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•The constraints:

– Power/energy

– Time

– Money

– Correctness
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•Resilience is a big challenge for
DOE computations
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Something bad every ~minute at DOE scale
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•The baseline: checkpoint-restart

•Not good enough on its own
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•Failure rate too high for checkpoint/restart 

•Correctness also at risk
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•Energy also problematic
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•The cost of resilience

– Preparation

– Detection

– Mitigation (repair + recover)

– Implementation
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•Software?

• Hardware?

• Algorithm?

•
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•Software?

• Hardware?

• Algorithm?

•Containment Domains: 
adaptive holistic approach

– Per-experiment balance of 
energy, time, money, correctness
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•Can hardware alone solve the problem?

•Yes, but costly

– Significant and likely fixed overheads

– May not be needed in many commercial settings
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•Fixed overhead examples (estimated)
Both energy and/or throughput

– Up to ~25% chipkill correct vs. chipkill detect

– 20 – 40% for pipeline SDC reduction

– >2X for arbitrary correction

– Even greater overhead if protecting approximate units
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•Something bad every ~minute at DOE

•Something bad every year commercially

– Smaller units of execution

– Different requirements
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•Locality and hierarchy are key

– Hierarchical constructs

– Distributed operation

•Range of correctness requirements
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•What about algorithmic resilience?

– Algorithmic detection

– Iterative converging algorithms

– Redundant information

– Probabilistic methods
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•Examples on board

– Algorithmic check of matrix multiplication

– Algorithmic check of a solver

– Convergent calculation
•Simple and basic Newton-Raphson

– Monte Carlo
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•But,

• Different apps  different techniques
Different scales  different techniques



•Need to adapt/co-tune



•Containment Domains 
elevate resilience to first-class abstraction

– Program-structure abstractions

– Composable resilient program components

– Regimented development flow

– Supporting tools and mechanisms
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•Containment Domains 

– Abstract resilience constructs that span system layers

– Hierarchical and Distributed operation for locality

– Scalable to large systems with high energy efficiency

– Heterogeneous to match disparate error/failure effects

– Proportional and effectively balanced

– Tunable resilience specialized to application/system

– Analyzable and auto-tuned
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CDs Embed Resilience within Application

•Express resilience as a tree of CDs
– Match CD, task, and machine hierarchies

– Escalation for differentiated error handling 

•Semantics
– Erroneous data never communicated 

– Each CD provides recovery mechanism    

•Components of a CD
– Preserve data on domain start

– Compute (domain body)

– Detect faults before domain commits

– Recover from detected errors
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Root CD

Child CD



Mapping example: SpMV

23Containment Domains Resilience (c) Mattan Erez

𝑴

Matrix M

𝑽

Vector V

void task<inner> SpMV(in M, in Vi, out 
Ri) {

cd = GetCurrentCD()
->CreateAndBegin();

cd->Preserve(matrix, size, kCopy);
forall(…) reduce(…)

SpMV(M[…],Vi[…],Ri[…]);
cd->Complete(); 

}

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef); 
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N 
for c=rowS[r]..rowS[r+1] 
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx, 

kSoft);
prevC=c;

cd->Complete(); 
}



Mapping example: SpMV
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}



Mapping example: SpMV
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Mapping example: SpMV
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Concise abstraction for complex behavior
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Local copy or regen Sibling Parent (unchanged)

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef); 
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N 
for c=rowS[r]..rowS[r+1] 
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx, 

kSoft);
prevC=c;

cd->Complete(); 
}



•Programming and execution model support
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CDs manage preservation, restoration, and re-execution

– Allocate and frees storage

– Transfer data

– Manage default error detection

– Call appropriate CD (hierarchy level) on error/fault

– Holistic error reporting

•Specific policies can be written by the user

– Specialize and tune every aspect of resilience

– Straightforward abstractions

CD abstraction amenable to analysis and auto-tuning

– Analytical model fed with application properties
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– Annotations, persistence, reporting, recovery, tools
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•CD usage flow

– Annotate

– Profile and extrapolate CD tree

– Supply machine characteristics

– Analyze and auto-tune
•Flexible preservation, detection, and recovery

– Refine tradeoffs and repeat

– Execute and monitor
•CD management and coordination

•Distributed and hierarchical preservation

•Distributed and hierarchical recovery
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•CD annotations express intent

– CD hierarchy for scoping and consistency

– Preservation directives and hints exploit locality

– Correctness abstractions
•Detectors and tolerances

– Recovery customization

– Debug/test interface 

•Work in progress: http://lph.ece.utexas.edu/users/CDAPI
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•State preservation and restoration API

•

– Hierarchical
•Per CD (level)

•Match storage hierarchy

•Maximize locality and minimize overhead

– Proportional
•Preserve only when worth it (skip preserve calls)

•Exploit inherent redundancy

•Utilize regeneration
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Hierarchical local recovery and 
partial preservation
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Disk

Inter-cabinet 

NVM

Inter-node NVM

DRAM

Partial preservation via sibling, parent, or regeneration where appropriate
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Local copy or regen

Sibling

Parent (unchanged)



•Correctness abstractions

– Detectors

– Requirements

– Recovery
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•What can go wrong?

– Application crash

– Process crash

– Process unresponsive

– Failed communication

– Hardware
•Cache error

•Memory error

•TLB error

•Node offline

•…
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•What can go wrong?

– Lost resource

– Wrong value
•Specific address?

•Specific access?

•Specific computation?

– Degraded resource

•Who detects?

How reported?
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•Today: machine check architecture

– (Maskable) interrupts

– Complex encoding of errors / failures
•Spread across many processor-specific state registers

•Very difficult to parse and use

– Currently – level of containment reported
•Enables fine-grained software recovery

•Know before state is corrupted

•Know when only process state is corrupted

– Event counters and triggers for errors
•Root cause analysis
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•Today: machine check architecture

– Not suitable for programmers
•Barely suitable for system implementers

•Doable, but tricky and requires a lot of reading

– Varies by vendor

– Continuously updated
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•System-provided detectors

–
•Control response granularity 

•User-specified detectors

–

•Consistent and unified reporting & analysis

41Containment Domains Resilience (c) Mattan Erez



•Catch the error as soon as possible

– Less to recover

– Ideally smaller and faster preservation

– Micro-rollbacks

– Idempotent regions

– Hardware-level rollbacks
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•Idempotent regions and hardware-rollback

– What if hardware can automatically rollback and 
rexecute?
•Fine-grained recovery will have little impact on performance

•Users may not need to do anything
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•Instruction retry

– Out-of-order processors

– In-order and GPUs?
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•Sophisticated out-of-order offer ample 
opportunity for hardware retry

– Speculative execution can be used to recovery from 
soft errors

– ROB and LSQ buffer temporary results

– Transactional memory does to
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•Harder in a GPU

– Need to ensure effect-free rollback
•No hardware buffering

– Idempotent regions and CDs

– Tradeoffs with hardware buffering and detection 
latency
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Express correctness intent

–

•Notifies auto-tuner of detection capability

•Enables error elision

–

•Auto- add redundancy to meet requested level of reliability

–

•Customize action

47Containment Domains Resilience (c) Mattan Erez



•Analogues to approximate computing research

– Compiler techniques for approximate computing

– Propagate loss of accuracy

– Propagate loss of reliability
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•Debug, test, and tools

– Error and failure injection

– Planned integration with low-level injection

– CD profiler, viz, models, and initial tuner in place
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•Quick(ish) way to search the error space

– Multi-mode simulation

– Skip over detectable errors

– Tool to be released
•Uses only public tools
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Machine and error models
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Component “Performance” Error Error Scaling

Core 10GFLOP/core Soft error ∝ #cores

Memory 1GB/core ECC fail ∝ #DRAM chips

Socket 200GB/s /socket Hard/OS crash ∝ #sockets

System Hierarchical

network

Power module

or network

∝ #modules 

and #cabinets



•Input 1: machine configuration

– Physical and storage hierarchies (capacity and BW)

– Error/failure rates at each level of hierarchy

– Simple power model

•Input 2: application description

– CD tree, including loops of CDs

– Preservation volumes and possible method

– Overlap of preservation and detection with parent

– Execution time estimate

•Analytic model for CD behavior

– Overheads from preservation, detection, and recovery

•Output efficiency

– Performance, energy, memory
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Error Failure Recovery
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Analytic Model
•Leverage hierarchy and CD semantics

– Uncoordinated “local” actions

– Solve in  out

•Application abstracted to CDs

– CD tree

– Volumes of preservation, 
computation, 
and communication

– Preservation and 
recovery options per CD

•Machine model

– Storage hierarchy

– Communication hierarchy

– Bandwidths and capacities

– Error processes and rates

55Containment Domains DEGAS/ExMatEx March 2014

E
x

e
c

u
ti
o

n
 t

im
e



Power model

•CDs that are not re-executing may remain idle

•Actively executing a CD has a relative power of 1

•A node that is idling consumes a relative power of 𝛼
– In our experiments 𝛼 = 0.25
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•SPMD-oriented analytical model and tuner

– Extrapolated profile

– Machine characteristics

– Tuning space and models
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•Auto-tuned cross-layer resilience!

– Iterate with error injection

– Intelligent search exploration
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•Execution model progress

– Building systems is hard and tricky

– Limited release of single-node runtime

– MPI runtime very close
•Lots of distributed programming issues

•Lots of current sad state of FT issues

– Open source soon on Bitbucket
• Initially only for soft errors
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•Already useful and collaborations in progress

– Reaching down to hardware in FF2

– Global address space with DEGAS

– Task-based execution in Legion and SWARM

– DSL-facing in Stanford’s PSAAP II

– Algorithmic approach within TOORSES
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•TOORSES fault-tolerant hierarchical solver

– Brian Austin, Eric Roman, and Xiaoye (Sherry) Li
LBNL

– Hierarchical semi-separable representation
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•Add CDs at different granularities

– Hierarchical and partial preservation

•Add algorithmic and cheap detection

•Compare to: 

– Algorithmic recovery with redundant computation
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LULESH CD mapping example

63Containment Domains Resilience (c) Mattan Erez



Autotuned CDs perform well
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CDs improve energy efficiency at scale
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10X failure rate emphasizes CD benefits

66Containment Domains Resilience (c) Mattan Erez

Peak Performance

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y
 

O
v

e
rh

e
a

d

P
e

rf
o

rm
a

n
c

e
 

E
ff
ic

ie
n

c
y

CDs, NT

h-CPR, 80%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y
 

O
v

e
rh

e
a

d

P
e

rf
o

rm
a

n
c

e
 

E
ff

ic
ie

n
c

y

CDs, SpMV
h-CPR, 50%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y
 

O
v

e
rh

e
a

d

P
e

rf
o

rm
a

n
c

e
 

E
ff

ic
ie

n
c

y

CDs, HPCCG
h-CPR, 10%

Energy Overhead



•What if my application has many barriers?

– Can’t really form a tree?
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SPMV: 
local recovery and partial preservation
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Disk

Remote NVM

Local NVM

DRAM

Partial preservation via sibling or parent where appropriate



Inter-CD communication?
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•Relaxed CDs enable 
inter-CD communication
– Maintain CD semantics w/ 

uncoordinated recovery

– Some data “preserved” via logging

– All communicated data still 
verified to be correct

•Strict CDs do not communicate 
– Only communicate when in same 

CD context

– Overheads for strict containment 
can be high 

Outer CDs

Inner CDs

Sync+

comm



SPMV: 
local recovery and partial preservation
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Disk

Remote NVM

Local NVM

DRAM
Partial preservation via sibling or parent where appropriate

Relaxed CDs



Fun with logging protocols
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•What about tasks?

– CDs are great natural fit
•CDs + Legion

– Stanford project led by Alex Aiken

•CDs + Swarm

– Spinoff from UDel led by Guang Gao

•Perhaps also with *SS / Nachos

– Barcelona Supercomputing Centers

72(c) Mattan Erez



•Legion resilience

– Propagate failures up the dependence chain

– Utilize region copies to minimize reexecutions

•

73
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•Legion + CDs resilience

– Model-guided management of copies

– Optimized reexecution propagation stop points

– Detection and specification semantics

– Integration with other resilience mechanisms



•Use Legion copies for 
CD preservation

•Optimize for efficiency

– When to add copies

– Where to put copies to 
survive failures

– When to free copies

•Account for different 
failure modes and rates
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•Assumption/fear: reliability bounds performance

– Errors may corrupt results and failures kill applications

•What is the error rate?

– Like today: keep ignoring the problem

– Much higher: need detection and recovery

– CDs abstract, scalable, and tunable

•What is the failure rate?

– Like today: hierarchical checkpoint restart

– Higher: specialize preservation and recovery

– CDs are portable and tunable

•Is it really a problem?

– CDs are general and analyzable

– CDs are composable?
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Conclusion

•Containment domains 
– Abstract constructs  for  resilience concerns & techniques

– Proportional and application/machine tuned resilience

– Hierarchical & distributed preservation, and recovery

– Analyzable and amendable to automatic optimization

– Scalable with high relative energy efficiency

– Heterogeneous to match emerging architecture
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http://lph.ece.utexas.edu/public/CDs



•Thank You!

– Please find the slides at 
https://lph.ece.utexas.edu/merez/MattanErez/Exacale
ResilienceShort0715
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