collision behavior, therefore
future collisions can be predicted based on history. Another

option is to include the run-time disambiguation information
along with the load instruction op-code (annotated in the in-
struction or trace cache) saving the area and complexity of
separate tables. Storing disambiguation hints within the trace
cache may also improve the disambiguation quality by al-
lowing different behaviors for the same load instruction
based on execution path. In this paper we explore several
varieties of collision history tables. Each CHT entry may
contain the following fields (Figure 2):
• Tag (optional): The tag consists of the linear instruction

pointer of the load. The tag may be a full tag, partial tag,
or omitted altogether. In the latter case, the table is
treated as a tagless, direct mapped cache, indexed by a
subset of the linear instruction pointer bits.

• Collision predictor: the predictor may be any binary pre-
dictor (colliding/non-colliding). In practice, however, a
sticky bit (after its first collision, the load is always pre-
dicted as colliding) or a 1-bit saturating counter (the load
may change its behavior from colliding to non-colliding)
are enough.
Note: a sticky predictor has several advantages here:
− It is biased to mispredict on the safe side (reducing

the number of AC-PNC loads).
− The bit representing a “bad” load may actually be re-

moved to provide a 0-bit predictor (tag only).
− It eliminates the need to convert a colliding load into

a non-colliding one. Such a conversion is not simple
to perform precisely (as explained later), however, as
suggested in [Chry98], the table may be cleared occa-
sionally to provide for behavior changes.

• Collision distance (used in conjunction with the exclusive
predictor): determines the dynamic distance between the
load and the store it collides with. The load can be ad-
vanced no more than this distance. This number will
eventually converge on the minimal allowable distance.
This is useful for push/load parameter pairs (from differ-
ent call sites) and register save/restore pairs. Note that
different stores may be used for the same load.

A combination of some of these structures is also possi-
ble. A list of practical CHT structures follows:
• Full CHT: uses tags, a one bit (or more) counter for the

predictor and, optionally, a collision distance. This
structure contains colliding as well as non-colliding loads
and is useful for maintaining additional load related in-
formation such as data prefetch or value prediction in-
formation. Various allocation and invalidation policies
for an entry in the CHT can be implemented. For exam-
ple, allocating a new entry only when a load collides for
the first time and invalidating its entry when its state
changes to non-colliding.

• Implicit predictor CHT: uses tags only and implicitly
marks each entry as colliding (a collision distance is used
for the exclusive predictor). Such a CHT contains only
colliding loads. Being sticky, this predictor is good at re-
ducing the number of actually-colliding loads predicted
as non-colliding.



• Tagless CHT: uses 1-bit counters (or other binary pre-
dictors, e.g. bimodal) with no tags. collision distance in-
formation is optional. The CHT is directly mapped by a
subset of the linear instruction pointer bits. Its small entry
size allows for many entries, but it suffers from interfer-
ence (aliasing).

• Combined Implicit-predictor and Tagless: uses the Im-
plicit-predictor outcome when the tag matches and the
Tagless result otherwise (predict a load as non-colliding
only when there is no tag match in the Tag-only CHT and
the Tagless state is non-colliding). This configuration
tries to maximize the number of AC-PC. In a machine
configuration where maximizing the number of ANC-
PNC loads is more important, a prediction for colliding is
given only when both tables predict a collision. This pre-
dictor allows many entries (Tagless) with less interfer-
ence (“best of both worlds”).

   TAG

predictor

Full CHT Tagless CHT

predictor

distance

distancen-way set
associative

TAG

Implicit-Pred CHT

distance

n-way set
associative

Figure 2 Variations of Collision History Tables

In addition to the CHT, the processor should keep infor-
mation of actual load-store collisions. This information can
be recorded in an existing MOB/ROB like structure (instruc-
tion ReOrder Buffer and Memory Ordering Buffer) which
ensures correct program behavior and provides a forwarding
mechanism for memory operations). The requirements are to
identify for each executed store-address whether a future (in
sequential order) load refers to the same address, and to de-
termine for every to-be-executed load whether a preceding
store refers to the same address. Out-of-order microproces-
sors today have such capabilities.

A description of the maintenance and use of the collision
information follows. For the sake of simplicity we refer to
the inclusive version using a sticky predictor.
1. When a load instruction appears in the instruction stream

(prior to scheduling) the CHT is searched. If the load is
found and its predicted state is colliding the load is
marked as predicted-colliding and is treated as if it de-
pends on all preceding store addresses. In all cases where
the load is not found in the CHT or when it is predicted
as non-colliding, it is treated as independent of all pre-
ceding stores in the scheduling window.

2. When a predicted non-colliding load has all its operands
ready (and there is an available execution unit - AGU), it
can be executed even before older stores. If the load is
predicted as colliding it waits for all older stores (STAs
and STDs) before executing.

3. When a store address becomes known, a check is made to

see if there is any following (in program order) load that
has already been executed with the same address. If
found, that load is marked as actually-colliding; The load
and all its dependent instructions are restarted.

4. When a load retires, the prediction is verified. If the load
is predicted-non-colliding but was actually-colliding, an
entry is allocated for that load in the CHT (if not there al-
ready).

Handling the exclusive version is a straightforward exten-
sion of the above description. Extending the scheme to a
non-sticky predictor is more complex since it requires addi-
tional mechanisms for identifying whether a predicted-
colliding load would have really collided or not and, in the
latter case, converting predicted-colliding loads into non-
colliding ones.

2.2 Hit-Miss Prediction

Once all instruction dependencies have been resolved, the
scheduler’s remaining task is to dispatch instructions in a
way that maximizes the utilization of available resources,
while minimizing instruction latencies. In order to do an op-
timal job on this task the execution latencies of all instruc-
tions must be known a-priori. This condition is met for most
instructions, but not for loads. In modern processors the
memory is constructed from several hierarchies which vary
in their access time. Therefore, a load whose data is present
in the fastest memory hierarchy will have a shorter latency.
Today, most processors employ two levels of caches as well
as relatively slow memory.

To facilitate the scheduling operation, we suggest dy-
namically predicting whether a specific load will hit or miss
the cache (for the first level only or for all levels). Since the
latencies for accessing each level are known, this will allow
scheduling instructions that depend on this load to execute at
the exact time the data will be available. Most processors to-
day already use simplistic hit-miss prediction. Since most
load operations result in a first level cache hit, this latency is
assumed for all loads (always predict a cache hit). However,
on a cache miss, significant performance may be lost. Pre-
dicting hit-miss for the first cache level is more important
than predicting it for the other levels. Misses in lower levels
will result in much longer stall periods reducing the relative
penalty of re-execution.
To demonstrate this, consider the execution aspects of a
deeply pipelined processor that continues current design
trends. Such a processor will probably have an execution
pipeline similar to the one in Figure 3.

In this machine a load which hits L1 will execute with a
latency of 8 cycles after scheduling (2 cycles for register file
access and bypass, one cycle for address calculation, and 5 to
access the cache), whereas an L1 miss that is a hit in the L2
cache will take 15 cycles. The major problem with a deep
pipe in case of a varying-latency instruction (e.g. L1 miss) is
that several instructions may have already started execution
by the time the actual latency is known. In this single-issue
pipe, since hit/miss indication is received 5 cycles after the
dependent instruction started scheduling, up to 5 instructions



may have started scheduling/execution. The dependent in-
struction cannot wait for the hit/miss indication since sched-
uling is not a zero-cycle operation, but may take several cy-
cles. Therefore, even though a bypass network exists the
scheduling must start several cycles earlier. All the depend-
ent instructions, which have already been dispatched, will
need to be re-scheduled and re-executed. This consumes ex-
tra execution resources and will probably delay program
execution since the recovery process is not immediate.

Sched Exe
Memory Access

L1 L2
hit/miss indication

Figure 3 Pipeline Example

This problem is compounded by the fact that most proces-
sors are also super-scalar and that the miss indication may be
received even later assuming partial address translation
[Patt95], so more than 5 instructions may have already
started execution.

If a hit-miss predictor (HMP) were made available to this
processor, many of these lost cycles could be saved, resulting
in faster execution due to an effective increase in execution
resources, and a reduction in wasted cycles caused by re-
scheduling.

Employing a HMP may also help in the struggle to reduce
processor power consumption. This is achieved by reducing
the number of re-executions, which may be considerable in
applications that have a large number of L1 cache misses.

Another concept in computer architecture that may benefit
from hit-miss prediction is multi threading [Tull95]. Here,
the prediction may be used to govern a thread switch if a
load is predicted to miss the L2 cache, and suffer the large
latency of accessing main memory.

As explained above, since a load’s latency is unknown
during scheduling, the load dependent instructions are
scheduled speculatively. During the execution stage of the
dependent instruction, when the load data should be ready,
the dependent instruction must verify that the data is actually
available before continuing execution. Other instructions,
later in the dependency chain, may have also started execu-
tion and will also perform verification. This complex scheme
may be replaced with an accurate HMP. Now, the load’s la-
tency is “known” during scheduling, and on the rare event of
a misprediction a simple flush replaces the complex re-
schedule/re-execution recovery mechanisms, without sacri-
ficing much performance.

As with memory dependence prediction the penalties as-
sociated with mispredictions are not symmetric. Here loads
are also divided into four groups: Actual Hit - Predicted Hit
(AH-PH), Actual Miss - Predicted Hit (AM-PH), Actual Hit
- Predicted Miss (AH-PM) and Actual Miss - Predicted Miss
(AM-PM).

Correct Predictions:
AH-PH loads are handled in the same way they are today

and have no effect on performance.
AM-PM loads (misses that were caught by the predictor)

have a positive effect on performance as described above.
Mispredictions:
AH-PM loads will result in a slight degradation in per-

formance, since the dependent instruction may be dispatched
only when the hit indication arrives (in the example above
this instruction’s execution will be delayed by 5 cycles).

AM-PH loads carry a high misprediction penalty. These
loads are the misses that were not caught and will result in
re-executions. However this is precisely the situation in cur-
rent processors were all loads are predicted to hit the cache.

We evaluated HMPs with respect to L1 cache misses
only. Since a hit-miss prediction is a binary prediction nearly
all branch prediction techniques may be adapted to this task.

We tested many predictors and configuration but present
only two predictors that require reasonable resources. Also,
note that the results for these predictors are brought only to
demonstrate the validity of the prediction technique and are
far from optimal.

The first and simpler predictor is an adaptation of the
well-known local predictor. Instead of recording the
taken/not-taken history of each branch, we record the
hit/miss history of each load. This paper does not address the
whole spectrum of design consideration such as number of
entries and history length. Instead we will present the results
for a predictor with a tagless table of 2048 entries and a his-
tory length of 8 (~2KBytes in size).

As will be shown in the simulation results, this predictor
suffers from a relatively high number of AH-PM mispredic-
tions. Depending on the specific machine parameters, this
may cause a large degradation in performance. To alleviate
this problem we suggest a hybrid predictor. The components
are a local predictor (512 entries) and two global predictors,
a gshare (history length of 11 loads) and a gskew (each table
has 1K entries, and the hash functions operate on a history of
20 loads). The chooser mechanism between the three pre-
dictor components is a simple majority vote (the total pre-
dictor size is less then 2KBytes).

To improve prediction performance, other information
and predictor types may be employed. For example, timing
information − using temporal proximity of loads (distance in
cycles) to improve prediction. If a load misses the cache and
a later load tries to accesses the same cache line before that
line has arrived it will also miss the cache (dynamic miss).
On the other hand, if the second load is executed after
enough time has past for the first load to have been serviced,
it will most likely be a hit. Most processors already have a
structure that tracks dynamic misses (outstanding miss
queue) and a small buffer for tracking serviced loads is a
simple addition. To use these (or similar) structures, the
cache-line dependence between loads should be predicted.
This prediction can be done in several ways, for example:
• Dedicated cache-line dependence predictor such as a bi-

nary predictor to predict dependence with recent loads.
• An address predictor can be queried and the result used to

check cache-line dependence.



Another way of making hit/miss predictions is by using an
address predictor to directly check whether the data is in the
cache or not. Unfortunately, this requires a tag lookup in the
cache, and since the pressure on this resource is high for the
L1 cache, this option is costly to implement. However, if we
are interested in L2 hit/miss prediction, this may be a viable
option. A simple mechanism for alleviating some of the pres-
sure on tag lookup was suggested in [Pinte96], and may be
used to enable this type of prediction for L1 also. If the load
address is predicted correctly we can of course fetch the data
ahead of time and not use it for hit-miss prediction only, but
this requires different mechanisms and is beyond the scope
of this paper.

2.3 Bank Prediction

Bank Prediction affects the processor in several ways.
The most important use of bank prediction is to allow a
multi-banked cache to closely approach the memory per-
formance of a truly multi-ported cache. The major weakness
of multi-banked designs is that an improperly ordered in-
struction stream leaves part of the memory bandwidth un-
used. This is because each bank can only service one access
simultaneously. Therefore, bank conflicts reduce perform-
ance, and the extent of this effect is dependent on the CPU
micro-architecture. With bank prediction, the bank informa-
tion is available early in the pipeline before instruction
scheduling. Thus, scheduling can be performed in a way that
efficiently utilizes the multiple bank structure, i.e. memory
operations predicted to access the same bank are not dis-
patched simultaneously.

Another possible use of a bank predictor is the simplifi-
cation of the memory execution pipeline, as well as other
memory related structures. By providing a prediction in an
early stage of the processing pipeline, the load instruction
can be scheduled to a simplified memory execution pipeline.
This sliced memory pipeline does not have a cross-bar link-
ing it to all cache banks, but is hard-wired to one bank only
(single-bank pipelines). Interconnects are very costly, and
their complexity increases super-linearly with the number of
ports whereas the single-bank pipeline scheme is highly scal-
able. Similarly, disambiguation and memory reordering are
usually performed with structures featuring a CAM where the
number of entries determines the access time. Slicing the dis-
ambiguation hardware into several banks makes the imple-
mentation simpler and faster. The sliced pipeline is also
shorter than the regular multi-banked cache pipeline, since
the decision stage, where the proper bank is picked, is no
longer required. This reduces the latency for all load opera-
tions thus increasing overall performance, provided the bank
is predicted with high-accuracy.

In the sliced pipeline, however, a load whose bank is mis-
predicted, will not be able to execute, and must be flushed
and re-executed once the bank is known, even if there is no
bank conflict. In order to minimize this degradation in per-
formance, when there is no contention on the memory ports,
or if the confidence level of the bank prediction is low, the
memory operation may be dispatched to all memory pipe-

lines. Once the actual bank is known, all instructions in the
wrong pipelines are canceled, wasting one cycle in each pipe
in the case of a low confidence prediction. Note that stores
are never on the critical path, thus they may always be dupli-
cated to all pipelines.

A comparison of memory pipelines for a truly multi-
ported cache, a dual-scheduled implementation, a conven-
tional multi-banked, and our sliced multi-banked cache ap-
pear in Figure 4. The sliced pipe requires a bank predictor
for operation, while both the sliced and conventional multi-
banked configurations will benefit from a bank predictor due
to scheduling improvements. However, the accuracy of the
predictor is more important for the sliced pipe. If the pre-
dictor is not accurate enough, either too many loads will
need to be replicated to both pipes (little advantage over a
single-ported cache), or large penalties would be incurred.

The various implementations also differ in their data fetch
latencies and bank conflict penalties. The truly multi-ported
cache has no latency penalties and no conflicts. The conven-
tional multi-banked configuration has an increased latency
due to the crossbar setup and decision stage, and suffers from
conflict penalties, since conflicting loads must either stall the
pipe or re-execute/re-schedule. The dual-scheduled mecha-
nism eliminates conflict penalties but increases the load la-
tency due to the second scheduler. The sliced multi-banked
pipeline has the same latency as the ideal multi-ported pipe-
line. However, when a misprediction occurs and two loads
are dispatched simultaneously to wrong banks (if only a sin-
gle load is dispatched it is duplicated to both banks) the
loads must be re-executed.

Sliced
Multi-banked

Dual scheduled
Multi-banked

Sched.
Window

Truly
Multi-ported

Multi
Ported
Cache

Address
Generation

Decision

Conventional
Multi-banked

Bank
0

Bank
1

Bank
0

Bank
1

Bank
0

Bank
1

memory
access
latency

cache
access
latency

Figure 4 Memory Pipeline Comparison

In evaluating a bank predictor, there are two factors which
are of particular interest in determining its performance: pre-
diction rate (how many memory operations are predicted?)
and accuracy (how accurate are the bank predictions?). The
importance of the accuracy and misprediction-rate are de-
pendent on the use of the predictor (conventional or sliced
multi-banked). If the predictor is used for better scheduling
only, the penalty may be less significant since we can stall
the pipeline until the bank is available rather than re-
executing the instruction from scratch. Confidence can be
used in the sliced pipeline scheme to reduce the number of



mispredictions. On the other hand, low confident memory
operations waste scheduling slots. The choice of a specific
predictor configuration is therefore highly dependent on its
intended use. The predictor may either be configured for
high prediction rate and lower prediction accuracy, or high
prediction accuracy, but with fewer memory operations pre-
dicted.

We focus in this study on the general idea of bank predic-
tion and test a configuration with two banks only. With two
banks, almost all binary predictors may be adapted to deliver
bank predictions. Bank predictors can be based on bank his-
tory information, control flow information, and/or load tar-
get-address information. We tested many well-known binary
predictors based on bank history, as well as combinations of
them. An address predictor is obviously extremely well
suited to be adapted for bank prediction, since the bank is
based solely on the load’s effective address (one bit is re-
quired to choose between two banks).

The basic configuration tested was a combination of sev-
eral binary predictors. Each of them supplied a predicted
bank along with a confidence level for the prediction. Then
several policies were evaluated:

• The prediction was a simple majority vote of the different
binary predictions.

• A weight was assigned to each predictor, the different
predictions were summed, and a prediction was given
only if this sum exceeded a predefined threshold.

• Only those predictions with a high confidence were taken
into account.

• A different weight was assigned according to the confi-
dence level supplied.

We also present the results of a bank predictor based on
address prediction (address prediction mechanism described
in [Beke99]).

Scaling to more than two banks may either be done using
a non-binary predictor (such as an address predictor) or by
extending binary prediction. Each bit of the bank ID can be
independently predicted and assigned a confidence rating. If
the confidence level of a particular bit is low, the load will be
sent to both banks (as described above) minimizing the dis-
advantages of independent bit prediction.

3. Simulation Environment

Our simulated architecture consists of a general out-of-
order machine with a detailed memory hierarchy model and a
branch prediction unit. The simulator is trace driven where
each trace is comprised of 30 million consecutive IA-32 in-
structions translated into micro-operations (uops) on which
the simulator works. Each trace is representative of the entire
program execution. We conducted our simulations using
seven trace groups:

SpecInt95 – 8  traces
SpecFP95 – 10 traces
SysmarkNT – 8 traces
Sysmark95 – 8 traces
Games – 5 traces (of various popular games)

Java – 5 traces (from Java programs)
TPC – 2 traces from the TPC benchmark suite
For each of the three ideas presented in the paper a

slightly different approach was taken for simulating it.

3.1 Memory Disambiguation

For memory disambiguation we focused on the scheduling
module, and how it should react to wrong memory operation
ordering. Whenever a load uop (micro-operation) is wrongly
scheduled with respect to a STA or STD uop, a collision
penalty is added to delay the data retrieved by this load.

The basic machine configuration simulated:

• Memory: 16K Icache, 16K Dcache and 256K unified
second level cache (4 way set associative, 64 byte cache
lines).

• Front end: 6 uops fetched and renamed per clock.
• Advanced branch prediction mechanism.
• Renamer Register Pool: 128 entries.
• Scheduler: Modeled various scheduling window sizes

with different memory ordering schemes. The base line
scheduling window had 32 entries.

• Execution: 2 integer, 2 memory, 1 floating point, and 2
complex operation units (as a base-line configuration).

• Retire Rate: up to 6 uops per clock
• Load store collision penalty: 8 cycles.

Six memory ordering schemes were tested:
I. Traditional: each load waits for all STAs, but can ad-

vance ahead of STDs. On a wrong load-STD ordering a
collision penalty is added.

II.  Opportunistic: assumes each load is always non-
colliding and advances it as much as possible. If it actu-
ally collides then the load waits for both the STA and
STD with which it collides, and a collision penalty is
added.

III.  Postponing Collision Predictor: like in the traditional
scheme each load waits for all STAs. But a CHT is used
to predict the colliding loads, which are postponed until
all older STDs are executed. In the case of AC-PNC, the
load waits for the STD with which it collides, and a col-
lision penalty is added.

IV.  Inclusive Collision Predictor: A CHT is used to predict
which loads are colliding (with any store). When the
CHT predicts that a load is going to collide, it is delayed
until all STA/STDs complete (hence we may lose some
opportunities on “too general” / ”not specific enough”
predictions). In the case of AC-PNC, the load waits for
the STA/STD pair with which it collides to be executed,
and a collision penalty is added.

V. Exclusive Collision Predictor: An enhanced CHT with
distance information is used for predicting which store is
colliding with the candidate load. When the CHT pre-
dicts that a load is going to collide, this load waits for
the specific STA/STD it collides with.

VI.  Perfect memory disambiguation: the scheduler knows
exactly which loads collide with which STA or STD and
advances or delays loads accordingly.

3.2 Hit-Miss and Bank Prediction

The hit-miss and bank predictors were added to the simu-



lator described above and their statistical performance was
evaluated. Since the main objective of the paper is to bring
forth these ideas and show their general validity in the con-
text of high performance computing, we made some per-
formance simulations for hit-miss prediction. However, these
performance numbers should be regarded only as a flavor of
the potential of this idea since the specific machine configu-
ration and design is crucial to the choice and success of our
predictors.

4. Simulation Results

We performed two types of simulations. Full performance
simulations were carried out for memory disambiguation and
hit-miss prediction. Bank prediction was evaluated in terms
of statistical predictor performance only.

4.1 Disambiguation Results

To evaluate the effect that different memory ordering
techniques have on performance, we ran simulations using
30 traces of the SpecInt95, SysmarkNT, Sysmark95, Game,
Java, and TPC groups.
Before we explore the benefits of each policy let us examine
the statistical distribution of dynamic loads encountered in
the trace into the categories defined in 2.1. This classification
gives us an indication of the potential performance gain of
the various schemes. This performance gain has two sources:
ANC loads  can be advanced, saving the needless delay
added by traditional schedulers, and AC loads can be de-
layed eliminating re-execution (see section 2.1 for terminol-
ogy). The data for the different trace groups (with a 32 entry
scheduling window) is shown in Figure 5.
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Figure 5 Load Scheduling Classification

By and large, we can see that only 10% of the loads col-
lide with older stores (in the scheduling window), about 60%
of the loads do not collide with earlier unexecuted stores and
the rest of the loads (~30%) have no ordering conflicts at
schedule time. These results imply that between 60% - 70%
of the loads can benefit from a collision predictor.

With a larger scheduling window (the scheduling window
is the subset of the instruction window from which schedul-
ing is actually performed, e.g. reservation stations) and more
execution units, collision rates increase. Looking, for exam-
ple, at the SysmarkNT traces (Figure 6) we can see that in-
creasing the scheduling window size from 8 to 128 entries
results in a steady increase of AC loads, while the percentage

of non-conflicting loads decreases. So, as the window size is
increased, the potential performance gain of superior mem-
ory ordering schemes increases as well.
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Figure 6 Opportunities vs. Window Size

Figure 7 shows the performance gain expected from the
different memory reference ordering methods. The results for
the prediction techniques were obtained by using 2K entries
of a 2-bit saturating counter Full-CHT, organized as a 4-way
set associative table (a new entry is allocated only after a
load actually collides). The baseline performance is for the
Traditional approach. The maximum performance gain pos-
sible from memory disambiguation (Perfect bar) is quite
high, about 17% for the SysmarkNT on average. The gain
achieved by the different methods follows a consistent curve
from the 6% and 9% of the Postponing and Opportunistic
schemes to the 14% and 16% of the two predictor based
schemes. As can be seen, the Inclusive and Exclusive pre-
diction schemes provide most of the gain possible through
memory disambiguation.
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Figure 7 Speedup vs. Memory Ordering Scheme

The effect of varying the number of integer and memory
execution units is demonstrated in Figure 8 (marked in the
figure as EU# and MEM#). As a general rule, we can see that
wider machines gain more performance when using a better
memory ordering mechanism. SysmarkNT and SpecInt traces
benefit much from advancing loads (8%-17%), while Sys-
mark95, TPC, Games and Java traces show a less pro-
nounced performance gain (5% to 10%).

We studied the effects of predictor size and other proper-
ties on its accuracy. Figure 9 shows the performance for the
four configurations presented earlier.

The Full CHT is best for limiting the number of ANC-PC



loads, since it allows for changing load-behavior. This also
leads to less stringent predictions of colliding load. For ex-
ample, the results for the 2K Full-CHT are 3.4% ANC-PC
and 0.9% AC-PNC (% of all loads). Since there is a limited
number of unique loads in each trace, the predictor’s accu-
racy does not increase much with its size.
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Figure 8 Speedup vs. Machine Configuration

The tagless predictor, which uses a 1-bit counter, shows
consistent performance improvement as its size is increased,
since it suffers from less aliasing when more entries are
available (2K predictor gives 3.8% ANC-PC and 0.8% AC-
PNC).

The tagged-only configuration shows an improvement in
the accuracy of AC predictions, while giving up several ANC
loads (ANC-PC). This behavior is the result of the sticky
property: once a load is marked as colliding its behavior is
set until it is discarded from the table. After a load is re-
placed, it is again considered non-colliding (the default pre-
diction). As the table’s size is increased there are fewer re-
placements, thus loads that do change from colliding to non-
colliding are now mispredicted (2K predictor gives 11%
ANC-PC and 0.2% AC-PNC). As mentioned in [Chry98]
cyclic clearing of the tables (once every several million in-
structions) may alleviate this problem.
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The combined predictor employs both the tagless (4K en-
tries) and tagged only predictors, it predicts a load as non-
colliding only when both predictors agree. Therefore it is
best for limiting the percentage of AC-PNC loads, but obvi-
ously the ANC-PC loads are more numerous (2K predictor
gives 12.6% ANC-PC and 0.16% AC-PNC). Note that
Figure 9 focuses on the predictors behavior, and not on per-

formance speedup.

4.2 Cache Hit-Miss Prediction Results

To evaluate the general prediction accuracy of our sug-
gested configurations, statistical simulations (no effect on
scheduling) were run on four trace groups: SpecFP95, Spe-
cInt95, SysmarkNT, and “Other” (Games, Java and TPC).
To get a feel as to how these results translate into perform-
ance gains, we ran performance simulations for SpecINT95
and SysmarkNT.

The following graph (Figure 10) presents the average pre-
dictor performance. All results are in percentage of all loads
in the trace. The right most bar in each group is the average
number of cache misses per trace group (the number of
“mispredictions” in the traditional method), the middle bar
represents the number of misses which were predicted cor-
rectly (AM-PM, higher is better), and the left most bar shows
the mispredicted hits (AH-PM - Actual Hit Predicted Miss,
lower is better).
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Figure 10 Hit-Miss Predictor Performance

The two left bars of each group show the two predictors’
performance and are divided into two parts. The total bar
height is the percentage of all loads predicted/mispredicted
by the local-only predictor, and the bottom part is for the
chooser’s results.

The behavior of the two different predictor configurations
is consistent between trace groups. The local-only predictor
reduces the number of misses from about 34%  - 85% (Sys-
markNT and SpecFP95 respectively), but mispredicts 0.32%
- 0.07% of the hits. Adding a confidence mechanism, via the
chooser, reduces the mispredictions significantly (0.2% -
0.04%) while sacrificing little in the AM-PM rate.

On all the traces, the number of misses caught (AM-PM)
outweighed the mispredicted hits (AH-PM) by at least 5 to 1
(except in SpecINT xlisp which had a 2/1 ratio). In general,
the predictors performed best on FP traces and worst on the
“other” trace group.

Performance simulations were carried out on the machine
described earlier and on top of our highest performing con-
figuration (4 gen. / 2 mem. EUs and perfect disambiguation).
The results show a good correlation between the statistical
predictor performance and speedup. The potential speedup
of hit-miss prediction (using a perfect predictor) was encour-
aging, about ~6% speedup on average. With this machine



model the best performing predictor was the local only pre-
dictor that also employs timing information as described in
section 2.2. It achieved about 45% of the speedup potential,
increasing performance by about 2.5%. But again, we em-
phasize the point that the performance simulations are pre-
sented only to demonstrate the idea and to show the correla-
tion between the results of the statistical simulations and the
actual portion of the speedup potential that may be achieved.
Moreover, execution speedup is only one of the benefits that
may be gained by employing hit-miss prediction.
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Figure 11 Speedup of Hit-Miss Prediction

4.3 Bank Prediction Results

We concentrated on evaluating the statistical results of the
bank predictor. As explained in 2.3, the effectiveness of the
bank predictor is greatly influenced by the machine configu-
ration and related penalties. However, we can still evaluate
the relative performance aspects, which are the prediction
rate - percent of loads for which a prediction is made, and
the prediction accuracy - percentage of predictions that were
correct. To better understand the effect of these parameters
on performance we have developed a simple metric. This
metric represents the relative performance improvement that
should be achieved with a specific predictor, compared to
that of a perfect predictor. The assumptions for this metric
are that each load takes 1 cycle (or 1 unit) to execute, so the
maximum gain of a two-ported cache is 0.5 cycles for each
load. If the predictor is not ideal a penalty is paid for each
load which is mispredicted. The following relations can be
derived between the different parameters of the predictor:
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This approach is somewhat simplistic, since it does not
take into account the dynamic pipe behavior and, more im-

portantly, the fact that not all loads should be predicted since
there may be no contention on the ports. Yet we can still
conclude that the misprediction penalty is crucial in choosing
a predictor. A small penalty means we must choose a pre-
dictor with a high prediction rate, even if it is less accurate.
Whereas a higher penalty calls for a more accurate predictor.

SpecINT Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
Penalty

Id
ea

l 
=

 1

A B C Addr

SpecFP Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
Penalty

Id
ea

l 
=

 1

A B C Addr

Figure 12 Bank Predictor Comparison (metric)

To make this point clear we present the results for four
different predictors. Three predictors are based on the
chooser mechanism of Section 2.3 and one is based on an
address predictor (2*gshare is weight 2 for gshare):

Predictor A = local+gshare+gskew
Predictor B = local+gshare+bimodal
Predictor C = local+2*gshare+gskew
Local    - 512 entries (untagged), 8 bit history (0.5KB)
Gshare - 11 bit history (0.5KB)
GSkew  - 17 bit history, 3 tables of 1024 entries (0.75KB)
Addr = the address predictor results as appear in [Beke99]
We present the results using our metric (true multi-

porting=1) for SpecINT95 and SpecFP95 in Figure 12. Sys-
markNT traces behaved very similarly to SpecINT.

From the graphs in Figure 12 we can learn the prediction
rate of the different predictors, which is the Metric at the
point where the Penalty is 0. The predictor accuracy can be
deduced from the slope, in general, the steeper the slope the
less accurate the predictor is. Typical prediction rates for
SpecINT are 50% for predictors A and B, and 70% for the



address predictor and predictor C. Typical accuracy is 97%
for predictors A and C, and 98% for the address predictor
and predictor B.  As can be seen, the address predictor and
Predictor C exhibit a high prediction accuracy (large R). This
makes them suitable for the sliced pipe configuration sug-
gested in 2.3. It should be noted that since the utilization of
the memory ports will not be 100%, our simplification
method, where low confidence and non-contended loads are
duplicated to all pipes should approach ideal multi-porting.

5. Conclusions

In this paper we present three techniques for improving
instruction scheduling in high-end processors. As demon-
strated through extensive simulations there is significant po-
tential speedup in making load-store reordering possible. To
achieve most of the available gain we used a simple, yet ac-
curate, prediction method, which at its simplest form keeps
only one bit per load. The predictor finds the loads that can
not be reordered ahead of older stores (colliding loads) util-
izing the fact that colliding loads tend to repeat their behav-
ior, and that most loads do not collide and can be advanced
to increase execution speed. The second method improves
the scheduling of load dependent instructions by using a
cache Hit-Miss Predictor for predicting the dynamic load la-
tencies. This results in execution bandwidth savings, per-
formance speedups and has other potential uses (such as for
multi-threading). Bank Prediction is a new technique that
tackles a major problem of multi-banked cache architectures
(bank conflicts) by allowing the scheduler to simultaneously
execute only such loads which do not conflict, and allowing
simplifications of memory related structures.
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