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Hardware reliability never perfect

— Not worth the cost
* Though can get close with high cost

Software also has errors
— Can never fully debug
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Application and system must go on
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Detect->contain—>repair->recover
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Detection is most critical piece

— We’re in luck - silent-data-corruption very rare
— Strong ECC
— Not very vulnerable logic

The paranoid among us aren’t convinced though
— More when we talk about cross-layer approaches
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What to do on detected errors?
— Simplest idea: failstop!
* Contain the error and don’t let it propagate
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If system stopped, can the application continue?
— Yes, if prepared
— Checkpoint/restart
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Periodically, take checkpoint
— Stop the system

— Copy all state somewhere sage
— Keep going

Rollback

— Recover saved state

Restart
— Recompute and keep going
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Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
e System or user
— Do we really have to stop everyone to take a
checkpoint?
* Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)
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How often should we take a checkpoint?
— Want to maximize efficiency

— Too frequent - time wasted on checkpointing
— Too infrequent - time wasted on re-execution

— Can we optimally balance the two?
e Sure, let’s see how



What determines CP/RS effectiveness?

ow
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long between failures (failstops)
ong to repair and recover

ong to take checkpoint
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Time between failures (AMTTI)

— Not up to CP/RS scheme - system parameter
— Currently ~5 hours and trending down
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Time to repair
— If spare nodes: repair takes seconds (at most)

— If no spare nodes: repair hidden by other jobs
* Deallocate and reallocate failed job

— From system perspective, repair time very short
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Time to recover

— Read state back in
* Usually similar to taking checkpoint

— Re-execute all lost work
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Time to take the checkpoint

— Stop the system
* Depends on technique used, but can be fast

— Copy state somewhere safe
e ~25MB/s per node typical global file system BW

e ~100GB per node
— Continue execution

— Kind of long, let’s see what that means
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Estimating execution time with CP/RS

— Excellent paper by J. Daly, Future Generation
Computer Systems 22 (2006)

* Took figures and equations from that paper

ot

7-s=NT » T
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Total = solve + checkpoint + reexec + repair
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First order model

— No interrupts during checkpoint or recovery

— Interrupts occur in the middle of an interval (expected)
— Poisson process for interrupts

# checkpoints

Total ldeal Ts
T,(t) = Ty + (- - 1) 5
T

rep air

+ [t + 6]o(t + d)n(t) + Rn(r)

recover time \ /

# interrupts
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When Poisson and when
checkpoint interval << MTTI

then:

n(t) = _(e{f+3)fM — 1)

T [T+ 6 T+ 0
for |
( ) 2«

1P

\ M
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First-order equation:

Ty(t) =T+ (% — 1) )

n [%(r+3)+R] ?;s (r+5)

M

Minimize time (control interval)
1
——(28M + 28R+ 8°)+1=0
T

Topt = V/28(M + R) fort+8 < M
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How good is the first order model?
— Great yesterday, w/ 5min checkpoints and 25h MTTI
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Fig. 3. Comparison of model and simulation results for M = 24 h, T; = 500h, R = 10min, and § = 5min. The new model predicts T,y =
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How good is the first order model?
— OK today, w/ 5min checkpoints and 5h MTT]
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Fig. 4. Comparison of model and simulation resulis for M = 6 h, T, = 500 h, B = 10min, and § = 5 min. The new model predicts top = 37 min,



How good is the first order model?

— Bad in the future (MTTI = 15min, checkpoint = 5min)
* |gnored interrupts during checkpoint and restart
* Ignored greater likelihood of failing early in a period
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So what is the rough efficiency?
— Good today, but tomorrow
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What can we do?

— Improve reliability
* Expensive
— Reduce checkpoint overhead?

1

0.8

Efficiency
©
(@]

©
N

©
N

(@)

0 5 10 15 20 25 30 35
Checkpoint time [min] (MTTI =50min)



(c) Mattan Erez 25 TEXAS

How can we reduce the checkpoint overhead?
— Copy less state

— Overlap copy and compute

— Copy faster
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Copy less state?

— Only preserve critical live state
* Ask programmer
* Analyze

— Incremental checkpointing
* Only save the delta from prior checkpoint

— Need to track what changed
(can use OS protection mechanisms)

— Garbage collection a big issue -
when do we no longer need old state?

— Recovery much more complicated
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Overlap copy and compute?

— Take quick checkpoint locally (e.g., to SSD)
* BW can be 2GB/s per node - 100x improvement

— Slowly copy out to global file system during
computation

* What happens on interrupt?

— “Burst buffers”

— Can also use memprotect to copy the checkpoint in
the background
e Similar to VM live migration
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Copy faster

— Build more BW to global file system
— Partition and replicate file system
— Use hierarchy?
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“Scalable checkpoint restart”

— Take frequent checkpoints to memory
— Less frequent to SSD

— Less frequent to global file system

— Can adjust number of levels

Moody et al., SC10
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Saving locally not very effective for node failure
— Copy to a “buddy” instead
— Coding can reduce memory requirements
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Clusters Coastal Hera Atlas Total
Time span Oct 09 - Mar 10 | Nov 08 - Nov 09 | May 08 - Oct 09
Number of jobs 135 455 281 371
Node hours 2,830,803 1,428,547 1,370,583 5,629,933
Total failures 24 87 80 191
LOCAL required 2 (08%) 36 (41%) 21 (26%) 59 (31%)
PARTNER/XOR required 18 (75%) 32 (37%) 54 (68%) || 104 (54%)
Lustre required 4 (17%) 19 (22%) 5 (06%) 28 (15%)
System | Expected | Observed | Duration of
Efficiency | Efficiency | Observation
Coastal | 95.2% 04.68% 716,613 node-hours
Atlas 96.7% 02.39% 553,829 node-hours
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Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
* System or user
— Do we really have to stop everyone to take a
checkpoint?
* Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)
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Who decides when to checkpoint
User or system?
— Requirement: consistent checkpoint

— Implication: no inflight messages
* (for coordinated)

— What gets checkpointed?

THE UNIVERSITY OF
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ldentifying consistent points

— User knows
* Annotate

— Runtime may know
* Certain runtime calls imply consistency
* MPI collectives and barriers

— System doesn’t
* Must quiesce network to take checkpoint
e Often impractical, but SDN might help?
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What data should be checkpointed?

— Programmer can identify minimal set
e But what if programmer missed something?

— Compiler analysis may help

— System can use OS page table and protection
mechanisms to checkpoint

37 TEXAS
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Both are in use today

— Application-level libraries (more common)

e User can ask if checkpointed needed and then decide to call
checkpoint routine

e User can ask for checkpoint periodically and library can skip
— System-level

* Integrated with kernel
* Dumps entire application state (or incremental one)
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Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
e System or user
— Do we really have to stop everyone to take a
checkpoint?
e Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)
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Coordinated checkpointing is straightforward
— Find consistent time
— Checkpoint

Uncoordinated is not
— How to deal with in-flight messages?
— How to deal with in-flight remote loads/stores?
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Side note:

message passing vs. global address space
— Two sided or one sided communication

— Send/recv or put/get
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Uncoordianted checkpointing w/ messages
— Distributed systems theory (and practice)
— Checkpoint each process mostly independently

— Goalisto enable rollback to a consistent state
* Everyone re-executes and agrees on all results

Consistent state Inconsistent state
Py > Py
n
P] b P]

From EINozahy et al., ACM Comp Surveys, 06/2002



< @ TEXAS

The Domino Effect (Randell, 1975)
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From EINozahy et al., ACM Comp Surveys, 06/2002
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Coordinated non-blocking

Initiator

| checkpoint request

From EINozahy et al., ACM Comp Surveys, 06/2002
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Communication-induced
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From EINozahy et al., ACM Comp Surveys, 06/2002
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Uncoordinated
— Message logging

— Pessimistic vs. optimistic
Checkpoint

L NA

/\F ailure

From EINozahy et al., ACM Comp Surveys, 06/2002
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Example protocol

An Uncoordinated Checkpointing Protocol for

Send-deterministic HPC Application

Amina Guermouche!?, Thomas Ropars?, Elisabeth Brunet!, Marc Snir3,
Franck Cappello!3
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Sender or receiver logs?

— Receiver is easier, but complicated if optimistic and
interrupted

— Sender is easier when logging, but recovery can be
complicated
* Asis possibly garbage collection
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Non-blocking with message logging

— Coordinate a consistent point to checkpoint,
but don’t block

— Start logging messages to eliminate domino effect
— Stop logging when checkpoint consistent and done



Hierarchical coordinated/uncoordinated groups

— Log messages hierarchically between groups of
grouped processes

— More on this when discussing containment domains

Communication Pattern (NPB CG.C.64)

Receiver Rank
Number of Messages

0 10 20 30 40 50 60
From A. Guermouche et al., IPDPS 2012 Sender Rank
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Uncoordinated recovery?
— Possible, but challenging

Checkpoint

NV W
A LA WA

/\F ailure

From EINozahy et al., ACM Comp Surveys, 06/2002
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Global address space way more complicated

— One sided communication happens without remote
aware of communication

— Fine-grained sync and comm

— Very relaxed memory consistency models
— Consistent points hard to find

— Quiescing the network too expensive

Active area of research (with few/no proofs yet)
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Detect->contain—>repair->recover
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Periodically, take checkpoint
— Stop the system

— Copy all state somewhere sage
— Keep going

Rollback

— Recover saved state

Restart
— Recompute and keep going

55 TEXAS
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Things to think about (outline)

— How frequently to checkpoint?

— How important is checkpoint time?
* And what can we do to improve it

— Who decides to take a checkpoint?
e System or user
— Do we really have to stop everyone to take a
checkpoint?
* Coordinated vs. uncoordinated checkpointing
* Always (for now) coordinated restart

Great survey paper:

EINozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)
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Redundant MPI
— An alternative to checkpoint/restart



