
Toward Exascale Resilience
Part 2: 

System Architecture and Components
Resilience fundamentals

Mattan Erez

The University of Texas at Austin

July 2015



•Algorithm

•Program

•Runtime

•Operating system

•Compiler

•HW Architecture

•HW Devices

2(c) Mattan Erez

Resilience

Reliability



•A concentrated exaflop

– Cohesive system for cohesive problems

3(c) NVIDIA



•From a Cray XC30

4



•Hardware summary

– Cabinets (w/ VRU)

– Shared power, cooling, and links (w/ VRU)

– Modules (w/ VRU)

– Sockets

– Processors + memories

– Gates, wires, and storage devices

– Storage separated out (for now)

5(c) Mattan Erez



•System software manages resources

– Node operating system

– Distributed file system and I/O nodes

– System management and supervision

6(c) Mattan Erez



RESILIENCE FUNDAMENTALS

Terminology

Principles

Basic actions

7(c) Mattan Erez



•Faults, errors, and failures

8

Fault Error Failure

cause of failure component departs 
from spec.

service departs 
from spec.

• open/short circuit
• transistor wear-out
• particle strike
• …

• Wrong value
• Wrong control

• Application result
incorrect

(c) Mattan Erez, Jungrae Kim



•Fault taxonomy (others exist)

– What?
•Component malfunction

•May lead to errors

– Where?
•What component? Hardware or software?

– How?
•Natural / accidental / intentional?

– When?
•Permanent / transient

•Active / dormant

•Reproducible / random

•0-day?

9(c) Mattan Erez



•When do we care about faults?

10(c) Mattan Erez



•Error taxonomy

– What?
•State that differs from fault free state

– Where?
•Values or control state

– How?
•Data dependent / independent

– When?
•Permanent / transient / intermittent

•Reproducible / random

– Impact?
•Masked / detected / silent

11(c) Mattan Erez



•Failure taxonomy

– What?
•Actionable outputs not within spec

•Performance / power not within spec
degraded operation

– Where?
•Can be hierarchical to a subsystem

– When?
•Signaled / silent

•Failstop / failthrough

•Consistent / inconsistent

12(c) Mattan Erez



•Resilience = operating without failure in the   
presence of faults and errors

– Fault tolerance

– Fault mitigation

– Fault avoidance

– Error tolerance

– Error mitigation

13(c) Mattan Erez



•(Forecast)

• Detect

• Contain

• Recover

• Repair

14(c) Mattan Erez



•Fault/failure forecast

– Use past experience to forecast future problems

– Avoid faults and failures
•Reconfiguration

•Preventative-repair

– Traditionally done offline
•Stress diagnostics

– Online work looks promising
•Mostly machine learning approaches

– Requires effective monitoring

15(c) Mattan Erez



•Detection

– Diagnostics for faults

– Redundancy for errors
•Redundancy may be implicit

– Detected errors may identify faults
•Root-cause analysis

– Requires effective reporting

16(c) Mattan Erez



•Containment

– Error propagation increases costs
•More to mitigate

•More likely to lead to a failure

– Containment enables resilience

– Careful design

– Timely reporting

17(c) Mattan Erez



•Recover (error mitigation)

– Forward recovery (masking)
•Requires redundancy

•Some errors ignorable

– Backward recovery (re-execution)
•Requires preserved state

18(c) Mattan Erez



•Repair (fault mitigation)

– Reconfigure to degraded operation

– Replace with hot spare

– Replace with cold spare

– Fix
•Usually for software

19(c) Mattan Erez



•Metrics

– Why measure

– Who is measuring

20(c) Mattan Erez



•If you cannot measure it, you cannot improve it
Lord Kelvin

21



•FIT – the unit of resilience and reliability

•Generic “faults in time”

•1 FIT  1 fault in 109 hours of operation

– Really annoying unit

– But, rates accumulate

22(c) Mattan Erez



•What do users care about?

23(c) Mattan Erez



•What do users care about?

– Time to completion

– Cost of computation

– Correctness of answer

– Are they part of the solution

24(c) Mattan Erez



•Relative efficiency

– Performance, power, time, energy, … with resilience
relative to assuming perfectly-reliable system

– How much are overhead is a user paying for a 
particular resilience scheme

– Setting baseline in reality is tricky
•Differences between components

25(c) Mattan Erez



•Relative correctness

– Bit-by-bit perfect

– Same printout

– Matches expectations
•Need to quantify expectations

26(c) Mattan Erez



•Relative effort

– How much is required from the user?

– Users are accustomed to reliable systems

– Users always resist change

– How often are they interrupted

27(c) Mattan Erez



•What about systems people?

28(c) Mattan Erez



•What about systems people?

– Underlying system failure characteristics

– Availability
•Overall / “Scheduled” 

– *MTTI (mean time to interrupt)

– *MTBI (mean time between interrupts)

– *MTTR (mean time to repair)

– * =
•System, application, job, node, …

29(c) Mattan Erez

Unscheduled
donwtime


