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•Algorithm

•Program

•Runtime

•Operating system

•Compiler

•HW Architecture

•HW Devices
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Resilience

Reliability



•A concentrated exaflop

– Cohesive system for cohesive problems
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•From a Cray XC30
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•Hardware summary

– Cabinets (w/ VRU)

– Shared power, cooling, and links (w/ VRU)

– Modules (w/ VRU)

– Sockets

– Processors + memories

– Gates, wires, and storage devices

– Storage separated out (for now)
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•System software manages resources

– Node operating system

– Distributed file system and I/O nodes

– System management and supervision

6(c) Mattan Erez



RESILIENCE FUNDAMENTALS

Terminology

Principles

Basic actions
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•Faults, errors, and failures
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Fault Error Failure

cause of failure component departs 
from spec.

service departs 
from spec.

• open/short circuit
• transistor wear-out
• particle strike
• …

• Wrong value
• Wrong control

• Application result
incorrect
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•Fault taxonomy (others exist)

– What?
•Component malfunction

•May lead to errors

– Where?
•What component? Hardware or software?

– How?
•Natural / accidental / intentional?

– When?
•Permanent / transient

•Active / dormant

•Reproducible / random

•0-day?
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•When do we care about faults?
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•Error taxonomy

– What?
•State that differs from fault free state

– Where?
•Values or control state

– How?
•Data dependent / independent

– When?
•Permanent / transient / intermittent

•Reproducible / random

– Impact?
•Masked / detected / silent
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•Failure taxonomy

– What?
•Actionable outputs not within spec

•Performance / power not within spec
degraded operation

– Where?
•Can be hierarchical to a subsystem

– When?
•Signaled / silent

•Failstop / failthrough

•Consistent / inconsistent
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•Resilience = operating without failure in the   
presence of faults and errors

– Fault tolerance

– Fault mitigation

– Fault avoidance

– Error tolerance

– Error mitigation

13(c) Mattan Erez



•(Forecast)

• Detect

• Contain

• Recover

• Repair
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•Fault/failure forecast

– Use past experience to forecast future problems

– Avoid faults and failures
•Reconfiguration

•Preventative-repair

– Traditionally done offline
•Stress diagnostics

– Online work looks promising
•Mostly machine learning approaches

– Requires effective monitoring
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•Detection

– Diagnostics for faults

– Redundancy for errors
•Redundancy may be implicit

– Detected errors may identify faults
•Root-cause analysis

– Requires effective reporting
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•Containment

– Error propagation increases costs
•More to mitigate

•More likely to lead to a failure

– Containment enables resilience

– Careful design

– Timely reporting
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•Recover (error mitigation)

– Forward recovery (masking)
•Requires redundancy

•Some errors ignorable

– Backward recovery (re-execution)
•Requires preserved state
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•Repair (fault mitigation)

– Reconfigure to degraded operation

– Replace with hot spare

– Replace with cold spare

– Fix
•Usually for software
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•Metrics

– Why measure

– Who is measuring
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•If you cannot measure it, you cannot improve it
Lord Kelvin

21



•FIT – the unit of resilience and reliability

•Generic “faults in time”

•1 FIT  1 fault in 109 hours of operation

– Really annoying unit

– But, rates accumulate
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•What do users care about?
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•What do users care about?

– Time to completion

– Cost of computation

– Correctness of answer

– Are they part of the solution
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•Relative efficiency

– Performance, power, time, energy, … with resilience
relative to assuming perfectly-reliable system

– How much are overhead is a user paying for a 
particular resilience scheme

– Setting baseline in reality is tricky
•Differences between components
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•Relative correctness

– Bit-by-bit perfect

– Same printout

– Matches expectations
•Need to quantify expectations
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•Relative effort

– How much is required from the user?

– Users are accustomed to reliable systems

– Users always resist change

– How often are they interrupted
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•What about systems people?
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•What about systems people?

– Underlying system failure characteristics

– Availability
•Overall / “Scheduled” 

– *MTTI (mean time to interrupt)

– *MTBI (mean time between interrupts)

– *MTTR (mean time to repair)

– * =
•System, application, job, node, …
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Unscheduled
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