
Toward Exascale Resilience
Part 8:
Containment Domains / cross-layer schemes

Mattan Erez

The University of Texas at Austin

July 2015

•Credit to:

•UT Austin students:

– Benjaming Cho, Jinsuk Chung, Ali Fakhrzadehgan, Ikhwan Lee, Kyushick
Lee, Seong-Lyong Gong, Mike Sullivan, Song Zhang,
Doe Hyun Yoon (now at Google)

•Collaborators (growing list)

– Cray, NVIDIA, ETI

– LBNL: Brian Austin, Dan Bonachea, Paul Hargrove , Sherry Li, Eric Roman

•Funding agencies

– DOE ECRP, XStack, FF, PSAAP II

– Initial funding from DARPA UHPC

2Containment Domains Resilience (c) Mattan Erez

•The constraints:

– Power/energy

– Time

– Money

– Correctness

(c) Mattan Erez

•Resilience is a big challenge for
DOE computations

4Containment Domains Resilience (c) Mattan Erez

Something bad every ~minute at DOE scale

5Containment Domains Resilience (c) Mattan Erez

1

10

100

1000

2013
(15PF)

2015
(40PF)

2017
(130PF)

2019
(450PF)

2021
(1500PF)

P
ro

je
ct

e
d

 M
T

T
I

[h
o

u
rs

]

Year (Expected performance in PetaFlops)

Hard

Soft

Intermittent SW

Overall

•The baseline: checkpoint-restart

•Not good enough on its own

6Containment Domains Resilience (c) Mattan Erez

•Failure rate too high for checkpoint/restart

•Correctness also at risk

7Containment Domains Resilience (c) Mattan Erez

0%

20%

40%

60%

80%

100%

P
e

rf
o

rm
a

n
ce

 E
ff

ic
ie

n
cy

CDs, NT

h-CPR, 80%

g-CPR, 80%

•Energy also problematic

8Containment Domains Resilience (c) Mattan Erez

0%

10%

20%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y
 O

v
e

rh
e

a
d

CDs, NT

h-CPR, 80%

gCPR, 80%

•The cost of resilience

– Preparation

– Detection

– Mitigation (repair + recover)

– Implementation

9Containment Domains Resilience (c) Mattan Erez

•Software?

• Hardware?

• Algorithm?

•

10Containment Domains Resilience (c) Mattan Erez

•Software?

• Hardware?

• Algorithm?

•Containment Domains:
adaptive holistic approach

– Per-experiment balance of
energy, time, money, correctness

11Containment Domains Resilience (c) Mattan Erez

•Can hardware alone solve the problem?

•Yes, but costly

– Significant and likely fixed overheads

– May not be needed in many commercial settings

12Containment Domains Resilience (c) Mattan Erez

•Fixed overhead examples (estimated)
Both energy and/or throughput

– Up to ~25% chipkill correct vs. chipkill detect

– 20 – 40% for pipeline SDC reduction

– >2X for arbitrary correction

– Even greater overhead if protecting approximate units

13Containment Domains Resilience (c) Mattan Erez

•Something bad every ~minute at DOE

•Something bad every year commercially

– Smaller units of execution

– Different requirements

14Containment Domains Resilience (c) Mattan Erez

•Locality and hierarchy are key

– Hierarchical constructs

– Distributed operation

•Range of correctness requirements

15Containment Domains Resilience (c) Mattan Erez

•What about algorithmic resilience?

– Algorithmic detection

– Iterative converging algorithms

– Redundant information

– Probabilistic methods

16Containment Domains Resilience (c) Mattan Erez

•Examples on board

– Algorithmic check of matrix multiplication

– Algorithmic check of a solver

– Convergent calculation
•Simple and basic Newton-Raphson

– Monte Carlo

17(c) Mattan Erez

•But,

• Different apps  different techniques
Different scales  different techniques

•Need to adapt/co-tune

•Containment Domains
elevate resilience to first-class abstraction

– Program-structure abstractions

– Composable resilient program components

– Regimented development flow

– Supporting tools and mechanisms

20Containment Domains Resilience (c) Mattan Erez

•Containment Domains

– Abstract resilience constructs that span system layers

– Hierarchical and Distributed operation for locality

– Scalable to large systems with high energy efficiency

– Heterogeneous to match disparate error/failure effects

– Proportional and effectively balanced

– Tunable resilience specialized to application/system

– Analyzable and auto-tuned

21Containment Domains Resilience (c) Mattan Erez

CDs Embed Resilience within Application

•Express resilience as a tree of CDs
– Match CD, task, and machine hierarchies

– Escalation for differentiated error handling

•Semantics
– Erroneous data never communicated

– Each CD provides recovery mechanism

•Components of a CD
– Preserve data on domain start

– Compute (domain body)

– Detect faults before domain commits

– Recover from detected errors

22Containment Domains Resilience (c) Mattan Erez

Root CD

Child CD

Mapping example: SpMV

23Containment Domains Resilience (c) Mattan Erez

𝑴

Matrix M

𝑽

Vector V

void task<inner> SpMV(in M, in Vi, out
Ri) {

cd = GetCurrentCD()
->CreateAndBegin();

cd->Preserve(matrix, size, kCopy);
forall(…) reduce(…)

SpMV(M[…],Vi[…],Ri[…]);
cd->Complete();

}

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef);
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N
for c=rowS[r]..rowS[r+1]
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx,

kSoft);
prevC=c;

cd->Complete();
}

Mapping example: SpMV

24Containment Domains Resilience (c) Mattan Erez

𝑴𝟎𝟎 𝑴𝟎𝟏

𝑴𝟏𝟎 𝑴𝟏𝟏

Matrix M

𝑽𝟎

Vector V

𝑽𝟏

void task<inner> SpMV(in M, in Vi, out
Ri) {

cd = GetCurrentCD()
->CreateAndBegin();

cd->Preserve(matrix, size, kCopy);
forall(…) reduce(…)

SpMV(M[…],Vi[…],Ri[…]);
cd->Complete();

}

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef);
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N
for c=rowS[r]..rowS[r+1]
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx,

kSoft);
prevC=c;

cd->Complete();
}

Mapping example: SpMV

25Containment Domains Resilience (c) Mattan Erez

𝑴𝟎𝟎 𝑴𝟎𝟏𝑴𝟏𝟎 𝑴𝟏𝟏𝑽𝟎 𝑽𝟏𝑽𝟎 𝑽𝟏

𝑴𝟎𝟎 𝑴𝟎𝟏

𝑴𝟏𝟎 𝑴𝟏𝟏

Matrix M

𝑽𝟎

Vector V

𝑽𝟏

Distributed to 4 nodes

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef);
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N
for c=rowS[r]..rowS[r+1]
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx,

kSoft);
prevC=c;

cd->Complete();
}

Mapping example: SpMV

26Containment Domains Resilience (c) Mattan Erez

𝑴𝟎𝟎 𝑴𝟎𝟏

𝑴𝟏𝟎 𝑴𝟏𝟏

Matrix M

𝑽𝟎

Vector V

𝑽𝟏

Distributed to 4 nodes

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef);
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N
for c=rowS[r]..rowS[r+1]
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx,

kSoft);
prevC=c;

cd->Complete();
}

Concise abstraction for complex behavior

27Containment Domains Resilience (c) Mattan Erez

Local copy or regen Sibling Parent (unchanged)

void task<leaf> SpMV(…) {
cd = GetCurrentCD()

->CreateAndBegin();
cd->Preserve(M, sizeof(M), kRef);
cd->Preserve(Vi, sizeof(Vi), kCopy);
for r=0..N
for c=rowS[r]..rowS[r+1]
resi[r]+=data[c]*Vi[cIdx[c]];
cd->CDAssert(idx > prevIdx,

kSoft);
prevC=c;

cd->Complete();
}

•Programming and execution model support

28Containment Domains Resilience (c) Mattan Erez

CDs manage preservation, restoration, and re-execution

– Allocate and frees storage

– Transfer data

– Manage default error detection

– Call appropriate CD (hierarchy level) on error/fault

– Holistic error reporting

•Specific policies can be written by the user

– Specialize and tune every aspect of resilience

– Straightforward abstractions

CD abstraction amenable to analysis and auto-tuning

– Analytical model fed with application properties

29Containment Domains Resilience (c) Mattan Erez

– Annotations, persistence, reporting, recovery, tools

30Containment Domains Resilience (c) Mattan Erez

CD-annotated
Applications/Libraries

CD Runtime System

Hardware

Compiler Support Debugger

CD-App
Mapper

User Interaction for customized error
detection /handling / tolerance / injection

Auto-tuner
Interface

Profiling &
Visualizatio
n Interface

CD
Auto
Tuner

Sight

Scaling Tool
(LWM2)

Error
Handling

Unified Runtime
Error Detector

Persistence Layer

State Preservation
Communication

Logging

Runtime
Logging

Communication
Runtime Library

(Legion + GasNet)

Legion +
Libc

BLCR
CD-Storage
Mapping Interface

Low-Level
Machine Check

HW/SW I/F

Error Reporting
Architecture

PFSBuddy
DRAM SSD

HDD

External Tool

Internal Tool

Future Plan

CD Runtime System Architecture

•CD usage flow

– Annotate

– Profile and extrapolate CD tree

– Supply machine characteristics

– Analyze and auto-tune
•Flexible preservation, detection, and recovery

– Refine tradeoffs and repeat

– Execute and monitor
•CD management and coordination

•Distributed and hierarchical preservation

•Distributed and hierarchical recovery

31Containment Domains Resilience (c) Mattan Erez

•CD annotations express intent

– CD hierarchy for scoping and consistency

– Preservation directives and hints exploit locality

– Correctness abstractions
•Detectors and tolerances

– Recovery customization

– Debug/test interface

•Work in progress: http://lph.ece.utexas.edu/users/CDAPI

32Containment Domains Resilience (c) Mattan Erez

•State preservation and restoration API

•

– Hierarchical
•Per CD (level)

•Match storage hierarchy

•Maximize locality and minimize overhead

– Proportional
•Preserve only when worth it (skip preserve calls)

•Exploit inherent redundancy

•Utilize regeneration

33Containment Domains DEGAS/ExMatEx March 2014

Hierarchical local recovery and
partial preservation

34Containment Domains Resilience (c) Mattan Erez

Disk

Inter-cabinet

NVM

Inter-node NVM

DRAM

Partial preservation via sibling, parent, or regeneration where appropriate

35Containment Domains Resilience (c) Mattan Erez

Local copy or regen

Sibling

Parent (unchanged)

•Correctness abstractions

– Detectors

– Requirements

– Recovery

36Containment Domains Resilience (c) Mattan Erez

•What can go wrong?

– Application crash

– Process crash

– Process unresponsive

– Failed communication

– Hardware
•Cache error

•Memory error

•TLB error

•Node offline

•…

37Containment Domains Resilience (c) Mattan Erez

•What can go wrong?

– Lost resource

– Wrong value
•Specific address?

•Specific access?

•Specific computation?

– Degraded resource

•Who detects?

How reported?

38Containment Domains Resilience (c) Mattan Erez

•Today: machine check architecture

– (Maskable) interrupts

– Complex encoding of errors / failures
•Spread across many processor-specific state registers

•Very difficult to parse and use

– Currently – level of containment reported
•Enables fine-grained software recovery

•Know before state is corrupted

•Know when only process state is corrupted

– Event counters and triggers for errors
•Root cause analysis

39(c) Mattan Erez

•Today: machine check architecture

– Not suitable for programmers
•Barely suitable for system implementers

•Doable, but tricky and requires a lot of reading

– Varies by vendor

– Continuously updated

40(c) Mattan Erez

•System-provided detectors

–
•Control response granularity

•User-specified detectors

–

•Consistent and unified reporting & analysis

41Containment Domains Resilience (c) Mattan Erez

•Catch the error as soon as possible

– Less to recover

– Ideally smaller and faster preservation

– Micro-rollbacks

– Idempotent regions

– Hardware-level rollbacks

42(c) Mattan Erez

•Idempotent regions and hardware-rollback

– What if hardware can automatically rollback and
rexecute?
•Fine-grained recovery will have little impact on performance

•Users may not need to do anything

43(c) Mattan Erez

•Instruction retry

– Out-of-order processors

– In-order and GPUs?

44(c) Mattan Erez

•Sophisticated out-of-order offer ample
opportunity for hardware retry

– Speculative execution can be used to recovery from
soft errors

– ROB and LSQ buffer temporary results

– Transactional memory does to

45(c) Mattan Erez

•Harder in a GPU

– Need to ensure effect-free rollback
•No hardware buffering

– Idempotent regions and CDs

– Tradeoffs with hardware buffering and detection
latency

46(c) Mattan Erez

Express correctness intent

–

•Notifies auto-tuner of detection capability

•Enables error elision

–

•Auto- add redundancy to meet requested level of reliability

–

•Customize action

47Containment Domains Resilience (c) Mattan Erez

•Analogues to approximate computing research

– Compiler techniques for approximate computing

– Propagate loss of accuracy

– Propagate loss of reliability

48(c) Mattan Erez

•Debug, test, and tools

– Error and failure injection

– Planned integration with low-level injection

– CD profiler, viz, models, and initial tuner in place

49Containment Domains Resilience (c) Mattan Erez

•Quick(ish) way to search the error space

– Multi-mode simulation

– Skip over detectable errors

– Tool to be released
•Uses only public tools

51Containment Domains Resilience (c) Mattan Erez

Machine and error models

52Containment Domains Resilience (c) Mattan Erez

Component “Performance” Error Error Scaling

Core 10GFLOP/core Soft error ∝ #cores

Memory 1GB/core ECC fail ∝ #DRAM chips

Socket 200GB/s /socket Hard/OS crash ∝ #sockets

System Hierarchical

network

Power module

or network

∝ #modules

and #cabinets

•Input 1: machine configuration

– Physical and storage hierarchies (capacity and BW)

– Error/failure rates at each level of hierarchy

– Simple power model

•Input 2: application description

– CD tree, including loops of CDs

– Preservation volumes and possible method

– Overlap of preservation and detection with parent

– Execution time estimate

•Analytic model for CD behavior

– Overheads from preservation, detection, and recovery

•Output efficiency

– Performance, energy, memory

53Containment Domains DEGAS/ExMatEx March 2014

Error Failure Recovery

54Containment Domains DEGAS/ExMatEx March 2014

Analytic Model
•Leverage hierarchy and CD semantics

– Uncoordinated “local” actions

– Solve in  out

•Application abstracted to CDs

– CD tree

– Volumes of preservation,
computation,
and communication

– Preservation and
recovery options per CD

•Machine model

– Storage hierarchy

– Communication hierarchy

– Bandwidths and capacities

– Error processes and rates

55Containment Domains DEGAS/ExMatEx March 2014

E
x

e
c

u
ti
o

n
 t

im
e

Power model

•CDs that are not re-executing may remain idle

•Actively executing a CD has a relative power of 1

•A node that is idling consumes a relative power of 𝛼
– In our experiments 𝛼 = 0.25

56Containment Domains DEGAS/ExMatEx March 2014

Idle

R
e

-e
x
e

c
u

ti
o

n
 t

im
e

Parallel domains

Execution Re-execution

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

•SPMD-oriented analytical model and tuner

– Extrapolated profile

– Machine characteristics

– Tuning space and models

57Containment Domains Resilience (c) Mattan Erez

•Auto-tuned cross-layer resilience!

– Iterate with error injection

– Intelligent search exploration

58(c) Mattan Erez

•Execution model progress

– Building systems is hard and tricky

– Limited release of single-node runtime

– MPI runtime very close
•Lots of distributed programming issues

•Lots of current sad state of FT issues

– Open source soon on Bitbucket
• Initially only for soft errors

59Containment Domains Resilience (c) Mattan Erez

•Already useful and collaborations in progress

– Reaching down to hardware in FF2

– Global address space with DEGAS

– Task-based execution in Legion and SWARM

– DSL-facing in Stanford’s PSAAP II

– Algorithmic approach within TOORSES

60Containment Domains Resilience (c) Mattan Erez

•TOORSES fault-tolerant hierarchical solver

– Brian Austin, Eric Roman, and Xiaoye (Sherry) Li
LBNL

– Hierarchical semi-separable representation

61Containment Domains Resilience (c) Mattan Erez

•Add CDs at different granularities

– Hierarchical and partial preservation

•Add algorithmic and cheap detection

•Compare to:

– Algorithmic recovery with redundant computation

62Containment Domains Resilience (c) Mattan Erez

0%

20%

40%

60%

80%

100%

1
E

-3

3
E

-3

1
E

-2

3
E

-2

1
E

-1

3
E

-1

1
E

+
0

P
e

rf
o

rm
a

n
ce

 e
ff

ie
n

cy

Error injection rate (#/s)

Coarse
Medium
Fine
Encoded

LULESH CD mapping example

63Containment Domains Resilience (c) Mattan Erez

Autotuned CDs perform well

64Containment Domains Resilience (c) Mattan Erez

Peak System Performance

NT

SpMV

HPCCG

0%
20%
40%
60%
80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

P
e

rf
o

rm
a

n
c

e

E
ff
ic

ie
n

c
y CDs, NT

h-CPR, 80%

g-CPR, 80%

0%
20%
40%
60%
80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

P
e

rf
o

rm
a

n
c

e

E
ff
ic

ie
n

c
y CDs, SpMV

h-CPR, 50%

g-CPR, 50%

0%
20%
40%
60%
80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

P
e

rf
o

rm
a

n
c

e

E
ff
ic

ie
n

c
y CDs, HPCCG

h-CPR, 10%

g-CPR, 10%

0%

10%

20%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y

O
v

e
rh

e
a

d

CDs, NT

h-CPR, 80%

gCPR, 80%

CDs improve energy efficiency at scale

65Containment Domains Resilience (c) Mattan Erez

Peak System Performance

0%

10%

20%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y

O
v

e
rh

e
a

d

CDs, SpMV

h-CPR, 50%

g-CPR, 50%

0%

10%

20%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y

O
v

e
rh

e
a

d

CDs, HPCCG

h-CPR, 10%

g-CPR, 10%

NT

SpMV

HPCCG

10X failure rate emphasizes CD benefits

66Containment Domains Resilience (c) Mattan Erez

Peak Performance

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y

O
v

e
rh

e
a

d

P
e

rf
o

rm
a

n
c

e

E
ff
ic

ie
n

c
y

CDs, NT

h-CPR, 80%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y

O
v

e
rh

e
a

d

P
e

rf
o

rm
a

n
c

e

E
ff

ic
ie

n
c

y

CDs, SpMV
h-CPR, 50%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

2.5PF 10PF 40PF 160PF 640PF 1.2EF 2.5EF

E
n

e
rg

y

O
v

e
rh

e
a

d

P
e

rf
o

rm
a

n
c

e

E
ff

ic
ie

n
c

y

CDs, HPCCG
h-CPR, 10%

Energy Overhead

•What if my application has many barriers?

– Can’t really form a tree?

67(c) Mattan Erez

SPMV:
local recovery and partial preservation

68Containment Domains DEGAS/ExMatEx March 2014

Disk

Remote NVM

Local NVM

DRAM

Partial preservation via sibling or parent where appropriate

Inter-CD communication?

69Containment Domains DEGAS/ExMatEx March 2014

•Relaxed CDs enable
inter-CD communication
– Maintain CD semantics w/

uncoordinated recovery

– Some data “preserved” via logging

– All communicated data still
verified to be correct

•Strict CDs do not communicate
– Only communicate when in same

CD context

– Overheads for strict containment
can be high

Outer CDs

Inner CDs

Sync+

comm

SPMV:
local recovery and partial preservation

70Containment Domains DEGAS/ExMatEx March 2014

Disk

Remote NVM

Local NVM

DRAM
Partial preservation via sibling or parent where appropriate

Relaxed CDs

Fun with logging protocols

71(c) Mattan Erez

•What about tasks?

– CDs are great natural fit
•CDs + Legion

– Stanford project led by Alex Aiken

•CDs + Swarm

– Spinoff from UDel led by Guang Gao

•Perhaps also with *SS / Nachos

– Barcelona Supercomputing Centers

72(c) Mattan Erez

•Legion resilience

– Propagate failures up the dependence chain

– Utilize region copies to minimize reexecutions

•

73

74

•Legion + CDs resilience

– Model-guided management of copies

– Optimized reexecution propagation stop points

– Detection and specification semantics

– Integration with other resilience mechanisms

•Use Legion copies for
CD preservation

•Optimize for efficiency

– When to add copies

– Where to put copies to
survive failures

– When to free copies

•Account for different
failure modes and rates

75

76

•Assumption/fear: reliability bounds performance

– Errors may corrupt results and failures kill applications

•What is the error rate?

– Like today: keep ignoring the problem

– Much higher: need detection and recovery

– CDs abstract, scalable, and tunable

•What is the failure rate?

– Like today: hierarchical checkpoint restart

– Higher: specialize preservation and recovery

– CDs are portable and tunable

•Is it really a problem?

– CDs are general and analyzable

– CDs are composable?

77Containment Domains Resilience (c) Mattan Erez

Conclusion

•Containment domains
– Abstract constructs for resilience concerns & techniques

– Proportional and application/machine tuned resilience

– Hierarchical & distributed preservation, and recovery

– Analyzable and amendable to automatic optimization

– Scalable with high relative energy efficiency

– Heterogeneous to match emerging architecture

78Containment Domains Resilience (c) Mattan Erez

http://lph.ece.utexas.edu/public/CDs

•Thank You!

– Please find the slides at
https://lph.ece.utexas.edu/merez/MattanErez/Exacale
ResilienceShort0715

79Containment Domains Resilience (c) Mattan Erez

