

Toward Exascale Resilience Part 3: Fault and error modes and models

Mattan Erez The University of Texas at Austin

July 2015

Why care about models?

NZ

Why care about models?

- Resilience isn't free
- Paying too much overhead means losing out

NZ

Modeling techniques

- "First-principles" (simulation and analytical)
 - How detailed?
 - What parameters?
- Empirical
 - Accelerated testing
 - Field studies
- Extrapolations

Different components – different techniques – Academic are not in the best position here

NZ

Field studies

- Collect fault, error, failure reports from actual systems
- Analyze
- Draw conclusions
- Extrapolate

Field studies are hard

- Limited reporting
- Limited information
- Limited access
- Sensitive outcomes

But, that's the actual world

Some excellent examples in recent years

- In particular for DRAM
 - Starting from Sridharan and Liberty, SC'12
- Good sources for other components too
 - Recent analysis on supercomputers and datacenters
 - Some other specific components too

Fault vs. error/failure analysis

Accelerated testing

- Baking
- Beam testing

Excellent, but

- Special facilities
- Special equipment

Back to basics

Hard faults and intermittent errors

- Design flaws
- Fabrication defects
- Process variation
- Mechanical stress
- Gradual wearout
- Soft faults
- Alpha particles
- Cosmic rays
- Power supply variation
- Voltage droops
- Crosstalk

Hardware summary

- Gates, wires, and memory devices
- Memories and processors (sockets)
- Modules (w/ VRU)
- Shared power, cooling, and links (w/ VRU)
- Cabinets (w/ VRU)
- Storage separated out (for now)

Hard faults in processors

- Manufacturing
- Mechanical
- Wearout

Industry probably has these under control

- ALL customers need this to work
- Several recent studies suggest it is indeed the case

But not clear what is sacrificed

 How much better could we do if system exposed to processor hard faults?

Example: gradual wearout

Particle-strike soft errors

- Ionizing particle frees electron-hole pairs in transistor active region
- Charge collected at source/drain creating current in an off device
- Current can flip a bit in a storage device or change value of a logic computation

Why are particle strikes problematic?

- Two main sources
 - Alpha particles
 - Atmospheric neutrons
- Alpha particles from packaging and solder
 - Can be reduced but not eliminated completely
- Neutrons are highly penetrating and flux can be high
 - Neutrons randomly strike an atom and create secondary ionizing particles

Difficult to stop, but rare

- Protection overhead is high and generally "wasted"
- Minimize waste by understanding vulnerability and trends

Need models for:

Particle flux, charge collection, and component vulnerability

Likelihood of Strike Directly Proportional to Particle Flux

- Alpha particles are low and constant flux
- Neutrons more interesting and problematic
- Significant number of high-energy neutrons
- Even higher flux at lower energies
- Lower energies may affect future technologies more

Flux Varies Significantly with Altitude and Latitude Flux at 50,000' is 1000 times higher than at sea level Flux towards poles 5 times higher than equator

Impact of a Particle Strike Amount of freed charge

- Energy of particle (nature)
- Angle of incidence (generally random)
- Properties of material (hard to gauge)
- Efficiency of charge collection
- Volume of depletion zone (shrinks with tech. scaling)
- Supply voltage (small linear impact)
- Temperature (minimal impact)

Required current/charge to cause an error

- Q_{crit} is minimal charge to flip an SRAM bit
- Similar notion for latches
- More complex for logic

SRAM Trends

Q_{crit} decreases with technology scaling

- Lower capacitance to overcome for a flip (linear)
- Lower voltage lowers Q_{crit} (linear and small)
- Collected charge also decreases somewhat
- Process variation increases error propensity
- Variation increases as technology scales
- New transistor technology reduces error propensity
- Also helps limit variation
- FIT per bit expected roughly constant

Denser devices increase number of bits and also likelihood of multi-bit upsets

SRAM Trends

Multi-bit errors significant concern

Latch Trends

Similar to SRAM

Fewer bits, but large enough to be a problem Mitigation techniques differ

- Latches often synthesized rather than in arrays
- Hardened latches are common, but expensive, solution
 MBUs also a problem
- Accesses mostly narrow

Logic Trends

Particle strike to off transistor "turns" it on

- Charge translates to current pulse
- Current flows as long as charge being collected
- Current pulse may not result in an error
 - Logical masking (unaffected by scaling)
 - Temporal masking (related to frequency, expected fixed)
 - Electrical masking
 - Decreases with scale
 - Mitigation possible with minimal "hardenike

Overall expected 0.5% SER compared to SRAM/latch

Other soft faults

Shrinking margins and growing variations → can lead to timing violations

Our research matches results from IBM research:

- Gain is ~20%
- Almost all this gain possible with reasonable (though dynamic) margins

But what about errors?

- Logic faults/errors very frequently masked
- Error disappears before being latched (timing)
- Error diminishes and disappears because of signal rectification (electrical masking)
- Values lead to logical masking

Error modeling?

- Logic simulation
- Multi-mode simulation

Search

Quick(ish) way to search the error space

- Multi-mode simulation
- Skip over detectable errors

- Tool to be released
 - Uses only public tools

DRAM faults very problematic

- Dozens of DRAM chips per processor
- Millions per system
- New DRAM fault every couple of hours
- Modules are expensive

Memory must be **reliable**

Written data must be recalled "correctly"

Reliability challenges

- "Natural" change in cell value
- Induced change in cell value
- Read errors
- Write errors
- Wearout and defects

Natural causes of value change

Natural causes of value change

Natural causes of value change

Natural causes of value change

- Retention control

- Less dense
- Writes slower/higher-energy
- Can use different devices

Induced change in value

- Writing or reading disturbs nearby cells
- Worse for writes
- Technology and design dependent

Read errors

- Because of small margins for efficiency

Write errors

- Writing implies changing a state or value
- Stochastic

Write errors

- Writing implies changing a state or value
- Stochastic

– Waiting inefficient and slow

- Write error control conflicts w/ other errors

Wearout and defects

Wearout and defects

- Sparing
- Extra margins
- Retirement
- Compensation (ECC)

Summary: no "good" memory – It's all about tradeoffs

But, those tradeoffs barely up to us

- Good empirical models for DRAM
- So far, vendors maintaining targets

Interestingly, peripheral circuits very vulnerable

But at the end, good empirical models exist and are currently maintained

Rules of thumb (more later)

- 50/50 soft/hard
- 50/50 single/multi bit

NZ

DRAM Errors?

- Highly dependent on ECC scheme
- Probably pretty random

Other hard faults

- Corrosion
- Mechanical stress
- Accidents
- Current stress

Mechanical \rightarrow power \rightarrow connectors

- Lots of redundancy can be put in
- Recently, scaling in the chip faster than outside

Network

- Processor + memory + links
- Few models available
- Generally very resilient
 - Strong error protection
 - Routing adapts to hard faults

An example: Blue Waters From Di Marino et al., DSN'14

TABLE III: Failure Statistics. The last row refers to the statistics calculated across all the failure categories.

Failure Category	count	t %	MTBF	MTTR	σ_{TBF}	σ_{TTR}
			[h]	[h]	[h]	[h]
1) Failure (No Interrupt)	164	11%	35.17	13.5	70.8	35.3
2) Interrupt (Failover)	99	6.6%	58	14.7	92	42.2
3) Link & Node Failure (Job Failed)	19	1.3%	297.7	6.1	427.3	5.4
 Link Failure (No Job Failed) 	285	19.1%	19.9	32.7	51.9	91.2
5) Link Failure (Job Failed)	19	1.3%	291.6	16	444	26.7
6) Single/Multiple Node Failure	868	58.2%	6.7	26.7	6.3	72
7) Interruption (system-wide outage)	39	2.62%	159.2	5.16	174.2	8.1
ALL	1490	100%	4.2	34.5	13.3	50.5

Environment Hardware Heartbeat/Node Down Software Network Links Unknown

An example: Blue Waters From Di Marino et al., DSN'14

TABLE III: Failure Statistics. The last row refers to the statistics calculated across all the failure categories.

Failure Category	count	: %	MTBF	MTTR	σ_{TBF}	σ_{TTR}
			[h]	[h]	[h]	[h]
1) Failure (No Interrupt)	164	11%	35.17	13.5	70.8	35.3
Interrupt (Failover)	99	6.6%	58	14.7	92	42.2
Link & Node Failure (Job Failed)	19	1.3%	297.7	6.1	427.3	5.4
Link Failure (No Job Failed)	285	19.1%	19.9	32.7	51.9	91.2
Link Failure (Job Failed)	19	1.3%	291.6	16	444	26.7
Single/Multiple Node Failure	868	58.2%	6.7	26.7	6.3	72
7) Interruption (system-wide outage)	39	2.62%	159.2	5.16	174.2	8.1
ALL	1490	100%	4.2	34.5	13.3	50.5

An example: Blue Waters From Di Marino et al., DSN'14

