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Abstract
This paper describes a new instruction-supply mechanism,
called the eXtended Block Cache (XBC). The goal of the
XBC is to improve on the Trace Cache (TC) hit rate, while
providing the same bandwidth. The improved hit rate is
achieved by having the XBC a nearly redundant free
structure. The basic unit recorded in the XBC is the
extended block (XB), which is a multiple-entry single-exit
instruction block. A XB is a sequence of instructions ending
on a conditional or an indirect branch. Unconditional direct
jumps do not end a XB. In order to enable multiple entry
points per XB, the XB index is derived from the IP of its
ending instruction. Instructions within the XB are recorded
in reverse order, enabling easy extension of XBs. The
multiple entry-points remove most of the redundancy. Since
there is at most one conditional branch per XB, we can fetch
up to n XBs per cycle by predicting n branches. The multiple
fetch enables the XBC to match the TC bandwidth.

1. Introduction
A processor may be viewed as composed of three blocks:
frontend, memory and execution:

Front End

Execution Memory

Instructions
Data

The goal of the frontend is to supply valid decoded
instructions to the execution core, with low latency and high
bandwidth. The frontend needs to predict which instructions
to fetch next, decode them, and move them on to the
renaming unit.
Program execution may be viewed as being comprised of
three alternating phases: steady state, transition, and stall.
Steady state execution is defined as execution of instructions
in the absence of disruptive events. A disruptive event is
either (i) a branch misprediction, (ii) an instruction cache
miss, or (iii) a data cache miss. TLB misses has a similar
effect as cache misses. There are other disruptive events,
such as exceptions, which cannot be avoided and are not
dealt with here. A stall phase is the period of time in which
the machine is halted from execution (due to a long-latency
disruptive event). A Transition phase is the period of time
immediately following or preceding steady state execution.

Here is a closer look at each of the three disruptive event
types:
• Branch mispredictions cause the instruction window to

be flushed. This lead to a steep degradation in IPC (the
branch may be advanced due to out-of-order execution)
followed by a stall, until instructions from the correct
path are fetched and decoded.

Slope dependson  fetch
and decoder bandwidth

0 IPC time
(Length depends on FE pipe depth)

Branchmis-
prediction

0

In this case, the frontend is required to supply valid
instructions to be executed as fast as possible.

• Instruction cache misses cause the instruction window
to be gradually emptied - retired instructions exit, but it
takes time until new instruction are fetched and decoded
to fill it.

(Length depends on FE pipe depth)

Instruction
Cache miss

0

Slope depends on  fetch
and decoder bandwidth

• Data cache misses cause the instruction window to be
filled with instructions that are dependent on the
missing data, which in turn cause a degradation in IPC.
Once the missing data is retrieved, all dependent
instructions may be executed.

0

(Length depends on memory
hierarchy latency)

All dependent instructions
become executable at once

Data Cache
miss

Executing instructions out-of-order hides part of the penalty
associated with the stalls incurred by the disruptive events.
Instructions that are independent of the missing data, may
pass the dependent instructions and still be executed.
[Mich99] describes analytically some of these transitions. As
a rule of thumb, the CPU spends about 50% of the time in
steady state execution, 30% in transition phase, and is stalled
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for 20% of the time. During steady state execution we need a
high-bandwidth front-end structure, while latency is less
important (hidden by pipelining). However to minimize the
time spent in transition, a fast ramp-up is required, which
implies low latency. This shows the importance of a high-
bandwidth low-latency front-end structure.
The rest of the paper is organized as follows. In Section 2 we
describe four of the known frontend alternative: instruction
cache, decoded cache, trace cache, and block-based trace
cache. In Section 3 we describe the XBC in detail, including
the definition of a XB and the XBC structure and algorithms.
In Section 4 we bring experimental results, comparing the
XBC to the TC, and exploring some of the XBC design
alternatives. Finally, we conclude in Section 5.

2. Frontend Alternatives

2.1 Instruction Cache
The traditional frontend solution is based on an instruction
cache (IC). The basic data unit of an IC is the cache line,
which is a sequence of consecutive undecoded instructions,
typically 16 to 64 bytes long. The IC is simple to implement,
and has a high hit rate. However, it fails to meet both the low
latency and the high bandwidth requirements.
The IC bandwidth is low since a program may jump into and
out of a cache line. Thus, the bandwidth of a single-ported
IC is limited to a single block of consecutive instructions. A
multi-ported IC is needed in order to provide more than one
block per cycle. Several complete proposals have been
introduced to increase the limited bandwidth of an IC using
techniques like multiple branch predictions while multi-
porting the IC [Yeh93, Cont95, Dutt95, Sezn96].

Jump into
the line

Jump out
of the line

jmp

The IC latency is high since instructions must be decoded
before being supplied to the execution core. This is
especially true for IA32 instructions, which have a non-
uniform format. Moreover, IA32 instructions are variable
length instructions, which makes parallel decoding difficult,
and further reduces bandwidth. A pre-decoded cache holding
instruction boundaries reduces latency and improves
bandwidth.

2.2 Decoded Cache
In order to facilitate out-of-order execution and increase
parallelism, the execution core of most current IA32
processors does not process the original instructions. Instead,
during the decode stage IA32 instructions are translated into
fixed-length RISC-like micro-instructions (uops).  Thus, the

decode stage latency is increased further to include both
variable length decoding and instruction translation, and
caching or buffering the output of the decoder may be
beneficiary.
However, since the number of uops in each IA32 instruction
varies, an addressing problem arises. In the IC the indexing
into the cache is done by the instruction-address. In the
decoded-cache if we wish to use such a simple index,
fragmentation is likely to occur, since each line must provide
enough space for the maximum number of uops in each
instruction.
One solution to this problem was presented in [Intr92]. The
mechanism here deals with storing variable-length
instructions and not uops, but is also applicable to the second
case. The idea is to keep a single instruction in each line of
the decoded-cache and use the instruction-address as an
index. This solution is very costly in terms of the tag array
requirements. To adapt it to a decoded cache that stores
uops, each line must now contain a fixed amount of uops.
We will not go into details as to how such a cache may be
constructed, but in essence it is similar to the idea of the
block-cache structure of [Blac99].
To summarize, the decoded-cache resolves some of the
latency problems associated with the IC, however it still
suffers from the bandwidth problems of the IC, and its hit
rate is slightly reduced (due to fragmentation).

2.3 Trace Cache
The trace cache (TC) aims to reduce the decoding latency
and increase the supplied bandwidth. The basic unit of the
TC is a trace, which is a sequence of dynamically executed
instructions, which may originally reside in non-contiguous
portions of the program memory. A trace starts with any
instruction, and ends when one of the following trace end-
conditions is met: size limit (number of instruction per
trace), instructions such as indirect branches and returns, and
a maximum number of conditional branches. The last
condition is required due to the limited branch prediction
bandwidth (next-trace prediction partially circumvents this
limitation [Jaco97]). There are several variations of the TC,
most TC schemes build traces which are single-entry
multiple-exit. This causes redundancy in the TC (several
copies of an instruction exist in the TC). For example look at
the following code:

B

ACode

If (cond)
     A
B

This code produces two possible traces: (i) B and (ii) AB.
Both are stored in the TC. This causes the instructions (or
uops) in B to be recorded twice (once for each entry point).
Since traces can start on any instruction, B may be recorded
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in many more copies due to alignment discrepancies.
Instruction redundancy is the average number of times each
uop appears in the TC.
The original TC model was proposed in industry [Pele94],
but was not well known in academia. The basic TC model
that has been adopted by academia [Rote96, Frie97] is
organized as a set-associative cache where each line holds a
single trace of up to 16 instructions with a maximum of 3
branches. One limitation of these models is the lack of path
associativity, which means that the TC cannot hold two
traces that start with the same IP (since a trace is defined by
its starting instruction alone). The model proposed in
[Jaco97] allows for path associativity and also circumvents
the branch limit. This is done by defining traces according to
the starting IP and according to an encoding of the path.
A TC-based frontend operates in one of two modes: build
mode or delivery mode. While in build mode, the frontend
fetches IA32 instructions from the instruction cache,
decodes them into uops and sends the uops to execution. In
parallel, the frontend also builds traces, and stores them in
the TC. Once a trace is built, the frontend performs a TC
head lookup for the next instruction. Upon a hit, the frontend
switches to delivery mode. In this mode, uops are fetched
directly from the TC. The TC delivers much higher
bandwidth than a regular IC with lower latency. However
this is done at the expense of the hit rate due to both the
fragmentation and redundancy. A low hit rate implies that a
high percentage of instructions are fetched in build-mode,
without utilizing the high bandwidth and the low latency of
the TC.

2.4 Block-based Trace Cache
Recently the block-based trace cache (BBTC) [Blac99] was
suggested as a variation of the conventional trace cache
concept. The BBTC records traces of block pointers instead
of instructions. The pointers are then used to access a
decoded cache to retrieve the instruction blocks. The BBTC
shifts the redundancy from instructions to block pointers,
which reduces the negative impact of redundancy. However,
fragmentation is likely to be larger due to the finer storage
granularity.
The BBTC can be seen as a special case of the fetch
mechanism previously introduced in [Dutt98]. This fetch
mechanism records tree-like sub-graph elements comprised
of block pointers. A path in the tree is predicted and the
pointers are used to access a multi-ported instruction cache
to retrieve the instructions. The differences lie in the
recording structure (tree versus path) and the type of cache.

3. XBC: Structures and Algorithms
Our goal is to design an instruction supply mechanism,
which improves on the TC hit rate, while achieving the same
bandwidth and latency. In order to achieve this goal, we
design a new frontend structure, called the eXtended Block

Cache (XBC). The better hit rate of the XBC is achieved by
having it redundancy free, and with lower fragmentation.
In this section, we describe the XBC structure and
algorithms. The XBC is comprised of three main units:
1. The cache structure itself, holding the XBs.
2. The XBTB, which predicts the next n XBs in the XBC.
3. The Fill Unit, XFU, which builds XBs into the XBC.

3.1 The Extended Block
The basic unit saved in the XBC is the extended block (XB),
which is a sequence of instructions, ended by a conditional
or an indirect branch.
A XB features multiple entry points and a single exit
exactly the opposite of a trace. A XB is entered either at its
head, or anywhere in the middle. Since there are no
conditional or indirect branches within a XB, once a XB is
entered, it can only be exited at its end. The tag and the
index of a XB are derived from the IP of its ending
instruction. This enables each XB to have multiple entry
points.

jccjmp

Unconditional branches, which redirect the flow towards a
single location, do not end XBs. On the other end, both
conditional and indirect branches (including returns) end
XBs since they may branch to multiple locations.
In order to keep the XBC latency small, as in the TC, the
instructions in the XB are also kept in some decoded form
(e.g., uops). To summarize, the XB end conditions are:
conditional branches, indirect branches, return instructions,
and a quota limit of 16 uops per XB.
Our goal is to supply more than a single XB per cycle. Since
conditional and indirect branches end a XB, we need to
predict only a single branch per XB. This implies that with a
prediction bandwidth of n predictions per cycle, we can
predict and fetch n XBs per cycle.
In order to maximize the XBC bandwidth for a given
prediction bandwidth, longer XBs may be built using
conditional branch promotion [Pate98]. This scheme enables
the promotion of a conditional branch to be treated as an
unconditional branch, once it is found that the branch is
monotonic (≥ 99% biased). When we find that a XB ends
with a branch which is highly biased, we promote the XB,
and join it with the following XB. Figure 1 shows the length
distribution of four types of instruction blocks, all limited by
a maximum length of 16 uops: basic block – ends with any
jump, XB, XB with promotion, and dual XB (two
consecutive XBs). The average length of a basic block in IA-
32 code is 7.7 uops, of a XB – 8.0 uops, of a XB with
promotion – 10.0 uops, and of a dual XB – 12.7 uops.
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Figure 1. Length Distribution

3.2 The XBC Cache Structure
The XBC is organized as a banked cache. Each bank has its
own decoder, so in a given cycle a different set may be
accessed in each bank. Instructions may be received from all
banks in parallel in the same cycle. In addition, each bank
may be implemented as a true set-associative cache. The
bank structure supports the storing of variable length XBs
(while minimizing fragmentation), and fetching multiple
XBs per cycle.
The XBC supports variable length XBs, while minimizing
fragmentation by allowing a XB to spread over one or more
banks. We use a 4-bank structure with a total of 16 uops,
which is the maximum fetch width.
The XBC supports fetching multiple XBs per cycle by
enabling instructions to be received from all banks in the
same cycle. If two consecutive XBs are stored in non-
overlapping banks, both can be fetched in the same cycle. If
a bank conflict does occur, only part of the second XB can
be fetched.

Reorder banks and align uops
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Figure 2. The XBC Data Array.

The average XB length (without promotion) is 8.5 uops. As
a result, a 16-uop set is ≤2 XBs wide. This implies that a
XBC set can hold less than 2 XBs on average. If two such
XBs are mapped to the same set, thrashing will occur. The
solution is to use 2-way set-associative banks. Figure 2
shows the XBC data array.
The XBC tag array (directory), shown in Figure 3, holds
tags, and performs the tag match. Tags are virtual, so no
address translation is needed prior to the XBC access.

Other
info.

index
tag

bank0

Tag
match

Other
info.

bank 1

Tag
match

Other
info.

bank 2

Tag
match

Other
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bank 3

Tag
match

index
tag

index
tag

index
tag

 Figure 3. The XBC Tag Array
Each bank has a single decoder for accessing the two ways
within the bank. The tag of banki, tagi, is matched with the
tags of both banki ways. The two tag-match signals control
the way multiplexer, and are also used to validate the access
information supplied by the XBTB.
Notice that both the XB set and the XB tag are derived from
the IP of the XB ending instruction. A bank that holds the
end of a XB is called the primary bank. The XB tag is used
for tagging all the banks holding the current XB. All the
banks which hold a XB are numbered, according to their
order: the primary bank is numbered 00, the preceding bank
is numbered 01, etc. The number-field is part of the XBC tag
array.

3.3 XB Build Algorithm
In this section we describe the XB build algorithm. As will
be shown, this algorithm prevents redundancy in the XBC.
If the XBC lookup fails, the XFU starts building a new XB,
XBnew. As the decoder supplies uops, the XFU inserts the
uops into the fill buffer, until one of the end-of-XB
conditions is reached. At this stage, the XFU performs a
XBC lookup for XBnew. If no match occurs, XBnew is stored
in the XBC, an entry is allocated for XBnew in the XBTB,
and the XBTB entry of the previously executed XB is
updated to point to XBnew. Since XBnew end-IP uniquely
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identifies it, none of XBnew’s uops can appear in an existing
XB, complying with the no-redundancy requirement.
There are, however, three cases in which XBnew tag may
match the tag of an existing XB, XBcur:

IP1IP2 XBnew

IP1XBcurIP2

(1)

XBnew IP1

XBcur IP1

(3)

IP1

IP1IP2 XBcur

XBnewIP2

(2)

For example, let us look at the following code:
 A …. Goto Lc
L: B
Lc: C

D
The three cases are: (1) XBcur = BCD and XBnew = CD, (2)
XBcur = CD and XBnew = BCD, and (3) XBcur = BCD and
XBnew = ACD.
In the first case XBcur contains XBnew, in the second case
XBnew contains XBcur, and in the third case, XBnew partially
overlaps XBcur— they have the same suffix (and thus the
same XB tag), but a different prefix.
In the first case, there is no need to update the XBC, just to
update the XBTB. In the second case, XBcur is extended with
the uops from XBnew prefix. If there are enough free uops in
the bank holding XBcur, the new uops are simply added to
XBcur on its head. If there are not enough free uops, another
bank needs to be allocated for the XB, in which case, the
replaced bank needs to be evicted from the XBC.
In the third case (same suffix, different prefix), there are two
possible solutions complying with the no-redundancy
requirement. The first solution is to store in the XBC the
prefix of XBnew as an independent XB. That is, although this
prefix ends with an unconditional jump, it defines a XB:

 

XBcur IP1

XBnew IP1

XBcur IP1

XBnew

The drawback of this solution is that we get two short XBs
instead of a single long XB, reducing bandwidth. This
solution also needs more entries in the XBTB. In the second
solution, XBcur and XBnew are viewed as a single “complex
XB”, with two different prefixes:

Prefixnew

Suffix

Prefixcur

IP1

XBcur IP1

XBnew IP1

 The complex XB is stored in (at least) three banks
containing Prefixcur, Prefixnew, and Suffix. A XB is now
identified by a tag and by a mask vector. The mask vector
defines the banks that needs to be accessed. For example,
assume that Prefixcur is stored in bank2, Prefixnew in bank0,
and Suffix in bank3:

Prefixcur φ Suffix Prefixnew

bank0 bank1 bank2 bank3

If we need to access XBnew, the mask vector is 0011. The
order field will mark bank2 with 00, and bank3 with 01.
Since Prefixcur and Prefixnew are never needed together, when
set-associative banks are implemented, it is better to put
them in different ways of the same bank.

3.4 Storing Uops in Reverse Order
When an existing XB is extended, it can only be extended at
its beginning. In order to extend an existing XB we need to
move all its uops, to make room for the new uops. Since the
existing uops move, the pointers in the XBTB become stale
(see in Section 3.5).
In order to solve this problem, and to simplify the extension
of existing XBs, we store the uops of a XB in reverse order,
i.e. starting from the last instruction to the first instruction.
In this way, when an existing XB is extended, its uops need
not be moved.
Notice that since the XB IP is derived from the IP of the
ending instruction, extending the XB does not change the
XB IP.

3.5 The XBTB
In the current structure the XBTB and the XBC are tightly
coupled: the XBC can be accessed only via the XBTB. That
is, the information needed to track the next XB in the XBC
is not found in the XBC itself. Once a branch is resolved, we
know the IP of the target instruction of the branch. Since the
XBC is a multiple-entry structure, the XB_IP is derived
from the end-branch of the XB (as opposed to a TC, which is
single entry, and therefore a trace tag is derived from the IP
of the entry-point of a trace). This means that we cannot
lookup the target IP of a branch in the XBC. Therefore, in
case of a XBTB miss, or a mis-fetch, we must switch to
build mode.

Once in build mode, it is possible to switch back to delivery
mode only when the XB that is currently being built is
already in the XBC. In that case there is both a XBC hit and
a XBTB hit. Once there is a XBTB hit, the XBTB provides
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the next XBs in the XBC, so we can switch back to delivery
mode.
The XBTB provides the information required for locating
the next XB, XBnext. This information includes:
−  XB_IP: The IP of XBnext (the IP of XBnext ending

instruction); it defines both XBnext index and tag.
−  BANK_MASK: a masking vector, indicating the banks

in which XBnext resides.
−  OFFSET: The number of uops counted backward from

the end of XBnext; it defines where to enter XBnext.
Since we want to fetch more than a single XB per cycle from
the XBC, the XBTB provides pointers to the next two XBs
in each cycle. The XBTB is comprised of the following units
(Figure 4):
1. XBTB: keeps information on all XBs that are stored in

the XBC, and predicts the next XB for XBs that are
ended by a conditional branch.

2. XBP: predicts the direction of conditional branches.
3. XiBTB: predicts the next XB for XBs that are ended by

an indirect branch that takes more than a single target.
4. XRSB: predicts the next XB for XBs that are ended by a

return instruction.
In an instruction cache, the fall through instruction follows
the current instruction, and thus need not be predicted.
However within the XBC, the fall through XB does not
follow the current XB. Therefore, for a XB which ends with
a conditional branch, the XBTB must hold pointers both to
the taken path XB, XBtkn, and to the fall through XB, XBnt.
The XBP provides the prediction for the taken/not-taken
direction of conditional branches. This prediction is used for
selecting between XBtkn and XBnt.

 

XRSB

Fill Unit

hittype

XBTB XiBTB

^XBcall /
XBret

XBP

XBtknXBnt

logic

Figure 4. XBTB Sub-Units: XBTB, XBP, XiBTB, XRSB.

The XRSB predicts the next XB for XBs that end with a
return instruction. A XBTB entry associated with a XB
ended by the corresponding call, XBcall, records both a
pointer to the first XB in the procedure, XBfunc, and a pointer

to the XB following the return instruction, XBret. When the
call is executed for the first time, a new XBTB entry in
allocated for XBcall. A pointer to XBcall XBTB entry is
pushed into the XRSB, so later on, its XBTB entry can be
updated with a pointer to XBret. Once XBfunc is built, the
taken pointer in XBcall XBTB entry is updated to point to
XBfunc. Once the function returns, the XRSB is popped to get
XBcall XBTB entry. When XBret is built, the not-taken
pointer in XBcall XBTB entry is updated to point to XBret.
Next time the call is executed, the XBTB hits for XBcall. The
taken pointer provides XBfunc, which is used for accessing
the XBC, and the not-taken pointer provides XBret, which is
pushed into the XRSB. Once the function returns, the XRSB
is popped to retrieve XBret.
Although there is no need to save the next XB for XBret in
the XBTB (since it is provided by the XRSB), there is still a
need to allocate a XBTB entry for XBret to record its type as
return.

3.6 Accessing The XBC
In this section, we describe the interaction between the XBC
and the XBTB. Figure 5 shows the entire XBC structure.
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Figure 5. XBC Structure: the Whole Picture.

First, the current XB_IP is supplied to the XBTB. The
XBTB performs a lookup according to XB_IP, and returns
XB_IP, BANK_MASK, and OFFSET, that are needed to
locate the next two XBs.
While the XBTB provides 2 XBs per cycle (on a XBTB hit),
the XBC provides a variable amount of XBs due to both the
variable length nature of the XBs, and due to bank conflicts.
Thus, we need to decouple the XBTB from the XBC, as in
[Rein99]. This is done by the XBQ.
A priority encoder receives the information from the XBTB,
and determines (i) which set should be accessed in each
bank in the XBC and with what tag, and (ii) what is the
combined mask vector (for both XBs).
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Example:
Assume that the first XB, XB1, resides in bank0 and in bank3
of set 23, and that the second XB, XB2, resides in bank2 and
in bank3 of set 15. Further assume that OFFSET1 = 5, bank0
holds the prefix of XB1, OFFSET2 = 7, and bank2 holds the
prefix of XB2:

Set # 15

bank0 bank1

Set # 23

bank3bank2

φ

MASK_VECTOR   0  0  0  1     0   0  0  0     0  1  1   1     1  1  1  1

XB2 XB2

XB1φ

φφ

XB1

XB_MASK1 is 1001, and XB_MASK2 is 0011. Since XB1 is
the first of the two, it has priority over XB2. As a result,
bank0_index = 23, bank1_index = φ, bank2_index = 15, and
bank3_index = 23. Since bank2 holds the prefix of XB2, we
can fetch it. The suffix of XB2, which resides in bank3,
cannot be fetched in the current cycle (due to the bank
conflict with XB1). The combined mask vector from the
priority encoder is a 16-bit vector, derived both from the
combined mask vector described, and from the offset
information.
The bank set numbers are provided both to the XBC data
array and to the XBC directory. The bank data array is
speculatively accessed, without waiting for the tag match.
The data from the XBC data array is moved into the
OUT_MUX, which also gets the mask vector from the
priority encoder, and the tag match and order field from the
directory. The OUT_MUX masks and reorders the uops. A
tag mismatch (XBC miss), requires a switch to build mode.
A tag mismatch occurs when following a pointer from the
XBTB to a XB that was evicted from the XBC.

Decoder

Memory / Cache BTB

Fill Unit

XBC XBTB

Figure 6. A XBC-Based Frontend.

Let us look at a XBC-based frontend (Figure 6). The upper
part of this frontend is a traditional IC based frontend. The
BTB points to the next instruction to be fetched from the IC,
the appropriate cache line is fetched, the decoder decodes
the relevant instructions within the line, and the decoded

instructions, or uops are delivered to the execution. In
parallel to delivering the uops to execution, the uops are
processed by the fill unit and grouped into XBs. The fill unit
stores the new XBs in the XBC and updates the XBTB. This
mode of operation is referred to as build mode.
Once we finish building a XB into the XBC, we lookup the
next XB in the XBTB. If there is a XBTB hit and a XBC hit,
we switch to delivery mode, in which uops are supplied by
the XBC. As long as we hit the XBTB and the XBC we
remain in delivery mode.

3.7 Reordering and Aligning the Uops
Once we get the 4 lines from the banks, we first need to
reorder them according to the order of both the XBs and the
banks within the XBs. This is accomplished by a first mux
layer (Figure 7).

Align Uops

Reorder banks Mux 1

Mux 2

bank0 bank1 bank2 bank3

bank0bank1 bank2bank3

Figure 7. Reordering and Aligning the uops.

Now that we have the lines ordered, we are still not done
since some of the lines may be only partially full. Therefore,
we need to align the uops. This is done by a second mux
layer. A careful design of this mechanism accomplishes the
reordering and alignment in just one cycle.

3.8 Branch Promotion
In order to identify highly biased branches, each XBTB
entry is augmented with a 7 bit counter, which indicates how
biased the static branch that ends the XB is. Each time the
branch is taken the counter is incremented by 1, and each
time the branch is not-taken, the counter is decremented by
1. If the counter value is ≤1, it implies that out of the last 27

=128 times that the branch was executed, it was taken at
most once, so it is at least 99.2% biased to not-taken. If the
counter value is ≥126, the branch is at least 99.2% biased to
taken.
If we decide to promote a branch, the XB ended by the
branch, XB0, and the XB usually following the branch, XB1
are combined into a single XB, XBcomb. XBcomb ends with
XB1, thus its XB_IP is equal to the XB_IP of XB1. This
implies that XB1 remains in its place, while XB0 is copied to
the same set as XB1 and extends XB1. XB0 original location
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LRU value is reduced to minimum. XB0 XBTB entry is not
discarded when XB0 is promoted, and its not-taken pointer is
updated to point at XBcomb. Notice that XB0 may be pointing
into XB1, rather than to its beginning. In this case XBcomb is
actually a complex XB. This also implies that in order to get
the full benefit of branch promotion, the XBC needs to
support complex XBs.
At any given time, we hold a pointer to the XBTB entry of
the previously executed XB, XB-1. When XB0 is promoted,
XB-1 is updated to point to XBcomb.
There may still be other XBTB entries that point to the
original location of XB0. If such an entry is accessed, and
XB0 has not been evicted yet from its original location, XB0
uops are supplied from there. The XBTB entry is then
updated to point to XBcomb, using the information in XB0
XBTB entry. If, however, XB0 has been evicted from its
original location, XB0 XBTB entry provides the new
location of XB0, XBcomb. Although this incurs a one-cycle
penalty, it saves a switch to build mode.
The XBTB entry of a promoted XB serves two other
purposes. First, the taken pointer field of this entry points to
the non-frequent path. This saves a switch to build mode if
the promoted branch takes the non-frequent path. Second,
the counter field keeps gathering statistics on the promoted
branch. Each time the promoted branch takes the other path,
the counter is incremented. If the promoted branch starts
misbehaving, it is de-promoted.
Branch promotion was suggested in the context of the TC in
[Pate98]. Notice that in the TC a trace is built with no
knowledge on the behavior of the branches within the newly
built trace. As a result, many of the traces are wrongly built,
in the sense that it would be better to build the trace along
other paths than those originally chosen. Using branch
promotion the way we use it here can be viewed as a more
careful way to build traces.

3.9 Set Search
If a XB is evicted and then placed again, it is placed in the
same set but not necessarily in the same banks. If different
banks are used, the XBTB entries that point to the old
location of the XB are erroneous. This problem can be
solved with only a small penalty (cycle loss, but no switch to
build), by searching the entire set. On a XBTB hit, XBC
miss, the entire set is searched for the XB. If the XB is
found, a new mask vector is calculated according to the
offset.

3.10 XB Placement and Replacement
We use a LRU replacement policy among all the lines in a
given set. The LRU policy also makes sure that we do not
evict a line other than a head line (the first line) of a XB.
There is no point in retaining the head line while evicting

another line, since if we enter the XB in the head line, we
will get a miss when we reach the evicted line. If, however, a
head line is evicted, if we need to enter the XB in its middle,
we may still avoid a miss. Since a non-head line is always
accessed after a head line is accessed, its LRU will be
higher, so it will not be evicted before the head line.
We employ a smart build-mode placement algorithm: when
building a new XB into the XBC, the new XB is placed in
banks such that it does not have any bank conflict with the
previous XB (if possible). LRU ordering is maintained by
switching the LRU line with the desired (non-conflicting)
line before the new XB is placed. Set-search repairs the
XBTB.
We also employ a dynamic (delivery mode) placement
algorithm. If we find repeating bandwidth losses due to bank
conflicts, the conflicting lines are moved to non-conflicting
banks. For each XB we hold a counter which is incremented
each time some of the uops of the XB are deferred to the
next cycle due to a bank conflict (that is, there was an
unutilized bank). If the counter reaches a predefined
threshold, the conflicting lines are switched with other lines
in non-conflicting banks. A line can be switched with
another line, only if its LRU is higher, or if both gain from
the switch.

4. Results
Results were obtained using a trace-driven stand-alone
frontend simulator which models frontend structures based
on either an IC, a TC, or a XBC. The frontend bandwidth is
restricted by the renamer BW which is set to 8 uop/cycle.
Traces consist of 30 million consecutive x86 instructions
translated into uops. Traces are representative of the entire
execution, and they record both user and kernel activities.
Results are reported for 21 traces grouped into 3 suites:
−  SPECint95 (8 traces),
−  SYSmark32 for Windows 95 (8 traces),
−  and Games (5 traces of popular games).

We chose not to use the SpecFP benchmarks since the
frontend bandwidth of both structures is very high for these
traces.
The XBC was simulated for various sizes and associativity
with a fixed 8K-entry XBTB. The TC was simulated as a 4
way set-associative cache, where each line holds a single
trace of up to 16 uops with a maximum of 3 branches. We
simulated a 16-bit history GSHARE predictor [McF93] for
both the XBC and the TC.
Figure 8 shows both the XBC and the TC uop bandwidth for
the same cache size (32K uops). Bandwidth is not affected
much by total size, since it is defined only for hits (uops
from delivery mode). As can be seen from the graph, the
difference between the XBC and TC bandwidth is
negligible.
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XBC vs. TC Delivery Bandwidth
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Figure 8. XBC versus TC bandwidth

Figure 9 compares the uop miss rate (percent of uops
brought from the IC) of both structures as their size is
varied. As expected the XBC has a much lower miss rate
due to the reduced redundancy. The difference is most
pronounced for the smaller cache size and diminishes as the
number of uops stored increases. However, the reduction in
the number of misses is ~29% for all cache sizes. That is, the
XBC provides superior hit ratio for about the same
bandwidth, regardless of the cache budget. In order to match
the XBC hit rate, the TC should be enlarged by more than
50%.
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Figure 9. XBC vs. TC Miss Rate for Various Sizes

Figure 10 shows the average miss rate of the XBC and the
TC as a function of the associativity. Both structures exhibit
the well-known curve for increasing associativity. Moving
from a direct-mapped implementation to a two-way set
associative cache reduces the misses by about 60%. The
improvement is smaller when increasing the associativity to
4. As in branch prediction, the reduction in the number of

misses is very important due to the high penalty for fetching
from the IC.
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Figure 10. Miss Rate vs. Associativity

5. Conclusions
In this paper we presented the XBC, which is a new
instruction supply mechanism. We showed that the XBC
provides a better hit rate than the Trace Cache, while
achieving the same instruction bandwidth with the same
number of branch predictions per cycle performed. In order
to match the XBC hit rate, a TC should be enlarged by more
than 50%. The XBC incorporates both novel ideas such as
ending IP indexing, reverse-order uop recording, and a two
dimensional way-bank structure, as well as a few recently
published ideas like branch promotion and decoupling.
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