

Toward Exascale Resilience Part 4: Memories and networks

Mattan Erez The University of Texas at Austin

July 2015

Memories

- Arrays of cells
- Peripheral circuits
- Communication

Soft and hard faults

Error checking and correcting (ECC)

- Redundant coding for detection and correction
- Most-efficient way to detect errors (and correct them)

Repair

- Once fault is known, can choose to repair it
- Necessary?

Introduction to Memory ECC

A codeword (CW)

A non-codeword (**NCW**)

An invalid pair due to errors on CW

*	k-bit	r-bit
Ţ	data'	redundancy

Example: Single Symbol Correcting Code

Hamming Distance(HD): the number of different symbols between two words

Example: Single Symbol Correcting Code

Example: Single Symbol Correcting Code

We can have **99.**₉₉₉₉% detection **Longer codewords** exponentially reduce SDC

How Much Redundancy Do We Need?

Depends on

- Protection Strength
- Data size
- Symbol size

Sym size	Codeword (512-bit data)	Redun. size (bit)	Redun. ratio
1-bit	Data: 1b x 512 sym Redun: 10 sym	10-bit	10
4-bit	Data: 4b x 128 sym Redun: 3 sym	12-bit	3
8-bit	Data: 8b x 64 sym Redun: 2 sym	16-bit	2
16-bit	Data: 16b x 32 sym Redun: 2 sym	32-bit	2

Most errors affect a **single data pin** only

- Per-mat data go to the same data pin

Memory Transfer Block

Historical ECC

SEC-DED (Single Error Correcting – Double Error Detecting)

- Per-beat codeword with binary symbols
- 12.5% redundancy on 64-bit data

Current ECC

Chipkill-correct

AMD Chipkill-correct

- Double-bus-beat codeword with 8-bit symbol
- 12.5% redundancy on 64-bit data

Post-processing of Corrections

Discard corrections if suspicious

- AMD Chipkill
 - A.k.a History-based miscorrection detection

Based on a very simple idea

Change ECC layout

- Vertical symbol

- 8-bit symbol
- Aligned to frequent per-pin errors

- On a large codeword

- Memory transfer block

Low-end Bamboo ECC

Single Pin Correcting (**SPC**/1PC)

- Corrects 1 pin error using 2 pin redundancy
 - 3.1% redundancy on 64-bit data

Low-end Bamboo ECC

	Which one is better?	Note
Correction probability (A)	SEC-DED	

SPC vs. SEC-DED

¼ redundancy

Lower uncorrected error rate

Overall:		
uncorrected errors (B x (1-A))	SPC	~95%

Bamboo ECC: A Family of Codes

	SPC		SPC- TPD		QPC		OPC
Redundancy (pin)	2	•••	4	•••	8	•••	16
Correction (pin)	1	•••	1 (or 2)	•••	4	•••	8

Fine-grained control over redundancy Costs are proportional to protection

Low-end Bamboo ECC

Single Pin Correcting – Triple Pin Detecting (**SPC-TPD**) Vs. SEC-DED

- ½ redundancy (4 pins)
- Fewer uncorrected errors
- Safer detection (up to 51% vs. 0.0004% SDC)

Middle-/High-end Bamboo ECC

Quadruple Pin Correcting (**QPC**/4PC)

Corrects one x4 chip error, using 8 pin redundancy

Compared to AMD Chipkill

- Same redundancy (8 pins / 12.5%)
- Stronger correction (e.g. two chips)
- Safer detection

Octuple Pin Correcting (**OPC**/8PC)

Corrects one x8 chip error, using 16 pin redundancy

#4: SDC Reduction

Discard corrections if suspicious

E.g. 4PC

SDC probability (for a severe error)

- QPC: 2⁻¹²
- OPC: 2⁻²²

4 pin corrections on a chip (a chip error)

2 pin corrections on 2 different chips

Cf.) AMD Chipkill's history-based miscorrection detection

Post processing

Issue: non-transient faults

- 71% of faults / 99.9% of errors
- More severe errors / repeated corrections

Retirement

Tolerate up to **14** pin faults (or 3 chips + 2 pins) without rebuilding data

Backed up by backward recovery

Evaluation: Reliability

[1] "FAULTSIM: A fast, configurable memory-resilience simulator", D. Roberts, et al. The Memory Forum '14[2] "A study of DRAM failures in the field", V. Sridharan and D. Liberty, SC'12

System-level Reliability (72b channel)

A system with 100K ranks (18 x4 chips/rank)

System-level Reliability (72b channel)

A system with 100K ranks (18 x4 chips/rank)

System-level Reliability (144b channel)

A system with 100K ranks (36 x4 chips/rank)

[1] Same layout as AMD Chipkill but doubled the codeword and correction capability.

System-level Reliability (144b channel)

[1] Same layout as AMD Chipkill but doubled the codeword and correction capability.

Overheads

Logic

	AMD Chipkill	QPC	Note
Area (NAND2 gates)	1,600	25,000	16 x
Latency (XOR2 gates)	8	10	+ 2

Logic overheads of encoder and decoder (error detection part), each

Performance

- 2% (H. mean) execution time increases¹
- Due to +3 read/write latency to wait symbol transfer

Energy

 <1% (H.mean) DRAM energy increases¹

[1] SPECcpu2006 on Gem5 simulator (2GHz 1-core / 2M LLC / 2GB (64+8)b DDR3-1600)

What about repair?

– Is there any benefit given strength of ECC?

What about repair?

- Repair reduces risk of failure and SDC
- Repair can improve performance/efficiency
 - Reduce correction overhead
- Fault rates may be rising
 - Same question about vendor success as processors

How to repair memory?

- Replace module
- Replace bits
- Disable bits / modules

How to replace bits?

- Remap (reconfigure)
- Redirect (cache)

Row and column sparing

- Used in all memories for yield
- Used in some DRAMs for repair (LPDD4)
 - Simple changes to existing decoders / muxes
- Remap at quite coarse granularity

Bit / cache-line remapping

- Remap bits to pool of spares
- Error correcting pointers
- FREEp (cache lines)
- ArchShield

Redirect – fault caching

- Small cache that intercedes for remapped bits (blocks)
- Can be integrated with DRAM or with processor

Remap/redirect schemes depend on fault model

- How many bits do faults affect?
- Are those bits localized or scattered?
- Examples on board (slides maybe after class)

Combining ECC with repair very effective

- Delay module replacement by years
- Reduce potential SDC rate by orders of magnitude

(a) ECC only (no fine-grained DRAM repair)

128K 256K 512K 1M

.1% of systems will have SDCs with ECC + ECC downgrade

32K

64K

(a) ECC + spare chip per DIMM pair

.3 - .6% of systems will have SDCs with just ECC + repair

(b) ECC + 256KB DRAM repair capability per node

.02% of systems will have SDCs with just ECC + ECC downgrade + repair

(b) ECC + spare chip per DIMM pair + 256KB repair per node

Networks added later.