
Toward Exascale Resilience
Part 6:

System protection with checkpoint/restart

Mattan Erez

The University of Texas at Austin

July 2015

•Hardware reliability never perfect

– Not worth the cost
•Though can get close with high cost

•Software also has errors

– Can never fully debug

2(c) Mattan Erez

•Application and system must go on

3(c) Mattan Erez

•Detectcontainrepairrecover

4(c) Mattan Erez

•Detection is most critical piece

– We’re in luck – silent-data-corruption very rare

– Strong ECC

– Not very vulnerable logic

•The paranoid among us aren’t convinced though

– More when we talk about cross-layer approaches

5(c) Mattan Erez

•What to do on detected errors?

– Simplest idea: failstop!
•Contain the error and don’t let it propagate

6(c) Mattan Erez

•If system stopped, can the application continue?

– Yes, if prepared

– Checkpoint/restart

7(c) Mattan Erez

•Periodically, take checkpoint

– Stop the system

– Copy all state somewhere sage

– Keep going

•Rollback

– Recover saved state

•Restart

– Recompute and keep going

8(c) Mattan Erez

•Things to think about (outline)

– How frequently to checkpoint?

– How important is checkpoint time?
•And what can we do to improve it

– Who decides to take a checkpoint?
•System or user

– Do we really have to stop everyone to take a
checkpoint?
•Coordinated vs. uncoordinated checkpointing

•Always (for now) coordinated restart

•Great survey paper:

ElNozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

9(c) Mattan Erez

•How often should we take a checkpoint?

– Want to maximize efficiency

– Too frequent – time wasted on checkpointing

– Too infrequent – time wasted on re-execution

– Can we optimally balance the two?
•Sure, let’s see how

10(c) Mattan Erez

•What determines CP/RS effectiveness?

– How long between failures (failstops)

– How long to repair and recover

– How long to take checkpoint

11(c) Mattan Erez

•Time between failures (AMTTI)

– Not up to CP/RS scheme – system parameter

– Currently ~5 hours and trending down

12(c) Mattan Erez

•Time to repair

– If spare nodes: repair takes seconds (at most)

– If no spare nodes: repair hidden by other jobs
•Deallocate and reallocate failed job

– From system perspective, repair time very short

13(c) Mattan Erez

•Time to recover

– Read state back in
•Usually similar to taking checkpoint

– Re-execute all lost work

14(c) Mattan Erez

•Time to take the checkpoint

– Stop the system
•Depends on technique used, but can be fast

– Copy state somewhere safe
•~25MB/s per node typical global file system BW

– Worse when many nodes write together

•~100GB per node

– Continue execution

– Kind of long, let’s see what that means

15(c) Mattan Erez

•Estimating execution time with CP/RS

– Excellent paper by J. Daly, Future Generation
Computer Systems 22 (2006)
•Took figures and equations from that paper

•Total = solve + checkpoint + reexec + repair

16

•First order model

– No interrupts during checkpoint or recovery

– Interrupts occur in the middle of an interval (expected)

– Poisson process for interrupts

17(c) Mattan Erez

Total Ideal
checkpoints

recover time

interrupts

repair

•When Poisson and when
checkpoint interval << MTTI

• then:

18

•First-order equation:

Minimize time (control interval)

19

•How good is the first order model?

– Great yesterday, w/ 5min checkpoints and 25h MTTI

20

•How good is the first order model?

– OK today, w/ 5min checkpoints and 5h MTTI

21

•How good is the first order model?

– Bad in the future (MTTI = 15min, checkpoint = 5min)
• Ignored interrupts during checkpoint and restart

• Ignored greater likelihood of failing early in a period

22

•So what is the rough efficiency?

– Good today, but tomorrow

23(c) Mattan Erez

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300

E
ff

ic
ie

n
cy

MTTI [min] (5min checkpoint time)

•What can we do?

– Improve reliability
•Expensive

– Reduce checkpoint overhead?

24(c) Mattan Erez

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

E
ff

ic
ie

n
cy

Checkpoint time [min] (MTTI = 50min)

•How can we reduce the checkpoint overhead?

– Copy less state

– Overlap copy and compute

– Copy faster

25(c) Mattan Erez

•Copy less state?

– Only preserve critical live state
•Ask programmer

•Analyze

– Incremental checkpointing
•Only save the delta from prior checkpoint

– Need to track what changed
(can use OS protection mechanisms)

– Garbage collection a big issue –
when do we no longer need old state?

– Recovery much more complicated

26(c) Mattan Erez

•Overlap copy and compute?

– Take quick checkpoint locally (e.g., to SSD)
•BW can be 2GB/s per node – 100x improvement

– Slowly copy out to global file system during
computation
•What happens on interrupt?

– May have to rollback to previous full checkpoint

– “Burst buffers”

– Can also use memprotect to copy the checkpoint in
the background
•Similar to VM live migration

27(c) Mattan Erez

•Copy faster

– Build more BW to global file system

– Partition and replicate file system

– Use hierarchy?

28(c) Mattan Erez

•“Scalable checkpoint restart”

– Take frequent checkpoints to memory

– Less frequent to SSD

– Less frequent to global file system

– Can adjust number of levels

Moody et al., SC10

29(c) Mattan Erez

•Saving locally not very effective for node failure

– Copy to a “buddy” instead

– Coding can reduce memory requirements

30

31

32

33(c) Mattan Erez

•Things to think about (outline)

– How frequently to checkpoint?

– How important is checkpoint time?
•And what can we do to improve it

– Who decides to take a checkpoint?
•System or user

– Do we really have to stop everyone to take a
checkpoint?
•Coordinated vs. uncoordinated checkpointing

•Always (for now) coordinated restart

•Great survey paper:

ElNozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

34(c) Mattan Erez

•Who decides when to checkpoint
User or system?

– Requirement: consistent checkpoint

– Implication: no inflight messages
• (for coordinated)

– What gets checkpointed?

35(c) Mattan Erez

•Identifying consistent points

– User knows
•Annotate

– Runtime may know
•Certain runtime calls imply consistency

•MPI collectives and barriers

– System doesn’t
•Must quiesce network to take checkpoint

•Often impractical, but SDN might help?

36(c) Mattan Erez

•What data should be checkpointed?

– Programmer can identify minimal set
•But what if programmer missed something?

– Compiler analysis may help

– System can use OS page table and protection
mechanisms to checkpoint

37(c) Mattan Erez

•Both are in use today

– Application-level libraries (more common)
•User can ask if checkpointed needed and then decide to call

checkpoint routine

•User can ask for checkpoint periodically and library can skip

– System-level
• Integrated with kernel

•Dumps entire application state (or incremental one)

38(c) Mattan Erez

•Things to think about (outline)

– How frequently to checkpoint?

– How important is checkpoint time?
•And what can we do to improve it

– Who decides to take a checkpoint?
•System or user

– Do we really have to stop everyone to take a
checkpoint?
•Coordinated vs. uncoordinated checkpointing

•Always (for now) coordinated restart

•Great survey paper:

ElNozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

39(c) Mattan Erez

•Coordinated checkpointing is straightforward

– Find consistent time

– Checkpoint

•Uncoordinated is not

– How to deal with in-flight messages?

– How to deal with in-flight remote loads/stores?

40(c) Mattan Erez

•Side note:
message passing vs. global address space

– Two sided or one sided communication

– Send/recv or put/get

41(c) Mattan Erez

•Uncoordianted checkpointing w/ messages

– Distributed systems theory (and practice)

– Checkpoint each process mostly independently

– Goal is to enable rollback to a consistent state
•Everyone re-executes and agrees on all results

42

From ElNozahy et al., ACM Comp Surveys, 06/2002

•The Domino Effect (Randell, 1975)

43

From ElNozahy et al., ACM Comp Surveys, 06/2002

•Coordinated non-blocking

44

From ElNozahy et al., ACM Comp Surveys, 06/2002

•Communication-induced

45

Useless

From ElNozahy et al., ACM Comp Surveys, 06/2002

•Uncoordinated

– Message logging

– Pessimistic vs. optimistic

46

From ElNozahy et al., ACM Comp Surveys, 06/2002

•Example protocol

47

48

From A. Guermouche et al., IPDPS 2012

•Sender or receiver logs?

– Receiver is easier, but complicated if optimistic and
interrupted

– Sender is easier when logging, but recovery can be
complicated
•As is possibly garbage collection

49(c) Mattan Erez

•Non-blocking with message logging

– Coordinate a consistent point to checkpoint,
but don’t block

– Start logging messages to eliminate domino effect

– Stop logging when checkpoint consistent and done

50(c) Mattan Erez

•Hierarchical coordinated/uncoordinated groups

– Log messages hierarchically between groups of
grouped processes

– More on this when discussing containment domains

51

From A. Guermouche et al., IPDPS 2012

•Uncoordinated recovery?

– Possible, but challenging

52(c) Mattan Erez

From ElNozahy et al., ACM Comp Surveys, 06/2002

•Global address space way more complicated

– One sided communication happens without remote
aware of communication

– Fine-grained sync and comm

– Very relaxed memory consistency models

– Consistent points hard to find

– Quiescing the network too expensive

•Active area of research (with few/no proofs yet)

53(c) Mattan Erez

54(c) Mattan Erez

•Detectcontainrepairrecover

55(c) Mattan Erez

•Periodically, take checkpoint

– Stop the system

– Copy all state somewhere sage

– Keep going

•Rollback

– Recover saved state

•Restart

– Recompute and keep going

56(c) Mattan Erez

•Things to think about (outline)

– How frequently to checkpoint?

– How important is checkpoint time?
•And what can we do to improve it

– Who decides to take a checkpoint?
•System or user

– Do we really have to stop everyone to take a
checkpoint?
•Coordinated vs. uncoordinated checkpointing

•Always (for now) coordinated restart

•Great survey paper:

ElNozahy et al., “A Survey of Rollback-Recovery Protocols in Message-Passing

Systems” (http://www.cs.utexas.edu/~lorenzo/papers/SurveyFinal.pdf)

57(c) Mattan Erez

•Redundant MPI

– An alternative to checkpoint/restart

58(c) Mattan Erez

