THE UNIVERSITY OI
AT AUSTIN

Toward Exascale Resilience

Part 6:
System protection with checkpoint/restart

Mattan Erez
The University of Texas at Austin

July 2015

,é N (c) Mattan Erez

Hardware reliability never perfect

— Not worth the cost
* Though can get close with high cost

Software also has errors
— Can never fully debug

THE UNIVERSITY OF
— AT AUSTIN —

; N . (c) Mattan Erez 3 fﬁﬁé

Application and system must go on

(c) Mattan Erez 4 LI[!EHX‘ R\Ajf\é

Detect->contain—>repair->recover

,é N (c) Mattan Erez 5 TEXAS

Detection is most critical piece

— We’re in luck - silent-data-corruption very rare
— Strong ECC
— Not very vulnerable logic

The paranoid among us aren’t convinced though
— More when we talk about cross-layer approaches

wsﬁ‘ (c) Mattan Erez 6 TEXAS

What to do on detected errors?
— Simplest idea: failstop!
* Contain the error and don’t let it propagate

(c) Mattan Erez 7 TEXAS

If system stopped, can the application continue?
— Yes, if prepared
— Checkpoint/restart

(c) Mattan Erez

Periodically, take checkpoint
— Stop the system

— Copy all state somewhere sage
— Keep going

Rollback

— Recover saved state

Restart
— Recompute and keep going

THE UNIVERSITY OF
— AT AUSTIN —

w 7 (c) Mattan Erez 9 T_E .\XWA-.N _S

Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
e System or user
— Do we really have to stop everyone to take a
checkpoint?
* Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

(c) Mattan Erez 10 TEXAS

How often should we take a checkpoint?
— Want to maximize efficiency

— Too frequent - time wasted on checkpointing
— Too infrequent - time wasted on re-execution

— Can we optimally balance the two?
e Sure, let’s see how

What determines CP/RS effectiveness?

ow
ow
ow

(c) Mattan Erez

long between failures (failstops)
ong to repair and recover

ong to take checkpoint

11 TEXAS

é N (c) Mattan Erez 12 TEXAS

Time between failures (AMTTI)

— Not up to CP/RS scheme - system parameter
— Currently ~5 hours and trending down

w;ﬁt (c) Mattan Erez 13 TEXAS
= — AT AUSTIN —

Time to repair
— If spare nodes: repair takes seconds (at most)

— If no spare nodes: repair hidden by other jobs
* Deallocate and reallocate failed job

— From system perspective, repair time very short

wz (c) Mattan Erez

Time to recover

— Read state back in
* Usually similar to taking checkpoint

— Re-execute all lost work

14 TEXAS

w& (c) Mattan Erez

Time to take the checkpoint

— Stop the system
* Depends on technique used, but can be fast

— Copy state somewhere safe
e ~25MB/s per node typical global file system BW

e ~100GB per node
— Continue execution

— Kind of long, let’s see what that means

15 TEXAS

Estimating execution time with CP/RS

— Excellent paper by J. Daly, Future Generation
Computer Systems 22 (2006)

* Took figures and equations from that paper

ot

7-s=NT » T

>
t=0 T.[7)

Total = solve + checkpoint + reexec + repair

\e N (c) Mattan Erez 17 TEXAS

First order model

— No interrupts during checkpoint or recovery

— Interrupts occur in the middle of an interval (expected)
— Poisson process for interrupts

checkpoints

Total ldeal Ts
T,(t) = Ty + (- - 1) 5
T

rep air

+ [t + 6]o(t + d)n(t) + Rn(r)

recover time \ /

interrupts

N 18 TEXAS

When Poisson and when
checkpoint interval << MTTI

then:

n(t) = _(e{f+3)fM — 1)

T [T+ 6 T+ 0
for |
() 2«

1P

\ M

N 19 TEXAS

First-order equation:

Ty(t) =T+ (% — 1))

n [%(r+3)+R] ?;s (r+5)

M

Minimize time (control interval)
1
——(28M + 28R+ 8°)+1=0
T

Topt = V/28(M + R) fort+8 < M

— AT AUSTIN —

How good is the first order model?
— Great yesterday, w/ 5min checkpoints and 25h MTTI

650
625 + =4 - « First Order Model
= 43 - New Model
o] Simulation
=
[=]
=5
o 600
E
'_
-
2
8
O
= 575
=
=
7]
w
(=8
o
L
= 550
g
'_
525
500 — - T ——T— T — - —
0 20 40 60 80 100 120 140 160 180 200 220

Compute Interval Between Dumps (minutes)

Fig. 3. Comparison of model and simulation results for M = 24 h, T; = 500h, R = 10min, and § = 5min. The new model predicts T,y =
117 min.

— AT AUSTIN —

How good is the first order model?
— OK today, w/ 5min checkpoints and 5h MTT]

650
625 o
- = o - - First Order Model

- = 3 - New Maodel
5 Simulation
£ o0]
o
E
'_
i
2
[
= 575 A
]
=
Eﬁ
w
E 550 4
e

525 1

500 r T r r r T T T T

0 20 40 60 80 100 120 140 160 180 200 220

Compute Interval Between Dumps (minutes)

Fig. 4. Comparison of model and simulation resulis for M = 6 h, T, = 500 h, B = 10min, and § = 5 min. The new model predicts top = 37 min,

How good is the first order model?

— Bad in the future (MTTI = 15min, checkpoint = 5min)
* |gnored interrupts during checkpoint and restart
* Ignored greater likelihood of failing early in a period

2800

2600

3
=]
(=]
"=
©
£
= 2400
5
.;—3 - = = - First Order Model
= = 3 - New Model
= Simulation
o
ﬁ 2200
=
w
s A
2000 A
\&‘
._&-.
'a-...&_
A A A A
1800 T T T T T T T T T T T T T T T
0 4 B 12 16 20

Compute Interval Between Dumps (minutes)

,é N (c) Mattan Erez 23 TEXAS

So what is the rough efficiency?
— Good today, but tomorrow

1.2

1

o
o)

Efficiency
o
(@)}

©
~

o
Ao

o

0 100 200 300
MTTI [min] (5min checkpoint time)

% N (c) Mattan Erez 24 TEXAS

What can we do?

— Improve reliability
* Expensive
— Reduce checkpoint overhead?

1

0.8

Efficiency
©
(@]

©
N

©
N

(@)

0 5 10 15 20 25 30 35
Checkpoint time [min] (MTTI =50min)

(c) Mattan Erez 25 TEXAS

How can we reduce the checkpoint overhead?
— Copy less state

— Overlap copy and compute

— Copy faster

% (c) Mattan Erez 26 TEXAS

Copy less state?

— Only preserve critical live state
* Ask programmer
* Analyze

— Incremental checkpointing
* Only save the delta from prior checkpoint

— Need to track what changed
(can use OS protection mechanisms)

— Garbage collection a big issue -
when do we no longer need old state?

— Recovery much more complicated

w.;f (c) Mattan Erez 27 TEXAS
& — AT AUSTIN —

Overlap copy and compute?

— Take quick checkpoint locally (e.g., to SSD)
* BW can be 2GB/s per node - 100x improvement

— Slowly copy out to global file system during
computation

* What happens on interrupt?

— “Burst buffers”

— Can also use memprotect to copy the checkpoint in
the background
e Similar to VM live migration

; M (c) Mattan Erez 28 TEXAS

Copy faster

— Build more BW to global file system
— Partition and replicate file system
— Use hierarchy?

,é N (c) Mattan Erez 29 TEXAS

“Scalable checkpoint restart”

— Take frequent checkpoints to memory
— Less frequent to SSD

— Less frequent to global file system

— Can adjust number of levels

Moody et al., SC10

THE UNIVERSITY OF
P 30 TEXAS
i
— AT AUSTIN —

Saving locally not very effective for node failure
— Copy to a “buddy” instead
— Coding can reduce memory requirements

4-Local RAM disk 10000
~~Partner RAM disk

-<XOR RAM disk
-#-Local SSD

-4XOR SSD

-¥-Partner SSD
®-Lustre (10GB/s peak)

~, 1000

100

GB/s

10

0.1
4 8 16 32 64 128 256 512 992

¥(k-1,k-1)

%(k,c)
¥(k.c)

THE UNIVERSITY OF

N

PO PAILURKEDS UN THKEDR IMIPPFEKENTD ULUMIEKD

% TEXAS

Clusters Coastal Hera Atlas Total
Time span Oct 09 - Mar 10 | Nov 08 - Nov 09 | May 08 - Oct 09
Number of jobs 135 455 281 371
Node hours 2,830,803 1,428,547 1,370,583 5,629,933
Total failures 24 87 80 191
LOCAL required 2 (08%) 36 (41%) 21 (26%) 59 (31%)
PARTNER/XOR required 18 (75%) 32 (37%) 54 (68%) || 104 (54%)
Lustre required 4 (17%) 19 (22%) 5 (06%) 28 (15%)
System | Expected | Observed | Duration of
Efficiency | Efficiency | Observation
Coastal | 95.2% 04.68% 716,613 node-hours
Atlas 96.7% 02.39% 553,829 node-hours

Efficiency

100%

0% -

80% -

70

B0%

S50%

40%

30% -

20% -

10% -

1x

(c) Mattan Erez

2u

Failure Rates

10x

Gix

33

Level-L

Checkpoint
Cost, Levels
W 1x, Multi

m 1x, 5ingle
W 2x, Multi
2%, 5ingle
W 10x, Multi
0 10x, Single
W 50x, Multi
S0x, Single

THE UNIVERSITY OF

TEXAS

—— AT AUSTIN ——

w;{?ﬁ:' (C) Mattan Erez 34 ’I;‘E AUSTIN —S

Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
* System or user
— Do we really have to stop everyone to take a
checkpoint?
* Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

,é N (c) Mattan Erez

Who decides when to checkpoint
User or system?
— Requirement: consistent checkpoint

— Implication: no inflight messages
* (for coordinated)

— What gets checkpointed?

THE UNIVERSITY OF
— AT AUSTIN —

W (c) Mattan Erez 36 TEXAS

ldentifying consistent points

— User knows
* Annotate

— Runtime may know
* Certain runtime calls imply consistency
* MPI collectives and barriers

— System doesn’t
* Must quiesce network to take checkpoint
e Often impractical, but SDN might help?

%N«, (c) Mattan Erez

What data should be checkpointed?

— Programmer can identify minimal set
e But what if programmer missed something?

— Compiler analysis may help

— System can use OS page table and protection
mechanisms to checkpoint

37 TEXAS

éNﬁ (c) Mattan Erez 38 TEXAS

Both are in use today

— Application-level libraries (more common)

e User can ask if checkpointed needed and then decide to call
checkpoint routine

e User can ask for checkpoint periodically and library can skip
— System-level

* Integrated with kernel
* Dumps entire application state (or incremental one)

wf’: (c) Mattan Erez 39 ’T_E‘MS

Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
e System or user
— Do we really have to stop everyone to take a
checkpoint?
e Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

,é N (c) Mattan Erez 40 TEXAS

Coordinated checkpointing is straightforward
— Find consistent time
— Checkpoint

Uncoordinated is not
— How to deal with in-flight messages?
— How to deal with in-flight remote loads/stores?

é N (c) Mattan Erez 41 TEXAS

Side note:

message passing vs. global address space
— Two sided or one sided communication

— Send/recv or put/get

N5 2 TEXAS

Uncoordianted checkpointing w/ messages
— Distributed systems theory (and practice)
— Checkpoint each process mostly independently

— Goalisto enable rollback to a consistent state
* Everyone re-executes and agrees on all results

Consistent state Inconsistent state
Py > Py
n
P] b P]

From EINozahy et al., ACM Comp Surveys, 06/2002

< @ TEXAS

The Domino Effect (Randell, 1975)

" . .
N A
ANJA VAV A

/\F ailure

C

From EINozahy et al., ACM Comp Surveys, 06/2002

N 4 TEXAS

Coordinated non-blocking

Initiator

| checkpoint request

From EINozahy et al., ACM Comp Surveys, 06/2002

N « TEXAS

Communication-induced

€00 Co, 1 Co2
| i >
Fo Iy R
C1.,0 c]I_] Ci12 Cll,3
>
Py
M m, (4 s
Cr 0 C2.1 C23
>
N i
Useless

From EINozahy et al., ACM Comp Surveys, 06/2002

N « TEXAS

Uncoordinated
— Message logging

— Pessimistic vs. optimistic
Checkpoint

L NA

/\F ailure

From EINozahy et al., ACM Comp Surveys, 06/2002

47 TEXAS

Example protocol

An Uncoordinated Checkpointing Protocol for

Send-deterministic HPC Application

Amina Guermouche!?, Thomas Ropars?, Elisabeth Brunet!, Marc Snir3,
Franck Cappello!3

AT AUSTIN

epoch=2
2
PO
| - - __- -
]
b m0 ma
2
p1 -]
%
1.‘ m3
L]
1
€=} ____ A" O\ ae--- —
\ m1 m2 ma
\ mb
p3 - 2
TN e =
e Piggyback phase number on ™ S =
each message T
o 1 ~ 5 3
@ checkpoint: increment phase .
number ﬂ :1‘ = =

@ logged messages: update
and increment receiver’s
phase number if smaller

@ non-logged message: update
receiver's phase number

Upon Recovery: Messages sent
according to phase numbers

From A. Guermouche et al., IPDPS 2012

%Nﬂ? (c) Mattan Erez 49 TEXAS
& — AT AUSTIN —

Sender or receiver logs?

— Receiver is easier, but complicated if optimistic and
interrupted

— Sender is easier when logging, but recovery can be
complicated
* Asis possibly garbage collection

(c) Mattan Erez 50 TEXAS

Non-blocking with message logging

— Coordinate a consistent point to checkpoint,
but don’t block

— Start logging messages to eliminate domino effect
— Stop logging when checkpoint consistent and done

Hierarchical coordinated/uncoordinated groups

— Log messages hierarchically between groups of
grouped processes

— More on this when discussing containment domains

Communication Pattern (NPB CG.C.64)

Receiver Rank
Number of Messages

0 10 20 30 40 50 60
From A. Guermouche et al., IPDPS 2012 Sender Rank

é N (c) Mattan Erez 52 TEXAS

Uncoordinated recovery?
— Possible, but challenging

Checkpoint

NV W
A LA WA

/\F ailure

From EINozahy et al., ACM Comp Surveys, 06/2002

% N (c) Mattan Erez 53 TEXAS

Global address space way more complicated

— One sided communication happens without remote
aware of communication

— Fine-grained sync and comm

— Very relaxed memory consistency models
— Consistent points hard to find

— Quiescing the network too expensive

Active area of research (with few/no proofs yet)

TO T1 T2 T3
EC=1, IWC=0 EC=1, IWC=0 barrier1 EC=1, IWC=0 EC=1, IWC=0
EC=2, IWC=0 EC=2, IWC=0 EC=2, IWC=0 EC=2, IWC=0
Ipck
EC=3, IWC=0
write1
- - - gl e | S EC'—'Z‘ IWCz1
write2
______ o === |EC=2, IWC=1
e logk
o¢
unipck - =
EC=4, IWC=0 ; B I
writ
EC=2’ IWC:2 ------ ’%
< - - — — — |EC=2,1wC=2
unigck lo¢k
EC=4, IWC=0 EC=3, IWC=2
writeb
/ write6 EC=3
EC=2,WC=3| === __1|
—— — o *
unigck
EC=4, IWC=2
EC=5, IWC=0 EC=3, IWC=3 barrier2 EC=5, IWC=0 EC=5, IWC=2
EC=6, IWC=0 EC=4, IWNC=3 EC=6, IWC=0 EC=6, IWC=2

THE UNIVERSITY OF

54 TEXAS

- AT AUSTIN -

(c) Mattan Erez 55 TEXAS

Detect->contain—>repair->recover

(c) Mattan Erez

Periodically, take checkpoint
— Stop the system

— Copy all state somewhere sage
— Keep going

Rollback

— Recover saved state

Restart
— Recompute and keep going

55 TEXAS

w;{?ﬁ:' (C) Mattan Erez 57 ’I;‘E AUSTIN —S

Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
e System or user
— Do we really have to stop everyone to take a
checkpoint?
* Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

(c) Mattan Erez 58 TEXAS

Redundant MPI
— An alternative to checkpoint/restart

