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•Why care about models?
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•Why care about models?

– Resilience isn’t free

– Paying too much overhead means losing out
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•Modeling techniques

– “First-principles” (simulation and analytical)
•How detailed?

•What parameters?

– Empirical
•Accelerated testing

•Field studies

– Extrapolations
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•Different components – different techniques

– Academic are not in the best position here
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•Field studies

– Collect fault, error, failure reports from actual systems

– Analyze

– Draw conclusions

– Extrapolate
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•Field studies are hard

– Limited reporting

– Limited information

– Limited access

– Sensitive outcomes

•But, that’s the actual world
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•Some excellent examples in recent years

– In particular for DRAM
•Starting from Sridharan and Liberty, SC’12

– Good sources for other components too
•Recent analysis on supercomputers and datacenters

•Some other specific components too
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•Fault vs. error/failure analysis
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•Accelerated testing

– Baking

– Beam testing

•Excellent, but

– Special facilities

– Special equipment
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•Back to basics
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•Hard faults and intermittent errors
– Design flaws

– Fabrication defects

– Process variation

– Mechanical stress

– Gradual wearout

•Soft faults
– Alpha particles

– Cosmic rays

– Power supply variation

– Voltage droops

– Crosstalk
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•Hardware summary

– Gates, wires, and memory devices

– Memories and processors (sockets)

– Modules (w/ VRU)

– Shared power, cooling, and links (w/ VRU)

– Cabinets (w/ VRU)

– Storage separated out (for now)

13(c) Mattan Erez



•Hard faults in processors

– Manufacturing

– Mechanical

– Wearout

•Industry probably has these under control

– ALL customers need this to work

– Several recent studies suggest it is indeed the case
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•But not clear what is sacrificed

– How much better could we do if system exposed to 
processor hard faults?
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•Example: gradual wearout
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•Particle-strike soft errors

– Ionizing particle frees electron-hole pairs in transistor 
active region

– Charge collected at source/drain creating current in 
an off device

– Current can flip a bit in a storage device or change 
value of a logic computation
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•Why are particle strikes problematic?

– Two main sources
• Alpha particles

• Atmospheric neutrons

– Alpha particles from packaging and solder
• Can be reduced but not eliminated completely

– Neutrons are highly penetrating and flux can be high
• Neutrons randomly strike an atom and create secondary ionizing particles

•Difficult to stop, but rare

– Protection overhead is high and generally “wasted”

– Minimize waste by understanding vulnerability and trends

•Need models for:

– Particle flux, charge collection, and component vulnerability
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Likelihood of Strike Directly Proportional 
to Particle Flux

•Alpha particles are low and constant flux

•Neutrons more interesting and problematic

•Significant number of high-energy neutrons

•Even higher flux at lower energies

– Lower energies may affect future technologies more
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Flux Varies Significantly with Altitude and 
Latitude
•Flux at 50,000’ is 1000 times higher than at sea level

•Flux towards poles 5 times higher than equator
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Impact of a Particle Strike
•Amount of freed charge

– Energy of particle (nature)

– Angle of incidence (generally random)

– Properties of material (hard to gauge)

•Efficiency of charge collection

– Volume of depletion zone (shrinks with tech. scaling)

– Supply voltage (small linear impact)

– Temperature (minimal impact)

•Required current/charge to cause an error

– Qcrit is minimal charge to flip an SRAM bit

– Similar notion for latches

– More complex for logic
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SRAM Trends

•Qcrit decreases with technology scaling

– Lower capacitance to overcome for a flip (linear)

– Lower voltage lowers Qcrit (linear and small)

•Collected charge also decreases somewhat

•Process variation increases error propensity

– Variation increases as technology scales

•New transistor technology reduces error propensity

– Also helps limit variation

•FIT per bit expected roughly constant

•Denser devices increase number of bits and also 
likelihood of multi-bit upsets
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SRAM Trends

•Multi-bit errors significant concern

(c) Mattan Erez . Michael Sullivan 23



Latch Trends

•Similar to SRAM

•Fewer bits, but large enough to be a problem

•Mitigation techniques differ

– Latches often synthesized rather than in arrays

– Hardened latches are common, but expensive, solution

•MBUs also a problem

– Accesses mostly narrow
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Logic Trends
•Particle strike to off transistor “turns” it on

•Charge translates to current pulse

– Current flows as long as charge being collected

•Current pulse may not result in an error

– Logical masking (unaffected by scaling)

– Temporal masking (related to frequency, expected fixed)

– Electrical masking
• Decreases with scale

• Mitigation possible with minimal “hardening”

•Overall expected 0.5% SER
compared to SRAM/latch
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Other soft faults

•Shrinking margins and growing variations 

• can lead to timing violations

•Our research matches results from IBM research:

– Gain is ~20%

– Almost all this gain possible with reasonable (though dynamic) 
margins
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•But what about errors?

– Logic faults/errors very frequently masked

– Error disappears before being latched (timing)

– Error diminishes and disappears because of signal 
rectification (electrical masking)

– Values lead to logical masking
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•Error modeling?

– Logic simulation

– Multi-mode simulation
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•Quick(ish) way to search the error space

– Multi-mode simulation

– Skip over detectable errors

– Tool to be released
•Uses only public tools



•DRAM faults very problematic

– Dozens of DRAM chips per processor

– Millions per system

– New DRAM fault every couple of hours

– Modules are expensive
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•Memory must be reliable

– Written data must be recalled “correctly”
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•Reliability challenges

– “Natural” change in cell value

– Induced change in cell value

– Read errors

– Write errors

– Wearout and defects
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•Natural causes of value change
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– Retention control 

• Less dense

•Writes slower/higher-energy

•Can use different devices

•Decay

– Refresh / scrub

•Flip

– ECC + scrub
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•Induced change in value

– Writing or reading disturbs nearby cells

– Worse for writes

– Technology and design dependent
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•Read errors

– Because of small margins for efficiency
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•Write errors

– Writing implies changing a state or value

– Stochastic
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•Write errors

– Writing implies changing a state or value

– Stochastic

– Waiting inefficient and slow

– Write error control conflicts w/ other errors
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•Wearout and defects
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•Wearout and defects

– Sparing

– Extra margins

– Retirement

– Compensation (ECC)
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•Summary: no “good” memory

– It’s all about tradeoffs
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•But, those tradeoffs barely up to us

– Good empirical models for DRAM

– So far, vendors maintaining targets

•Interestingly, peripheral circuits very vulnerable
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But at the end, good empirical models exist and 
are currently maintained

•Rules of thumb (more later)

– 50/50 soft/hard

– 50/50 single/multi bit
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•DRAM Errors?

– Highly dependent on ECC scheme

– Probably pretty random
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•Other hard faults

– Corrosion

– Mechanical stress

– Accidents

– Current stress

•Mechanical  power  connectors

– Lots of redundancy can be put in

– Recently, scaling in the chip faster than outside 
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•Network

– Processor + memory + links

– Few models available

– Generally very resilient
•Strong error protection

•Routing adapts to hard faults
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•An example: Blue Waters
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•An example: Blue Waters
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