
Toward Exascale Resilience
Part 5: 

Processors and networks

Mattan Erez

The University of Texas at Austin

July 2015



•Processors are expensive

– Redundant processors vs. redundant memory chips

•Expectation of high reliability

2(c) Mattan Erez



•What’s in a processor?

– Lots of SRAM
•Large SRAM arrays in caches

•Smaller arrays in local caches, TLBs, predictors, …

– Lots of smaller latch-arrays
•Buffers, registers, …

– Datapaths
•Logic for doing compute – processing the data

•Pipelining means a lot of scattered latches

– Control logic
•Pipelining and FSMs mean a lot of scattered latches

– Communication
•Buses, interconnection networks, ...

3(c) Mattan Erez



•SRAM reliability dominates processor reliability

– Much more SRAM than anything else

– SRAM more vulnerable
•Smaller transistors

•Much less masking in memories than logic

4(c) Mattan Erez



•SRAM faults and error

– Particle-strikes

– Retention errors

– Read and write errors

5(c) Mattan Erez



•Particle strike faults

– Ionizing particle leads to
spurious current flowing

– Can overcome feedback

6(c) Mattan Erez



•Retention and read/write errors

– Transistor mismatches lead to imbalance in 
symmetric SRAM cell
•Worse as transistors shrink because of variation

•Worse as voltage decreases

•Vcc_crit limits min voltage

– Stability of feedback compromised

– Writes have longer tails

– Some reads too slow

7(c) Mattan Erez



8(c) Mattan Erez

P
ro

b
a

b
ili

ty
 c

o
rr

e
c

t

Time



•From Wilkerson et al., ISCA’08

9(c) Mattan Erez



•Circuit techniques

– Make cells bigger?
•Use more transistors or bigger ones

•Reduces error rates

•Sacrifices too much area

– Clever read/write circuits
•Help, but not with stability

10(c) Mattan Erez



•It’s memory – use ECC!

– ECC has low redundancy
•SECDED is 10 bits for 512b cache-line

•DECTED just 17 bits

– Some ECC is simple to compute
•Bit-wise hamming codes, in particular

11(c) Mattan Erez



•How much ECC protection do we need?

12(c) Mattan Erez



•How many bits can be wrong?

– Multiple particle-strikes very unlikely

– Variations very random

– But, multi-cell upsets exist

13(c) Mattan Erez



•Correlations reduce protections costs

– Physical bit interleaving for large arrays
(on board)

14(c) Mattan Erez



•The try-try-again approach

– Detection  retry
•Works great for transient errors that did not affect previous 

state

•Backward (rollback) recovery!

15(c) Mattan Erez



•Data in many arrays is replicated

– TLBs

– Write-through L1

– Clean cache lines, in general

•Data in some arrays affects only microarch

– Predictors

•Is detection enough?

– Yes! Can re-fill from elsewhere or regenerate

– Simple parity often enough 

•What about tags?

16(c) Mattan Erez



•Remember the bear chasing you

– Balance protection with expected rates and impact

– Smaller structures often protected less

– No need to catch extremely rare events

17(c) Mattan Erez



•Latch arrays

– Similar to SRAM arrays

– Bigger transistors  lower inherent fault rate

– Too many latches to ignore (in the future)

18(c) Mattan Erez



•Use better circuits – hardened latches

– Design latches that check and correct themselves

– Basically replicate the latch

– Not cheap
•More area and power, but manageable

– Can reduce by 10x or so

– Enough for exascale?
•Not yet clear

19(c) Mattan Erez



•ECC for latches?

– ECC is great, but need arrays to make effective

– Parity may be good enough for detection
•Lower fault rate

•More distance between cells (if not in array)

– Parity still sometimes hard to apply

20(c) Mattan Erez



•Datapath

– Combination of logic and latches

– Used for numerical/logic operations

– Lots of masking
•Often not a concern today

•More expensive processors take care of it

21(c) Mattan Erez



•Protection through duplication

– Do everything twice

– In space?
•Double the cost

– In time?
•Double energy and time (of arithmetic)

22(c) Mattan Erez



•Protection through reduced duplication

– Do we need to check everything to detect errors?

– Residue checking

23(c) Mattan Erez



•Residue can be extended to protect registers

– Can this also catch other errors?

24(c) Mattan Erez



•Protecting control

– Protect the logic

– Protect the semnatics

25(c) Mattan Erez



•Protecting logic

– Without clear arithmetic, rely on design

– Harden the circuits

– Partial duplication  parity prediction

– >20% overhead

– Coverage hard to estimate, but assume good
•Used in extreme designs

26(c) Mattan Erez



•Protecting the semantics

– Check for symptoms of errors
•Branching to an address that doesn’t start a basic block

• Illegal instructions

•Out-of-bounds accesses

•Using registers that haven’t been defined

•…

– Collection of symptoms may have excellent coverage
•Evaluation tricky

– More on the board

27(c) Mattan Erez



•Communication

– Buses move data between components
•No changes to the data

– Parity (or other error detection) + retry

– More when we talk about networks

– Not problematic today
•Because parity/retry is cheap and effective

28(c) Mattan Erez



•Conclusion: cost / reliability tradeoff

– We can build reliable processors for exascale

– Not clear that we should (more later)

– Processor count still a concern

29(c) Mattan Erez



•Fujitsu SPARC64 X

– Arrays + arithmetic + 
some control

– Not cheap

– My guess:
•~25% overhead 

in non-arrays

30

From: http://www.fujitsu.com/global/products/computing/servers/unix/sparc/technology/reliability/processor.html



•Network

– Generally, multi-hop networks

– Source  NIC  routers/switches  NIC  dest

31(c) Mattan Erez



•What’s in a network?

– “Processor” + memory + links

– Backward recovery (retry) promenant

32(c) Mattan Erez



•Network router (processor)

– Decides on routing

– Kind of looks like a simple processor

– Small part of overall network and typically well-
protected with duplication and symptom checks

33(c) Mattan Erez



•Memory is memory  use ECC

34(c) Mattan Erez



•Links are like buses, carry the data

– Use error detection and retry

– Typically strong CRC for detection
•Long-symbol codes that don’t attempt to correct

35(c) Mattan Erez



•End-to-end checks?

– Can protect the message too

36(c) Mattan Erez



•What about failed links?

– Unfortunately, common

– Mechanical failures of connectors 

37(c) Mattan Erez



•Path diversity and rerouting until repair!

38(c) Mattan Erez



•Other hard faults

– Corrosion

– Mechanical stress

– Accidents

– Current stress

•Mechanical  power  connectors

– Lots of redundancy can be put in

– Recently, scaling in the chip faster than outside 

39(c) Mattan Erez



•An example: Blue Waters

40

From Di Marino et al., DSN’14



•An example: Blue Waters

41

From Di Marino et al., DSN’14



•An example: Blue Waters

42

From Di Marino et al., DSN’14



43

From Di Marino et al., DSN’14


