

Toward Exascale Resilience Part 1: Overview of challenges and trends

Mattan Erez The University of Texas at Austin

July 2015

With support from

- DOE
- -NSF

Bottom line: **System Complexity** increasing faster than **component reliability** improves

No "right" answer

NZ

(c) Mattan Erez

An **exascale** system is a high-performance system for solving **big problems**

NZ

(c) Mattan Erez

An **exascale** system is a high-performance system for solving **big cohesive problems**

(c) Mattan Erez, all images identified as reusable by Google Image Search

An **exascale** system is a high-performance system for solving **big cohesive problems**

An **exascale** system is a high-performance system for solving **big** cohesive problems

Complexity and **components**

- HW component count increases exponentially

Logic Memory Links Power Cooling

From Linux Foundation

inux kernel version	
.6.11	6,624,076
.6.12	6,777,860
.6.13	6,988,800
.6.14	7,143,233
6.15	7,290,070
6.16	7,480,062
.6.17	7,588,014
6.18	7,752,846
6.19	7,976,221
6.20	8,102,533
8.21	8,246,517
6.22	8,499,410
6.23	8,566,606
6.24	8,859,683
6.25	9,232,592
6.26	9,411,841
6.27	9,630,074
6.28	10,118,757
6.29	10,934,554
6.30	11,560,971
6.31	11,970,124
8.32	12,532,677
6.33	12,912,684
8.34	13,243,582
3.35	13,468,253
3.36	13,422,037
5.37	13,919,579
6.38	14,211,814
3.39	14,537,764
3.0	14,651,135
3.1	14,776,002
3.2	15,004,006

SW growing too – HW controlled by complex and sophisticated SW

Management SW Node OS Application runtime Application

What about component **reliability**?

Reliable == runs without failing

- Failure means result is out of specification scope
- Reliability is hierarchical reliable systems from unreliable components

What about component **reliability**?

- Significant uncertainty about predictions
- Largely because technology doesn't stand still

An alarmist extrapolation

Also with significant silent data corruption concern

NZ

Vendors work hard to keep reliability constant – Reliability doesn't come cheap though

VLSI exponentials result from discrete steps 50 Years of Moore's Law

From Mark Bohr, Intel ("Moore's Law: Yesterday, Today, and Tomorrow", May 26, 2015

An optimistic projection

- SDC concerns les clear

Can all vendors succeed?

– At what cost?

Do all customers care?

– "Commercial" vs. scientific

- Clouds vs. supercomputers
- Games

vs. supercomputers

The cohesiveness **problem**

Reliability is in the eye of the beholder

- Level of paranoia (life threatening?)
- Monetary cost of failure (and legal implications)
- Tolerance to different results
- Can someone else be blamed?

No "right answer"

Performance/efficiency and reliability tradeoffs

Short course goals

- For hardware, system, and application:
 - Understand the state of the practice
 - Understand the state of the art
 - Understand the sources of overhead
 - Understand how to improve resilience within a layer
- Understand cross-layer resilience
 - Better balance of overheads and needs

Syllabus (basics, then bottom-up)

- Overall system architecture
- Fundamentals of resilience
 - Terminology and actions
- Fault/error/failure modes and models
- Past, present, and near future approaches
 - HW techniques + checkpoint/restart
- Supercomputers aren't clouds
 - But what can we learn?
- Containment Domains and other future cross-layer approaches
 - With thoughts on approximate computing
- Reporting and forecasting

AN ASIDE ABOUT ME

Big problems and emerging systems

Arch-focused whole-system approach

Efficiency requirements require crossing layers Algorithms are key

- Compute less, move less, store less
- **Proportional systems**
- Minimize waste
- Utilize and improve emerging technologies

Explore (and act) up and down

- Programming model to circuits
- Preferably implement at micro-arch/system

Big problems and emerging platforms

Memory systems

- Capacity, bandwidth, efficiency impossible to balance
- Adaptive and dynamic management helps
- New technologies to the rescue?
- Opportunities for in-memory computing
- GPUs, supercomputers, clouds, and more
 - Throughput oriented designs are a must
 - Centralization trend is interesting
- **Reliability and resilience**
 - More, smaller devices danger of poor reliability
 - Trimmed margins less room for error
 - Hard constraints efficiency is a must
 - Scale exacerbates reliability and resilience concerns

Current and graduated PhD students

- Benjamin Cho
- Jinsuk Chung
- Seong-Lyong Gong
- Cagri Eryilmaz
- Dong Wan Kim
- Jungrae Kim
- Evgeni Krimer (NVIDIA)
- Min Kyu Jeong (Oracle Labs)
- Ikhwan Lee
- Kyushick Lee
- Mike Sullivan (NVIDIA Research)
- Minsoo Rhu (NVIDIA Research)
- Doe Hyun Yoon (Google)
- Song Zhang
- Tianhao Zheng
- Haishan Zhu

Current and graduate MS students

- Mehmet Basoglu (Broadcom)
- Esha Choukse
- Nick Kelly
- Mahnaz Sadoughi (Apple)

Collaborators at

- AMD
- Cray
- Intel
- NVIDIA
- Samsung
- LBNL, PNNL
- Stanford

Lots of great insightful feedback

- Grew up mostly in Israel
- BSc EE and BS Physics at Technion
- Part-time researcher at Intel Haifa
- PhD at Stanford (w/ Bill Dally)
- At UT Austin since 2007
- Going well (great students and collaborators)
- ~7 architects + ~5 systems
- Very strong collaborations with others
- TACC supercomputing center