
Dirigent: Enforcing QoS for Latency-Critical
Tasks on Shared Multicore Systems

Haishan Zhu
The University of Texas at Austin

haishanz@utexas.edu

Mattan Erez
The University of Texas at Austin

mattan.erez@utexas.edu

Abstract
Latency-critical applications suffer from both average per-
formance degradation and reduced completion time pre-
dictability when collocated with batch tasks. Such varia-
tion forces the system to overprovision resources to ensure
Quality of Service (QoS) for latency-critical tasks, degrad-
ing overall system throughput. We explore the causes of this
variation and exploit the opportunities of mitigating varia-
tion directly to simultaneously improve both QoS and uti-
lization. We develop, implement, and evaluate Dirigent, a
lightweight performance-management runtime system that
accurately controls the QoS of latency-critical applications
at fine time scales, leveraging existing architecture mecha-
nisms. We evaluate Dirigent on a real machine and show that
it is significantly more effective than configurations repre-
sentative of prior schemes.

Categories and Subject Descriptors C.0 [Computer Sys-
tems Organization]: Hardware/software interfaces

Keywords QoS; Colocation; Latency Distribution; Latency
Tail; Run-Time Prediction; DVFS; Cache Partitioning

1. Introduction
There is an growing interest in cloud computing as it can sig-
nificantly reduce the cost of computation and storage. How-
ever, while consolidating the workloads of many clients re-
duces average cost, the datacenters that house these cloud
services require tremendous up-front investment; for exam-
ple, Facebook recently invested $1 billion on its new data-
center [57]. A major challenge datacenters face today is that
this large investment is often underutilized because current
individual nodes cannot always meet the processing require-
ments of customers unless they are not fully utilized [2, 11].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS 2016 April 02 - 06, 2016, Atlanta, GA, USA
Copyright c© 2016 ACM [978-1-4503-4091-5/16/04]. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872394

Studies on large data centers have reported average utiliza-
tion to be between 10% and 50% [2, 11, 41, 62].

The main reason for this underutilization is that many
user-facing applications have strict latency requirements
such that collocating them with other throughput-oriented
batch applications is challenging. The contention from back-
ground batch jobs increases the average latency, worst-case
execution time (WCET), and the fraction of tasks that ex-
ceed the requirements of user-facing latency-critical jobs.
However, without “backfilling” nodes with batch jobs, it is
practically impossible to fully load them.

Although the problem of meeting latency goals while im-
proving system utilization has been addressed in previous
work (e.g., [9, 12, 14, 15, 19, 26–30, 32, 36, 39, 42, 43, 45,
49–51, 58, 60–63]), intensive resource contention also leads
to large variation in the execution time of latency-critical
tasks even when their average and percentile performance
matches the quality of service (QoS) goals. In this paper we
focus on this little-explored variation problem. We show how
variation significantly reduces efficiency. We then propose
and evaluate techniques to reduce variation and take advan-
tage of the resulting predictable task completion times.

An interesting characteristic of many user-facing work-
loads is that there is limited utility in completing tasks faster
than the critical latency goal [2, 11, 35]. This is true both
for very low-latency tasks, such as those from search, con-
tent caching, and delivery workloads [13, 42, 62], and for
the somewhat longer latency associated with tasks of live
video processing, online stream data analysis, and recog-
nition tasks [6, 17, 38]. In this work, we focus on the lat-
ter kind of workloads. Speficailly, we study workloads that
are offloaded to the cloud and that are characterized by be-
ing both computationally intensive and latency sensitive. Be-
cause very fast execution is not beneficial but latency targets
are very strict, performance variation leads to poor system
utilization—resources are reserved and allocated such that
most tasks can finish on time, but are wasted for those tasks
that finish quickly. Importantly, the variation in completion
time has both slowly- and rapidly-varying components such
that managing resources at coarse time scales is not enough
to fully utilize a system.

To address the challenges and opportunities of rapid vari-
ation, we study applications with execution-time constraints,
which we call foreground (FG) applications by measur-
ing their performance when running with different batch-
oriented background (BG) applications on a real machine.
We focus on variation caused by contention in the memory
system because it is the most commonly shared resource
and because other resource conflicts (e.g., I/O) can be han-
dled at a coarser granularity by task schedulers [12, 13].
We show that FG applications suffer from significant perfor-
mance variance when running under contention. We design
and implement Dirigent, a lightweight resource manage-
ment runtime that directly reduces the variation of FG jobs
at very fine timescales to simultaneously meet their latency
targets and provide more resources to BG jobs. Dirigent is
based on a novel technique for dynamically predicting the
task-to-task completion time within the execution of an FG
task and adapting frequency and cache partitioning. This
fine time scale management is fundamentally different from
prior approaches and is enabled by the lightweight runtime
and completion-time predictor.

Our work on Dirigent makes the following contributions:

• We expose the problem of performance variation for
latency-critical (foreground) tasks when running under
contention. Such variation prevents schedulers and re-
source managers from maximizing utilization.

• We develop a very lightweight technique for accurately
predicting the execution time of foreground tasks at very
fine time scales and with very high accuracy; we evaluate
this predictor on a real system.

• We further develop the Dirigent lightweight runtime con-
troller that exploits the new trade-off space between re-
ducing the execution time variation of foreground tasks
and the throughput of background tasks. Dirigent co-
ordinates all contending processes with the knowledge
of expected completion times and deadlines. Dirigent is
thus able to improve background-task performance by
enabling foreground tasks to yield resources when they
are expected to finish faster than their required latency.

• We evaluate Dirigent on a real machine using a range
of benchmarks. Results show Dirigent significantly re-
duces the performance variation of foreground applica-
tions while minimizing the background-task throughput
degradation when compared to allowing the background
jobs to freely contend for resources. On average, Diri-
gent can achieve 85% reduction in the standard devia-
tion of execution time for foreground applications at the
cost of just 9% background task performance loss; this
translates into 30% better background throughput than
schemes that operate at coarse time scales while also
achieving higher completion success rates for the fore-
ground latency-critical tasks.

The rest of this paper is organized as follows. Section 2
provides background on applications of interest and the chal-
lenges related to performance variation. Section 3 explains
how reducing variation in foreground applications benefits
system operation, and discusses the underlying architectural
and system mechanisms to control resource use. Section 4
describes the design and implementation of Dirigent. Sec-
tion 5 presents evaluation results. Section 6 reviews prior
QoS management techniques related to Dirigent. Finally,
Section 7 concludes the paper and discusses future work.

2. Background
In this section we briefly summarize background most perti-
nent to Driginent, including a description of our target work-
loads, and the goals of performance and QoS management
techniques in the context of the workloads.

2.1 Target Workloads and Metrics
Based on prior publications, we classify cloud workloads
into three categories [2, 6, 8, 17, 35, 38]. The first includes
tasks that are not user-facing, for which throughput is the
primary concern, and that can be freely scheduled in the
background when resources are available. The second class
includes short latency-critical user-facing tasks, such as re-
sponding to web search requests and content caching. This
class of workloads is characterized by short deadlines in the
order of tens of milliseconds. The third is an emerging class
of workloads that correspond to offloading of work from user
devices to the cloud. Examples include online video process-
ing, online stream data analysis, and recognition tasks. Such
tasks are user facing and latency critical, yet are also compu-
tationally intensive and have relatively long execution times.
These tasks can take hundreds of milliseconds or more to
finish and therefore can benefit from being offloaded to the
cloud [6, 17, 38].

Both the second and third classes are typically user-
generated tasks, of which those arising from sophisticated
data and sensor processing applications often belong to the
third class. Both classes pose challenges for efficient cloud
resource usage. In particular, their performance is expressed
both in terms of throughput (number of tasks processed per
unit time) and in terms of strict latency constraints where
only a small fraction of tasks can violate the constraints
without severe penalties. Two common and useful measures
corresponding to these performance goals are average exe-
cution time for throughput and 95-percentile execution time
(or other percentile goals) for latency constraints. Note that
in evaluating Dirigent in this paper, we use workloads com-
prised of tasks from the first and the third categories.

2.2 Challenges
The strict performance goals of user-facing tasks can lead
to poor system utilization, where nodes do not operate near
their peak processing capability. There are two primary rea-
sons for that. First, FG tasks on their own cannot be used

to fully utilize a node because it is often undesirable to col-
locate FG tasks because of aspects relating to how data is
sharded across cloud servers and sizes of application states
[2, 11, 42]. Second, “backfilling” BG tasks to better utilize
nodes is also not always possible because of the detrimental
impact this has on FG performance.

The problem with collocating BG and FG tasks is the per-
formance degradation because the contention between FG
and BG tasks for limited processor resources frequently vi-
olates FG performance goals. In some collocation scenarios,
compromised average latency can be easily identified. The
bigger challenge is variations in performance that lead to
latency violations. Variations in FG completion times hap-
pen when long-running BG tasks vary in their characteristics
(phases) or when new tasks are scheduled for collocation, al-
tering the interference and contention impact [30, 37, 62].

Prior work that addresses the challenge of collocation
has focused on managing interference at relatively coarse
granularity by scheduling only tasks that do not interfere
much onto the same node [45, 60], by statically throttling
BG tasks such that sufficient resources are given to collo-
cated FG tasks [62], by slowly and dynamically adjusting
BG task throttling to respond to diurnal load variation [42],
or by changing scheduling policies within the OS or across
the cloud server to ensure QoS [12, 13, 30, 37, 51, 52, 63].

In contrast to these prior works, Dirigent focuses on very
fine time scale to directly minimize task-to-task variation
in FG task completion times, which allows Dirigent to free
up significantly more resources that can be used by BG
tasks without compromising either the throughput or latency
targets of the FG tasks. We explain these benefits as well as
the mechanisms Dirigent relies on in the next section.

3. Dirigent Principles
In this section we discuss how focusing on reducing the
variation in FG task execution benefits system operation and
mechanisms to manage variation.

3.1 Benefits of Minimizing Variation
An important insight that Dirigent leverages is that mini-
mizing variation can simultaneously meet the performance
targets of latency-critical tasks and improve system utiliza-
tion. Large variations in the completion time of FG tasks
cause inefficiencies in the shared system because they lead to
over-provisioned resources for FG tasks and system under-
utilization for latency targets to be met. To understand these
inefficiencies, consider an FG task that can meet its through-
put and latency targets when running alone, but suffers from
large variation in execution time when under contention.

Figure 1 shows an example of the execution time prob-
ability density function of such a program, where the blue
curve represents standalone execution, the red curve shows
the behavior under contention, and an ideal curve is shown in
green. In standalone execution, FG tasks often complete sig-

Pr
ob

ab
ili
ty
	

Execu0on	 Time	

Standalone	

Conten+on	

Ideal	

1
!ℎ!"#$ℎ!"#!!"#$%&! !"#$%&'"!

Figure 1: Example FG completion time probability density
functions when run alone, under contention, and in an ideal
scenario; the shaded region points to underutilized resources
when run alone.

nificantly ahead of the deadline and the throughput achieved
(average execution time) is higher than required. As a result
hardware is not fully utilized because there is large perfor-
mance headroom in most FG executions that could be used
for other tasks (shown as the highlighted region). However,
when a BG task is introduced, too many deadlines are missed
despite the average throughput target being maintained.

Previous work focused on keeping core occupancy high
while meeting latency goals [42, 45, 62]. However, by ex-
plicitly addressing task-to-task variation at fine time scales
within a single task, the ideal (green curve) can be achieved.
In this ideal case, both throughput and latency targets are met
precisely and core and frequency resources are maximally
utilized. Dirigent achieves this ideal curve through unique
fine time scale monitoring and control mechanisms.

Furthermore, high variation reduces resource utilization
because of task scheduling policies designed for meeting
FG task latency constraints. Consider a common reservation-
based scheduling policy that ensures on-time completion of
FG tasks by reserving sufficient resources to guarantee a
95% latency target [1]. Figure 2 shows how this scheduler
operates on two different sets of tasks: tasks of type A, which
have high execution time variance, and type B which have
low variance. With high variance, the scheduler reserves too
much time for the first task (shown in green) because alloca-
tion is forced to expand due to the long tail of execution time
probability distribution curve, leading to poor system utiliza-
tion. This does not happen with the low-variance tasks. Sig-
nificant prior work on scheduling has shown that scheduling
tasks with deadlines can be done more aggressively and with
higher system resource utilization when variance is low [56].

Dirigent controls fine-grained scheduling and frequency
to maximize utilization while meeting QoS goals. In this
way overall utility per unit energy is maximized. This is in
contrast to a line of prior work that reduces the impact of
variation by rapidly adjusting processor clock frequency [5,
21, 31, 40, 41, 59]. Matching frequency to FG compute
needs reduces processor energy consumption, but falls short
of maximizing efficiency because the processor itself con-
sumes just 25%− 35% of total system power [16, 41, 46].

C
P

U
 T

im
e

Deadline

Type A

Type B

Figure 2: Reservation-based scheduler efficiency with two
different task types: type A with high execution time vari-
ance and type B with low variance.

3.2 Contention Control Mechanisms
As we explain in Section 4, Dirigent relies on existing mech-
anisms to manage interference and provide good QoS for the
FG jobs. Dirigent uses per-core DVFS and cache partition-
ing, which we summarize below. We also discuss additional
hardware mechanisms that have recently been proposed.

Per-Core dynamic voltage and frequency scaling (DVFS)
is a common mechanism for controlling performance and
improving processor energy efficiency [23, 33, 47]. Per-
core frequency management enables performance adjust-
ments at fine time scales [21, 54], and it can also be used as
a throttling mechanism to manage contention and resource
usage [19, 22].

Cache partitioning is another well-studied mechanism
that provides performance isolation of processes that are
collocated and that is used to limit variation and con-
tention [7, 9, 24, 32, 39, 53, 55]. Prior work established
the effectiveness of cache partitioning as a QoS mechanism
and it has recently been implemented in commercial pro-
cessors. However, because of the large capacity of the last
level cache, changes to cache partitions take significant time
to have an impact on execution, an effect termed cache in-
ertia [32]. Thus, cache partitioning is effective at relatively
long time scales.

While we do not currently use these mechanisms in Diri-
gent as they are not yet available in commercial processors,
there is also a large body of work on QoS mechanisms for
managing memory bandwidth and latency resources. Yun et
al. studied the performance benefits of memory bandwidth
reservation for latency-sensitive applications [61]. Mutlu et
al. show different levels of QoS goals and performance bene-
fits that can be achieved by making memory scheduling QoS
aware [34, 48–50]. Usui et al. presented QoS aware mem-
ory scheduler that handles different priority levels in het-
erogeneous systems [58]. In other related work, Ebrahimi
et al. proposed source throttling, which is a hardware-based
mechanism controls the rate at which cores generate re-
quests to shared memory system [14]. Jeong et al. studied the
row-buffer locality interference in multicore processors [29].
Zhou et al. proposed an architecture that allows fine-grain
micro-architecture resource partitioning among threads [65].
Ma et al. designed a mechanism to control queueing delay
of requests in different architecture structures [44]. While
other contention sources exist in warehouse scale datacen-
ters, there is a large body of related work that show how in-

telligent task schedulers can identify and avoid such resource
conflicts [12, 13, 30, 36, 37].

4. Dirigent Design and Implementation
Dirigent is composed of three main components: profiler,
predictor, and controller. The profiler examines and records
the execution of an FG applications offline and in isolation.
The profiling information is then used online to predict the
expected execution time of the FG application. The con-
troller then partitions resources and throttles tasks to mini-
mize the execution time variation of FG tasks while provid-
ing as much resources as possible to BG tasks, thus achiev-
ing the goal of simultaneously meeting latency-critical re-
quirements and allowing high processor utilization. The rest
of this section discusses in detail the design and initial im-
plementation of Dirigent. Again, we point out that Dirigent
is unique in the fine time scales on which it operates.

We implement Dirigent in C++ and evaluate it using a
6-core Intel Xeon E5 2618L-v3 processor, which supports
per-core frequency settings and cache partitioning [24].

4.1 Offline Execution Profiler
Dirigent profiles the execution of an FG application when
running alone offline. The profiler records progress informa-
tion that is then used to make accurate online predictions
of completion time under contention while a task is still ex-
ecuting. The Dirigent profiler periodically samples the ex-
ecution progress of the FG task being profiled by measur-
ing and recording a series of (time, progress) pairs when
the FG is running alone without any contention (see Fig-
ure 3a). The FG program in the example of Figure 3a has
3 profiled segments and takes 3∆T time units to execute,
where ∆T is the sampling period. We measure progress by
counting the number of retired instructions using the proces-
sor’s model-specific performance counter monitors [25], but
more abstract metrics can also be used. Note that progress
can significantly differ between segments even though the
sampling frequency is constant. This is because progress de-
pends on the instruction mix, data access pattern, data set
size, and other factors.

Dirigent requires minimal profiling. In our current imple-
mentation, the profiler requires no extra hardware as both
execution time and instruction count are readily available in
most architectures today. Dirigent uses performance coun-
ters and sleep method for periodic sampling with negli-
gible impact on the running application. Although perfor-
mance overhead is not a great concern in offline profiling,
this low overhead ensures the accuracy of these measure-
ments. Furthermore, note that while our current implemen-
tation of Dirigent relies on offline profiling, it is possible
to perform online profiling instead, which requires the sys-
tem to run the FG task a few times while all other tasks are
paused to record a stable profiling record.

4.2 Execution Time Predictor

S1	 S2	 S3	 Time
Δ!! Δ!! Δ!!

(a) Offline profiling

S1	 S2	 S3	 Time
Δ! + !!! Δ! + !!! Δ! + !!!

(b) Average online execution time penalty

S1	 Time S2	 S3	

Δ! + !!!!! ∆! + !!!!! Δ! +!"(!! ,!!)!!!
(c) Execution time prediction

Figure 3: Execution time predictor example.

To predict FG completion time and control resources,
Dirigent periodically samples progress during contended on-
line execution. Dirigent predicts FG completion time by
tracking actual progress, comparing this progress to the pro-
filed data, and computing a time penalty experienced by the
FG process, which is then projected forward to completion
as explained below. We pin the Dirigent runtime thread to a
core that runs a BG task and again use the sleep method to
periodically interrupt the BG task and execute the Dirigent
runtime task.

The time penalty of a specific segment is computed as-
suming a fixed rate of progress within each segment. The
penalty is the difference between the expected time to make
the amount of progress within the profiled segment at the
rate of progress experienced in the online segment vs. the
profiled time for this segment. This is summarized in Equa-
tion 1 where Pi is the penalty for the ith segment and ∆Ti is
the duration of that segment. Note that ∆Ti can be slightly
different than ∆T in the real implementation because of fac-
tors such as errors in timers. We account for that difference
in Dirigent to ensure the accuracy of the prediction. Also, we
introduce the symbol αi shown in Equation 1 as shorthand
for the ratio of measured vs. expected progress rates for the
ith segment.

Pi =
Profiled progressi

Measured progressi
∆Ti −∆Ti = (αi − 1) ∆Ti

(1)
Frequent samples increase the execution time prediction

accuracy and the opportunities for performance manage-
ment, but each prediction and control segment has overhead.
We measured this overhead using a subset of our workload
mixes. Results show the runtime overhead is minimal and
each Dirigent invocation requires on average less than 100µs
(including predictor and throttler). We therefore chose a
sampling period ∆T = 5ms to balance the overhead and ef-
fectiveness of online prediction and control. This sampling
period provides 100 or more segments in all the FG applica-
tions we test with only negligible runtime overhead.

To increase prediction accuracy, Dirigent maintains an
exponential moving average (with weight 0.2) of the penalty
within each segment across multiple executions of the FG
task, which we denote Pi = 0.2Pi + 0.8Pi. Figure 3b shows
the average penalty in blue. Note that just like progress, the
average penalty can differ significantly across segments. The
moving average smooths occasional outlier executions. At
a given point in time during a single FG task’s execution,
Dirigent’s predictor uses the penalties observed so far for
each segment, the total elapsed time from the start of the
process, and the average penalties of the segments yet to ex-
ecute to compute the expected execution time of the task.
The formula is shown in Equation 2, where k is the segment
corresponding to current time T , N are the total number of
segments in the profiled execution, and MA

(
{αi}ki=1

)
de-

notes an exponential moving average over the rate factors
measured so far in the current execution. This moving av-
erage is used as the expected penalty scaling factor for the
remainder of the current execution.

Test,k = T +

N∑
i=k+1

(
MA

(
{αi}ki=1

)
Pi + ∆Ti

)
(2)

Figure 3c illustrates how the prediction calculation of
Equation 2 is performed. When the example program fin-
ishes executing the second segment, the penalty scaling fac-
tor α2 is much smaller than the factor α1 of the first segment.
This difference arises from factors such as OS noise, phase
changes of the BG applications, and context switches. The
moving average across executions and of executions within
the segment smooths out the difference of the scaling, which
is then used as the predictive factor for the remaining seg-
ment.

In our experiments with Dirigent, we arbitrarily chose
a weight of 0.2 for the exponential moving averages and a
5ms sampling interval. As we show in Section 5.2, the pre-
dictor is highly accurate with these parameters and is able
to predict the expected execution time to within 2%, typ-
ically, across multiple applications and different levels of
contention. We tested the sensitivity of Dirigent to weight
factors in the range of 0.1 − 0.3 and conclude that Diri-
gent is robust. We also evaluate Dirigent’s sensitivity to sam-
pling periods. We conclude that even 40 samples per execu-
tion of the FG task tested provide for accurate completion-
time predictions. However, the low performance overhead
(< 100µs per invocation) enables high sampling frequency
for accurate prediction and tight QoS control for FG tasks
that widely differ in execution time.

4.3 Performance Controller
Dirigent monitors the performance of FG applications on-
line and uses the predictor to determine whether these ap-
plications are progressing faster or slower than necessary to
meet their latency goals. Recall that Dirigent does not strive

to minimize the execution time of FG tasks, but rather to
minimize their execution time variation while meeting their
latency targets. As a result, resources for the FG tasks are
not over-provisioned. If a FG task is expected to complete
before its target time, it is deprioritized and BG tasks can
achieve higher throughput. On the other hand, if a FG task
is lagging, Dirigent prioritizes resources toward that FG task
and away from BG tasks.

In our current implementation of Dirigent, we allocate re-
source by controlling the frequency at which each core oper-
ates, by partitioning the last-level cache (LLC), and by paus-
ing BG tasks when necessary. We chose these mechanisms
from the possible ones described in Section 3.2 because they
are both effective and available in current systems. We use
frequency and task-pausing to control FG progress at fine
time scales and cache partitioning at a coarser ones; with
large caches, cache inertia means significant time passes be-
fore the impact of adjusting partitions takes effect [32].

Fine time scale control: The goal of the fine time scale
controller is to quickly respond to changes in contention and
FG task progress to ensure deadlines are met and minimize
performance variance. The controller observes the execution
time predictions and decides whether FG tasks can yield
resources or whether BG tasks must be throttled and to what
extent. A simplified version of the fine time scale controller
policy for a single FG task is designed as follows.

At each decision point, the controller determines if the FG
task is ahead or behind. If ahead, the controller will check
the following three options in order. First, if any background
jobs are paused, the control decision is to continue them.
Second, if no tasks are paused but some are throttled, the
decision is to speed up any throttled BG processes by one
speed grade (using existing per-core DVFS mechanisms).
Third, if all BG tasks are already running at their maximum
frequency, the decision is to throttle the FG task frequency.
Similarly, if the FG task is behind schedule, the decision
is to speed up to maximum frequency. If it is already at
maximum frequency, the decision is to immediately throttle
the frequency of the BG tasks. If the BG tasks are already
at the minimum frequency, the most intrusive active BG
is paused; we define intrusiveness as the number of LLC
load misses a task generates, which we obtain from existing
performance counters. The throttler controls each core using
the CPUFreq Governor of Linux [4].

While the Dirigent runtime is very lightweight, the im-
pact of control decisions is not instantaneous. We therefore
only make control decisions every some small number of
prediction segments (5 in our experiments, arbitrarily). Fur-
thermore, we only take control actions if the expected FG ex-
ecution time is more than 2% ahead the target deadline and
only pause BG tasks if the FG task is expected to complete
more than 10% behind its deadline. We chose 2% because it
corresponds to the typical error of the predictor and is thus a
good safety margin that prevents prematurely slowing down

or interfering with a FG task. We chose a larger threshold for
pausing because its overhead is greater (again, the value of
10% was arbitrarily chosen within a reasonable value range;
sensitivity studies reveal that Dirigent is not sensitive to this
choice).

The decision making process is slightly more compli-
cated when there are multiple collocated FG processes along
with BG tasks. Each FG task may exhibit different levels of
performance degradation even when the interference level is
the same for all of them. Furthermore, any action taken on
BG tasks will impact all collocated FG tasks. As a result,
when all FG tasks show the same performance tendency, we
use the same policy described before for a single FG process.
Otherwise, BG tasks are throttled based on the performance
of the slowest concurrent FG task, and any other FG tasks
that are expected to finish sooner than the deadline are throt-
tled down individually.

Coarse time scale control: Dirigent uses cache partition-
ing for coarse-grain control over the expected execution time
of FG tasks, specifically the Cache Allocation Technology
recently introduced by Intel [24], which can be used to spec-
ify which cache ways may be used by each processor. Be-
cause of cache inertia the system’s response time to partition
changes is fairly slow when compared to the typical short
durations of FG tasks. We therefore use statistics collected
over multiple executions of a FG task to guide adjustments
to cache partitioning. Specifically, our current implementa-
tion of Dirigent tracks three measures: (1) the correlation
between a FG tasks’ execution time and the LLC misses it
generates (over multiple executions); (2) a history of the ab-
solute number of LLC misses over executions; and (3) a his-
tory of the Dirigent decisions states over time. In our current
implementation, we use the history of 10 last executions to
compute the measures above. We construct three heuristics
to determine whether FG tasks benefit from greater isolation
and more dedicated cache ways or whether BG tasks are al-
lowed to utilize a greater portion of the LLC.

First, if there is strong correlation between the execution
time of FG tasks and their LLC misses, it indicates that
growing the FG partition is likely to improve FG perfor-
mance. Therefore, if correlation is strong and FG tasks have
recently missed deadlines, we increase isolation and add one
LLC way to the FG partition (removing it from the list of
ways utilized by BG tasks). We somewhat arbitrarily chose
a correlation coefficient of 0.75 as the threshold determining
strong correlation.

Second, Dirigent observes the LLC hit-rate history and
if growing the FG partition does not lower FG tasks LLC
misses, Dirigent shrinks the foreground partition. This heuris-
tic coupled with the coarse time scale and averaging per-
formed prevents the FG partitions from continuously grow-
ing due to anomalous executions.

It is also possible for the correlation between misses and
performance to not be strong yet for partitioning to still help:

Table 1: FG and BG Benchmarks

Type Name Description

FG

bodytrack Body tracking of a person
ferret Content similarity search
fluidanimate Fluid dynamic for animation
raytrace Real-time raytracing
streamcluster Online clustering of an input stream

Single
BG

bwaves Simulation of blast waves in 3D
PCA Principal Component Analysis
RS Range Search

Rotate
BG

namd Biomolecular system simulation
soplex Linear program solver
libquantum Simulation of quantum computer
lbm Simulation of fluids with free surfaces

when FG performance is bottlenecked by high memory la-
tency caused by contention from BG tasks. Because Diri-
gent’s fine time scale controller throttles BG tasks when they
heavily contend for resources, correlation would not detect
the need for stricter partitioning of FG and BG tasks. There-
fore, our third heuristic grows the FG partition when the
controller history indicates that BG tasks are heavily throt-
tled and their utilization of core resources is low. The sec-
ond heuristic then differentiates between scenarios where
BG tasks should be throttled from those where partitioning is
more beneficial by shrinking the FG partition back if hit-rate
does not improve. We show the effectiveness of our method
in Section 5.3.

5. Evaluation
We evaluate Dirigent on a real machine with a range of
workloads representative of a wide range of FG and BG be-
haviors. We first introduce the evaluation infrastructure and
workloads. We then discuss a set of experiments that demon-
strate the accuracy of Dirigent’s completion-time predictor,
the effectiveness of the coarse time scale partitioning heuris-
tic, Dirigent’s performance benefits compared to a baseline
configuration and configurations that roughly correspond to
prior work, and the new tradeoff between BG task through-
put and FG deadline target that Dirigent enables.

5.1 Workloads and Evaluation Infrastructure
System: We evaluate Dirigent on a 6-core Intel Xeon E6-
2618L v3 server processor. The nominal per-core maximum
frequency is 2GHz and 9 frequency steps are available for
throttling (1.2 − 2.0GHz, though Dirigent uses just 5 equi-
spaced frequencies). Turbo Boost is enabled in all experi-
ments. The processor has a 15MB L3 LLC and supports In-
tel’s Cache Allocation Technology, which enables us to par-
tition the cache between FG and BG tasks to provide addi-
tional isolation. The system is configured with 4 2133MHz
DDR4 channels and has a total of 16GiB. We run a Linux
3.13.0 kernel at runlevel S, which provides an environment
with little OS interference and good facilities for imple-

menting both the Dirigent predictor and controller, with an
efficient sleep implementation and the built-in CPUFreq

Governer, respectively. We pin all tasks to individual cores
and Dirigent is pinned to a core that is shared with a BG
task. We set the BG processes to have higher process nice-
ness than the Dirigent runtime and FG processes to have the
lowest niceness. We use the configuration above with no ex-
plicit resource management as the baseline configuration.

Workloads: Table 1 lists the benchmarks we use in the
evaluation. We select the subset of PARSEC applications
that represent latency-sensitive applications as FG tasks [3].
We chose PARSEC as it is designed to represent emerg-
ing and user-facing workloads of the type that are being of-
floaded to cloud systems. We use a single run of each bench-
mark with sim-medium inputs as a single FG task. As shown
in Figure 4, these tasks span a range of completion times
(0.5 − 1.6s) and LLC miss rates. The figure shows the be-
havior of the FG benchmarks both when running alone and
under contention. For this figure, we use 1 FG for all FG
tasks and 5 BG cores all running bwaves, which falls in
the middle of contention range. The FG workloads are all
fairly compute-intensive, making them good offload candi-
dates. While they are compute-intensive, they still offer a
range of sensitivity to interference from BG tasks both be-
cause of LLC and memory access contention. This can be
seen by the different correlation levels between LLC miss
rate increase and execution time degradation between the
different benchmarks. To ensure accurate measurements of
these tasks, execution time is measured inside the FG pro-
cesses using PARSEC’s Region of Interests (ROI) interface.

We use two kinds of BG workloads to represent dif-
ferent interference types: BG phase changes and context
switches. We use three standalone BG workloads that ex-
hibit strong phase change behavior: the scientific simulation
bwaves from SPEC 2006 [18] and the machine learning ap-
plications Principal Component Analysis (PCA) and Range
Search (RS) from MLPack [10]. All other benchmarks we
examined did not provide strong phase behavior, at least with
respect to impact on interference, and we omit them from
the evaluation—such workloads do not pose significant chal-
lenges to the Dirigent predictor.

To mimic varying interference caused by context switches,
we select four applications from SPEC 2006 that exhibit a
range of memory intensiveness [18], though we arbitrar-
ily chose between all benchmarks that exhibit similar in-
tensity. We then form two-benchmark workloads and ran-
domly switch between the two paired benchmarks each time
a FG task completes. The pairs we use are (lbm+namd),
(lib+namd), (lbm+soplex), and (lib+soplex). We refer these
BG workloads as Rotate BG workloads. Figure 5 summa-
rizes the different behaviors of the BG workloads while
using a single core running ferret as a representative FG
workload. The blue bars show the total number of L3 load
misses per thousand FG instructions generated by all 6 cores.

0.0	

0.5	

1.0	

1.5	

2.0	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	

	 fluidanimate	 	 	 raytrace	 	 	 bodytrack	 	 	 ferret	 	 	 streamcluster	 	

M
PK

I	

Ex
ec
u+

on
	 T
im

e	
(s
ec
)	

Workload	

Exec	 Time	 Alone	 Exec	 Time	 Contend	 MPKI	 Alone	 MPKI	 Contend	

Figure 4: Overview of FG Workloads.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

0	

5	

10	

15	

lib	 soplex	 pca	 lbm	
soplex	

rs	 lib	 namd	 bwaves	 lbm	 namd	
FG

	 L
3	
M
is
s	 R

a+
o	

To
ta
l	 L
3	
M
PK

I	

BG	 Workload	

Total	 L3	 MPK-‐FG-‐I	 FG-‐to-‐All	 L3	 Miss	 RaGo	

Figure 5: Overview of BG Workloads.

0%	

2%	

4%	

6%	

8%	

10%	

1.2E+09	

1.3E+09	

1.4E+09	

1.5E+09	

1.6E+09	

1.7E+09	

Er
ro
r	

Cy
cl
e	

Fi,y	 Consecu0ve	 Execu0on	

Execu4on	 Time	 Predic4on	 Error	

Figure 6: Prediction Trace for Raytrace with RS.

The red curve shows the fraction of misses generated by FG
tasks, which can be interpreted as the ratio between FG task
and total memory bandwidth consumption. As can be seen,
the BG workloads cover a wide spectrum of behaviors and
contention pressure. Similar trends are observed when mix-
ing these BG tasks with other FG workloads.

5.2 Predictor Accuracy
Since the throttling actions of Dirigent are guided by the ex-
ecution time predictor, it is important to validate its accu-
racy. Figure 6 shows the execution time, prediction results,
and prediction error for 50 consecutive executions of ray-
trace and RS workload in the baseline configuration (no ex-
plicit resource management). The results shown correspond
to a completion-time prediction that is made about half-way
through a FG task’s execution. Predicted completion closely
tracks the actual completion time. Figure 7 shows the av-
erage predictor accuracy and the completion time standard
deviation normalized to the mean of each workload for all

0%	
10%	
20%	
30%	
40%	
50%	

Ra
#o

	

Workloads	

Average	 Error	 Normalized	 Std	

Figure 7: Prediction Accuracy for all FG-BG mixes.

35 workload combinations we use (combinations of one of
the 5 FG benchmarks with each of the 7 BG workloads).
Average error (ε) is computed as shown in Equation 3 at the
midpoint of each task over 100 consecutive task executions.
The predictor is highly accurate across all these workload
combinations with an overall average error of just 2.4%. As
expected, higher execution time variation poses greater chal-
lenges and predictions tend to be less accurate in such cases;
the 5 points with average error of > 4% all use streamclus-
ter as the FG, with each of the BG we included in the work-
load. Among those, RS gives the highest error rate (12.5%)
and the mix between libquantum and namd gives the lowest
error rate (4.4%). Note that the standard deviation of execu-
tion time in these cases is significantly larger than predictor
errors.

ε =
1

N

N∑
i=1

|predicti −measurei|
measurei

(3)

5.3 Coarse Time Scale QoS Control
To verify the effectiveness of the heuristics used in the coarse
time scale QoS controller in Dirigent, we conducted an ex-
haustive search on cache partitions for 5 arbitrarily chosen
workload mixes and show one of the results, for streamclus-
ter as the FG task and PCA as the BG task in Figure 8. We
chose this combination to present because it is one of the
few workloads in which FG tasks require a larger partition
and therefore stresses the heuristic. As the partition dedi-
cated to the FG tasks grows, the performance of the FG task
improves. The knee of the curve representing this exhaustive
search is at 5 ways. Dirigent’s coarse time scale controller
converges to this same partition after just 32 FG task execu-
tions (5 coarse time scale controller invocations).

5.4 Dirigent Performance
We use five configurations to evaluate the effectiveness and
benefits of Dirigent. In the Baseline configuration all cores
run at the highest frequency and freely contend for resources.
StaticFreq sets the FG cores to run at the highest allowed
frequencies (2GHz) and BG cores to run at the slowest
speed (1.2GHz), giving more resources to FG tasks. Stat-
icBoth sets the best static cache partitioning (corresponding

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	

Ra
#o

	

FG	 Par##on	 Ways	

Exec	 Time	 Mean	

Figure 8: Exhaustive Search on Partition Size.

to Dirigent’s heuristic, which we verified is near-optimal) as
well as the best frequency for the BG cores. DirigentFreq
uses Dirigent’s fine time scale control only and does not
use cache partitioning. Dirigent is the full Dirigent imple-
mentation that combines coarse time scale cache partitioning
with fine time scale frequency control. Note that we omit the
coarse time scale-only configuration of Dirigent because it
performs just slightly worse than StaticBoth because both
use the same partition. Our understanding is that the Stat-
icBoth configuration is very similar to the behavior of Her-
acles [42] in our scenario because the execution time of FG
tasks in our experiments are much shorter than polling inter-
vals and controller’s optimization convergence time in [42];
our workloads also do not exercise the network.

To quantify the benefits of reduced variation in FG task
execution time, we define the deadline for each FG task to be
µBaseline+0.3σBaseline, where µBaseline and σBaseline are
the average and standard deviation of FG completion time
in the Baseline configuration; PARSEC does not define la-
tency goals even though the applications do represent poten-
tial user-facing tasks. We set the deadline for each bench-
mark to be slightly larger than the uncontended run time of a
task but still far smaller than when contention is unmanaged.
In this way Dirigent has the FG run time slack to allow BG
jobs to run. The tradeoff between deadline tightness and sys-
tem throughput is demonstrated later in Section 5.5. For FG
tasks, we focus on the FG success ratio, which is computed
as the fraction of FG task executions that complete within
the deadline defined above. For BG tasks, we report BG per-
formance, which is the total number of instructions executed
during the experiment (across all cores) normalized to Base-
line. We normalize BG throughput to Baseline because run-
ning with no constraints results in the highest BG through-
put.

Single FG process: Figure 9a and Figure 9b report the
performance of both FG and BG tasks in all the workload
mixes with one FG process and five BG processes, respec-
tively. The results are summarized in Figure 10 with arith-
metic mean of FG success rate and harmonic mean of rela-
tive BG throughput.

We make three key observations about these results. First,
while BG performance is high with Basline, the FG success

rate is very poor, averaging just under 60%. Second, while
the (semi-)static mechanisms significantly improve FG com-
pletion rate (to nearly 100% in the case of StaticBoth, BG
performance is severely degraded. On average, BG through-
put is reduced to ∼ 60% that of Baseline. Not shown in the
graphs is that the FG throughput is improved by 7.5% on
average with StaticFreq; this is because more BG tasks are
throttled more than with the other configurations. Third, the
importance of fine time scale control is clearly demonstrated
by both DirigentFreq and Dirigent. Even without cache par-
titioning, DirigentFreq is able to meet the 95% completion
target for all but a few workloads and is able to consistently
deliver better BG performance than the static schemes (85%
of Baseline on average). Finally, Dirigent, which combines
both fine and coarse time scale control, is able to consis-
tently match or exceed both the FG success rate (> 99% on
average and 97% in worst success) and BG throughput of
all other managed schemes simultaneously; the BG through-
put of Dirigent comes very close to the throughput of un-
constrained execution, averaging 92% and never dropping
below 75% of Baseline.

We further look at the execution of one of the workload
mixes, a ferret FG task collocated with five RS BG tasks.
Figure 11 shows the execution time probability density func-
tion curves for the five configurations. Results show that the
curves for Baseline and StaticFreq stretch wide horizontally.
Comparing to the StaticBoth, the DirigentFreq is able to sig-
nificantly reduce execution time variation by moving the two
peaks in StaticBoth’s curve closer. Dirigent is able to further
reshape the curve and merge the two peaks together, achiev-
ing even more predictable performance and better BG job
throughput. Figure 12 demonstrates the distribution of fre-
quencies that DirigenttFreq and Dirigent use for cores run-
ning BG tasks, and show that partitioning the cache signif-
icantly reduces the performance contention on FG perfor-
mance, allowing BG process to run safely at much higher
frequency on average. Overall, Dirigent can achieve 85%
reduction in the standard deviation of execution time of FG
tasks at the cost of only 9% of BG performance loss across
all the workload mixes we tested. DirigentFreq captures part
of the benefits in reducing performance variation, achieving
70% reduction in standard deviation of execution time, but
suffers from higher BG performance loss at 15%.

Concurrent FG Processes: Figure 9c uses the same met-
rics but with workload mixes that have multiple FG pro-
cesses. These detailed per-workload results are summarized
in Figure 13. Due to the large number of possible combina-
tions, it is impractical to exhaustively experiment with all of
them. We therefore select five combinations that cover a low
to high performance variation range in Baseline and measure
the performance of these mixes using a varying number of
concurrent FG tasks. The workloads in Figure 9c are sorted
in ascending order of number of concurrent FG processes

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

	 bodytrack	
bwaves	 	

	 bodytrack	 pca	 	 	 bodytrack	 rs	 	 	 ferret	 bwaves	 	 	 ferret	 pca	 	 	 ferret	 rs	 	 	 fluidanimate	
bwaves	 	

	 fluidanimate	
pca	 	

	 fluidanimate	
rs	 	

	 raytrace	
bwaves	 	

	 raytrace	 pca	 	 	 raytrace	 rs	 	 	 streamcluster	
bwaves	 	

	 streamcluster	
pca	 	

	 streamcluster	
rs	 	

Ra
#o

	

Baseline	 FG	 StaBcFreq	 FG	 StaBcBoth	 FG	 DirigentFreq	 FG	 Dirigent	 FG	

Baseline	 BG	 StaBcFreq	 BG	 StaBcBoth	 BG	 DirigentFreq	 BG	 Dirigent	 BG	

(a) Single BG Workload Mixes

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

	 bodytrack	 lbm	
namd	 	

	 bodytrack	 lbm	
soplex	 	

	 bodytrack	
libquantum	

namd	 	

	 bodytrack	
libquantum	

soplex	 	

	 ferret	 lbm	
namd	 	

	 ferret	 lbm	
soplex	 	

	 ferret	
libquantum	

namd	 	

	 ferret	
libquantum	

soplex	 	

	 fluidanimate	
lbm	 namd	 	

	 fluidanimate	
lbm	 soplex	 	

	 fluidanimate	
libquantum	

namd	 	

	 fluidanimate	
libquantum	

soplex	 	

	 raytrace	 lbm	
namd	 	

	 raytrace	 lbm	
soplex	 	

	 raytrace	
libquantum	

namd	 	

	 raytrace	
libquantum	

soplex	 	

	 streamcluster	
lbm	 namd	 	

	 streamcluster	
lbm	 soplex	 	

	 streamcluster	
libquantum	

namd	 	

	 streamcluster	
libquantum	

soplex	 	

Ra
#o

	

(b) Rotate BG Workload Mixes

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

	 bodytrack	 x1	
libquantum	

soplex	 	

	 bodytrack	 x2	
libquantum	

soplex	 	

	 bodytrack	 x3	
libquantum	

soplex	 	

	 ferret	
x1bwaves	 	

	 ferret	 x2	
bwaves	 	

	 ferret	 x3	
bwaves	 	

	 fluidanimate	
x1	 lbm	 soplex	 	

	 fluidanimate	
x2	 lbm	 soplex	 	

	 fluidanimate	
x3	 lbm	 soplex	 	

	 raytrace	 x1	 rs	 	 	 raytrace	 x2	 rs	 	 	 raytrace	 x3	 rs	 	 	 streamcluster	
x1	 lbm	 namd	 	

	 streamcluster	
x2	 lbm	 namd	 	

	 streamcluster	
x3	 lbm	 namd	 	

Ra
#o

	

(c) Multiple FGs Workload Mixes

Figure 9: Comparison of FG and BG Performance.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Baseline	 Sta2cFreq	 Sta2cBoth	 DirigentFreq	 Dirigent	

Ra
#o

	

Configura#on	

FG	 Ra2o	 BG	 Throughput	

Figure 10: Summary of All Single FG Workload Mixes.

within each pair; the total number of FG and BG processes
is always 6 (the number of cores).

Overall, the results show similar trends and observations
to those exhibited by single-FG process workloads. We dis-
cuss two additional insights. First, each FG task may expe-
rience different levels of contention due to different FG-BG
phase interleavings. This forces the fine-grain controller to
use conservative BG performance settings to try and allow
even the slowest FG task to complete on target. As seen in
Figure 9c, within each FG-BG workload mix with Dirigent-
Freq, the general trend is that BG throughput decreases with

Figure 11: Execution Time Probability Density Function Curve.

each additional FG task. This problem is alleviated by the
introduction of cache partitioning, as it effectively isolates
most of the performance interference between FG and BG
tasks. Second, since all FG tasks share the same partition, in-
creasing the number of FG tasks also increases their perfor-
mance variation. This is shown in Figure 14, where standard

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	

1.2GHz	 1.4GHz	 1.6GHz	 1.8GHz	 2.0GHz	

Pr
ob

ab
ili
ty
	

BG	 Core	 Frequency	

DirigentFreq	 Dirigent	

Figure 12: BG Core Frequency Distribution.

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

Baseline	 Sta2cFreq	 Sta2cBoth	 FineGrain	 Dirigent	

Ra
#o

	

Configura#on	

FG	 Ra2o	 BG	 Throughput	

Figure 13: Summary of All Multiple FG Workload Mixes.

deviation for each configuration is normalized to the value in
the baseline. While the results show increased variance with
more FG processes within each workload mix, Dirigent is
still able to effectively reduce the performance variation with
low BG task performance overhead.

5.5 FG Throughput and BG Performance Tradeoffs
So far we evaluated Dirigent with a fixed FG target execution
time that reflects the baseline FG throughput. We now show
the tradeoff that Dirigent enables between FG task through-
put and BG task performance with precise QoS control. Fig-
ure 15 shows one arbitrarily chosen workload: a single ray-
trace FG process and 5 BG bwaves processes. We gradually
increase the target completion time from the average com-
pletion time in standalone execution until it is larger than the
average Baseline execution time. The blue bars show the av-
erage execution time normalized to the standalone execution
time, the red bars show the standard deviation at each target
normalized to that of Baseline, and the green curves show
the BG task throughput normalized to Baseline.

Dirigent is able to accurately control the execution time
across the entire range of target deadlines; the only excep-
tion is when the target is set at the standalone execution time
because there is no opportunity for collocation without vi-
olating QoS. When the deadline is set higher, Dirigent ex-
ploits opportunities when FG tasks are running faster than
necessary and converts them into BG performance. Impor-
tantly, Dirigent effectively enables the tradeoff between FG
throughput and BG performance at high system utilization
by reducing the variance of FG task execution time. Note
that we do not plot the success rates because Dirigent con-
sistently achieves them at the desired > 99% rate.

6. Related Work
Online QoS Management: Mars et al. proposed an in-
terference characterization methodology and QoS manage-
ment schemes that target data center applications [45, 60].
Heracles is a performance management runtime that uses
multiple control modules leveraging software and hardware
mechanisms to enforce QoS for latency sensitive tasks that
are collocated with batch jobs [42]. Zhang et al. proposed
to identify interference using cycle-per-instruction data, and
the results can be used to enforce QoS by static and man-
ual throttling [62]. The above work is most closely related to
Dirgient, however, these mechanisms use only coarse time
scale statistics and performance variation is not discussed or
addressed. As a result the system lacks the ability to adjust
contention at fine time granularity, which we demonstrate is
crucial to maximizing utilization.

Other related work studies fine-granularity QoS with a
focus on saving the energy of executing only FG tasks. PE-
GASUS improves the energy efficiency of datacenters by
dynamically adjusting the power limit of processors [41].
Adrenaline categorizes queries for target applications and
only speeds up ones that are likely to fail QoS goals [21].
TimeTrader and Rubik exploit request queueing latency vari-
ation and apply any available slack from queueing delay to
FG computation to reduce energy consumption [31, 59].
Suh et al. propose to use various execution time predic-
tion mechanisms to guide frequency scaling to save en-
ergy [5, 40]. In contrast, Dirigent converts variation in the
run time of FG tasks into improved system throughput.

To the best of our knowledge, Dirigent is the first to trade
off the performance of latency-critical jobs that finish sooner
than required with higher system throughput for BG tasks.
A related mechanism proposed by Min et al. tackles fine
time granularity QoS problems for GPUs in heterogeneous
platforms [28]. However, the progress heuristics used for
the GPU were not general and the mechanism proposed is
limited to managing main memory bandwidth contention
between the CPU and GPU.

Interference Analysis: Interference is a well studied prob-
lem and many models and heuristics have been proposed. A
good example is the sophisticated model for predicting mul-
ticore interference proposed by Zhao et al. [64]. However,
this and other prior models do not address deadline-oriented
applications because the prediction is made on coarse time
scales. Further, these analysis techniques require complex
computation that are not suitable for a dynamic lightweight
runtime such as Dirigent [62, 64]. Application Heartbeats is
a general progress report framework [20], our profiler uses
similar concept but on a millisecond scale.

QoS-Aware Scheduling: In addition to the QoS control
mechanisms discussed in Section 3.2, task scheduling across
multiple nodes in a cloud server or cluster can also be used to
manage contention and performance. Kambadur et al. pro-
posed a sample-based interference prediction methodology

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	

	 bodytrack	 x1	
libquantum	

soplex	 	

	 bodytrack	 x2	
libquantum	

soplex	 	

	 bodytrack	 x3	
libquantum	

soplex	 	

	 ferret	
x1bwaves	 	

	 ferret	 x2	
bwaves	 	

	 ferret	 x3	
bwaves	 	

	 fluidanimate	
x1	 lbm	 soplex	 	

	 fluidanimate	
x2	 lbm	 soplex	 	

	 fluidanimate	
x3	 lbm	 soplex	 	

	 raytrace	 x1	 rs	 	 	 raytrace	 x2	 rs	 	 	 raytrace	 x3	 rs	 	 	 streamcluster	
x1	 lbm	 namd	 	

	 streamcluster	
x2	 lbm	 namd	 	

	 streamcluster	
x3	 lbm	 namd	 	

N
or
m
al
iz
ed

	 S
ta
nd

ar
d	
De

vi
a1

on
	 Baseline	 StaCcFreq	 StaCcBoth	 DirigentFreq	 Dirigent	

Figure 14: Normalized Standard Variation of Multiple FG Workload Mixes.

1.02	 1.02	 1.05	 1.08	 1.11	 1.14	 1.16	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	

1.00x	 1.03x	 1.06x	 1.09x	 1.12x	 1.15x	 1.18x	

Ra
#o

s	

Target	 Execu#on	 TIme	

FG	 Time	 Avg	 FG	 Time	 Std	 BG	 Throughput	

Figure 15: Tradeoff Between FG throughput and BG performance

for identifying application pairs whose collocation should be
avoided [30]. SMiTe predicts the SMT-level interference by
profiling interference and sensitivity on each kind of shared
resources to guide cluster scheduler [63]. Lee et al. designed
and implemented a scheduler in the virtual machine hyper-
visor for soft realtime applications [36]. Leverich et al. an-
alyzed the source of QoS degradations of latency-critical
workloads, and devised a new scheduler to handle these is-
sues [37]. Paragon and Quasar are two task schedulers that
classify applications and schedule them into data centers by
performing resource allocation and assignment to minimiz-
ing interference [12, 13]. Q-Clouds and DeepDive are two
QoS-aware scheduler that handle contentions and interfer-
ence in virtual environment [51, 52]. These works are or-
thogonal to Dirigent and Dirigent can be integrated with
these schemes to manage performance on each node.

7. Conclusion
In this work, we expose the problem of performance vari-
ation for latency-critical tasks when collocated with batch
jobs and the associated challenges and opportunities. We
explain how such variation leads to low hardware utiliza-
tion and resource over-provisioning. Our main insight is that
minimizing task-to-task variation offers significant opportu-
nities for improving system utilization without compromis-
ing QoS goals. We present the design, implementation, and
evaluation of the Dirigent lightweight contention manage-
ment runtime to exploit these opportunities. Dirigent is ef-
fective because it can accurately predict the completion time
of a running task at very fine time scales. It can thus control

resources during a task’s execution to meet deadlines and
maximize batch throughput.

We show that Dirigent is particularly well suited for
cloud-oriented applications where it is common to run just
one latency-critical process per node and use batch-oriented
tasks to improve utilization. In this case Dirigent exerts pre-
cise control over completion time and resources to boost uti-
lization by ∼ 30% compared to configurations that are sim-
ilar to previously proposed schemes while providing higher
QoS for the latency-critical tasks. We further show that even
with multiple concurrent latency-critical tasks, Dirigent is
still effective, much more so than alternative techniques, and
always achieves very high deadline success rates (> 98%).

We opted to implement Dirigent using existing hardware
mechanisms and evaluate it on a real machine. Even without
new hardware techniques, Dirigent has low runtime over-
head (< 100µs per invocation) and we are able to demon-
strate the effectiveness and benefits of our techniques. How-
ever, for tasks with very tight latency constraints (. 10ms)
additional hardware support may be required. One limitation
of the current Dirigent implementation is its dependency on
profiling. In this paper we assumed offline profiling but be-
cause of the short profiling duration it can be performed on-
line, though it will require pausing all BG tasks while profil-
ing. In future work, we plan to improve the Dirigent predic-
tion and control algorithms to allow concurrent profiling by
adding interference offsets into the baseline execution time.
A second limitation is that in this first effort with Dirigent,
we limited our evaluation to performance variation caused
by external interference. Accurate predictions of execution
times in the presence of strong input dependence may re-
quire interfaces that extend Application Heartbeats [20] or
program slicing [40]. Finally, we intend to evaluate Dirigent
for parallel applications, where precise control over com-
pletion time reduces the overheads associated with synchro-
nization and load imbalance.

Acknowledgment
We thank Huawei, which partially funded this research, the
anonymous reviewers who provided valuable feedback and
suggestions, and members of the Intel developers forum
community who helped answer questions about use of pro-
cessor features.

References
[1] Alia Atlas and Azer Bestavros. Statistical rate monotonic

scheduling. In Real-Time Systems Symposium, 1998. Proceed-
ings., The 19th IEEE. IEEE, 1998.

[2] Luiz Andres Barroso and Urs Hoelzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale
Machines. Morgan Claypool, 2009.

[3] Christian Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[4] Dominik Brodowski and Nico Golde. CPU Frequency and
Voltage Scaling Code in the Linux kernel.

[5] Tao Chen, Alexander Rucker, and G Edward Suh. Execution
time prediction for energy-efficient hardware accelerators. In
Proceedings of the 48th International Symposium on Microar-
chitecture. ACM, 2015.

[6] Yixin Chen and Li Tu. Density-based clustering for real-
time stream data. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 2007.

[7] Derek Chiou, Prabhat Jain, Srinivas Devadas, and Larry
Rudolph. Dynamic cache partitioning via columnization.
In Proceedings of Design Automation Conference. Citeseer,
2000.

[8] Jason Clemons, Haishan Zhu, Silvio Savarese, and Todd
Austin. Mevbench: A mobile computer vision benchmark-
ing suite. In Workload Characterization (IISWC), 2011 IEEE
International Symposium on. IEEE, 2011.

[9] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao,
David A Patterson, and Krste Asanovic. A hardware
evaluation of cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness. In ACM
SIGARCH Computer Architecture News. ACM, 2013.

[10] Ryan R. Curtin, James R. Cline, Neil P. Slagle, William B.
March, P. Ram, Nishant A. Mehta, and Alexander G. Gray.
MLPACK: A scalable C++ machine learning library. Journal
of Machine Learning Research, 2013.

[11] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 2013.

[12] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters. ACM
SIGARCH Computer Architecture News, 2013.

[13] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management. ACM
SIGPLAN Notices, 2014.

[14] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N
Patt. Fairness via source throttling: a configurable and high-
performance fairness substrate for multi-core memory sys-
tems. In ACM Sigplan Notices. ACM, 2010.

[15] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N
Patt. Prefetch-aware shared resource management for multi-
core systems. ACM SIGARCH Computer Architecture News,
2011.

[16] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso.
Power provisioning for a warehouse-sized computer. In ACM
SIGARCH Computer Architecture News. ACM, 2007.

[17] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G Dres-
linski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, et al.
Sirius: An open end-to-end voice and vision personal assistant
and its implications for future warehouse scale computers. In
Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems. ACM, 2015.

[18] John L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 2006.

[19] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell,
Vineet Chadha, and Jaideep Moses. Rate-based qos tech-
niques for cache/memory in cmp platforms. In Proceedings of
the 23rd international conference on Supercomputing. ACM,
2009.

[20] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio,
Jason E Miller, and Anant Agarwal. Application heartbeats:
a generic interface for specifying program performance and
goals in autonomous computing environments. In Proceed-
ings of the 7th international conference on Autonomic com-
puting. ACM, 2010.

[21] Chang-Hong Hsu, Yunqi Zhang, Michael Laurenzano, David
Meisner, Thomas Wenisch, Jason Mars, Lingjia Tang,
Ronald G Dreslinski, et al. Adrenaline: Pinpointing and rein-
ing in tail queries with quick voltage boosting. In High Perfor-
mance Computer Architecture (HPCA), 2015 IEEE 21st Inter-
national Symposium on. IEEE, 2015.

[22] Ramesh Illikkal, Vineet Chadha, Andrew Herdrich, Ravi Iyer,
and Donald Newell. PIRATE: QoS and performance manage-
ment in CMP architectures. ACM SIGMETRICS Performance
Evaluation Review, 2010.

[23] Intel. Intel Product Information.

[24] Intel. Cache Monitoring Technology and Cache Allocation
Technology.

[25] Intel. Intel 64 and IA-32 Architectures Software Developer
Manuals.

[26] Ravi Iyer. Cqos: a framework for enabling qos in shared
caches of cmp platforms. In Proceedings of the 18th annual
international conference on Supercomputing. ACM, 2004.

[27] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Maki-
neni, Don Newell, Yan Solihin, Lisa Hsu, and Steve Rein-
hardt. Qos policies and architecture for cache/memory in cmp
platforms. ACM SIGMETRICS Performance Evaluation Re-
view, 2007.

[28] Min Kyu Jeong, Mattan Erez, Chander Sudanthi, and Nigel
Paver. A qos-aware memory controller for dynamically bal-
ancing gpu and cpu bandwidth use in an mpsoc. In Pro-
ceedings of the 49th Annual Design Automation Conference.
ACM, 2012.

[29] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Mike Sulli-
van, Ikhwan Lee, and Mattan Erez. Balancing dram locality
and parallelism in shared memory cmp systems. In High Per-
formance Computer Architecture (HPCA), 2012 IEEE 18th
International Symposium on. IEEE, 2012.

[30] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A.
Kim. Measuring interference between live datacenter applica-

tions. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
SC ’12, 2012.

[31] Harshad Kasture, Davide B Bartolini Nathan Beckmann, and
Daniel Sanchez. Rubik: Fast analytical power management
for latency-critical systems. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture. ACM, 2015.

[32] Harshad Kasture and Daniel Sanchez. Ubik: efficient cache
sharing with strict qos for latency-critical workloads. ACM
SIGARCH Computer Architecture News, 2014.

[33] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David
Brooks. System level analysis of fast, per-core dvfs using on-
chip switching regulators. In High Performance Computer Ar-
chitecture, 2008. HPCA 2008. IEEE 14th International Sym-
posium on. IEEE, 2008.

[34] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-
Balter. Atlas: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In High Perfor-
mance Computer Architecture (HPCA), 2010 IEEE 16th In-
ternational Symposium on. IEEE, 2010.

[35] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat
Bhargava. A survey of computation offloading for mobile sys-
tems. Mobile Networks and Applications, 2013.

[36] Min Lee, AS Krishnakumar, Parameshwaran Krishnan,
Navjot Singh, and Shalini Yajnik. Supporting soft real-time
tasks in the xen hypervisor. In ACM Sigplan Notices. ACM,
2010.

[37] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, 2014.

[38] Chit-Kwan Lin and H. T. Kung. Mobile app acceleration via
fine-grain offloading to the cloud. In 6th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 14). USENIX
Association, 2014.

[39] Fang Liu, Xiaowei Jiang, and Yan Solihin. Understanding
how off-chip memory bandwidth partitioning in chip mul-
tiprocessors affects system performance. In High Perfor-
mance Computer Architecture (HPCA), 2010 IEEE 16th In-
ternational Symposium on. IEEE, 2010.

[40] Daniel Lo, Taejoon Song, and G Edward Suh. Prediction-
guided performance-energy trade-off for interactive applica-
tions. In Proceedings of the 48th International Symposium on
Microarchitecture. ACM, 2015.

[41] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Bar-
roso, and Christos Kozyrakis. Towards energy proportional-
ity for large-scale latency-critical workloads. In Proceeding
of the 41st annual international symposium on Computer ar-
chitecuture. IEEE Press, 2014.

[42] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy
Ranganathan, and Christos Kozyrakis. Heracles: improv-
ing resource efficiency at scale. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture.
ACM, 2015.

[43] Ying Lu, Tarek Abdelzaher, Chenyang Lu, and Gang Tao.
An adaptive control framework for qos guarantees and its

application to differentiated caching. In Quality of Service,
2002. Tenth IEEE International Workshop on. IEEE, 2002.

[44] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu,
Bowen Huang, Tianni Xu, Zhicheng Yao, Yun Chen, Haibin
Wang, et al. Supporting differentiated services in comput-
ers via programmable architecture for resourcing-on-demand
(pard). In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems. ACM, 2015.

[45] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and
Mary Lou Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In Pro-
ceedings of the 44th annual IEEE/ACM International Sympo-
sium on Microarchitecture. ACM, 2011.

[46] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Pow-
ernap: Eliminating server idle power. In Proceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XIV. ACM, 2009.

[47] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N Patt.
Predicting performance impact of dvfs for realistic memory
systems. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Com-
puter Society, 2012.

[48] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur
Mutlu, Mahmut Kandemir, and Thomas Moscibroda. Reduc-
ing memory interference in multicore systems via application-
aware memory channel partitioning. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. ACM, 2011.

[49] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory
access scheduling for chip multiprocessors. In Proceedings
of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2007.

[50] Onur Mutlu and Thomas Moscibroda. Parallelism-aware
batch scheduling: Enhancing both performance and fairness
of shared dram systems. In ACM SIGARCH Computer Archi-
tecture News. IEEE Computer Society, 2008.

[51] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-
clouds: managing performance interference effects for qos-
aware clouds. In Proceedings of the 5th European conference
on Computer systems. ACM, 2010.

[52] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan
Kostic, and Ricardo Bianchini. Deepdive: Transparently iden-
tifying and managing performance interference in virtualized
environments. Technical Report 183449, EPFL, 2013.

[53] Moinuddin K Qureshi and Yale N Patt. Utility-based
cache partitioning: A low-overhead, high-performance, run-
time mechanism to partition shared caches. In Proceedings
of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2006.

[54] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Pa-
paefthymiou, Kevin P Pipe, Thomas F Wenisch, and Milo MK
Martin. Computational sprinting. In High Performance Com-
puter Architecture (HPCA), 2012 IEEE 18th International
Symposium on. IEEE, 2012.

[55] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable
and efficient fine-grain cache partitioning. In ACM SIGARCH
Computer Architecture News. ACM, 2011.

[56] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin,
Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco Cac-
camo, John Lehoczky, and Aloysius K Mok. Real time
scheduling theory: A historical perspective. Real-time sys-
tems, 2004.

[57] Techspot. Facebook to build a $1 billion wind-powered data
center in Fort Worth.

[58] Hiroyuki Usui, Lavanya Subramanian, Kevin Chang, and
Onur Mutlu. Squash: Simple qos-aware high-performance
memory scheduler for heterogeneous systems with hardware
accelerators. arXiv preprint arXiv:1505.07502, 2015.

[59] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and
TN Vijaykumar. Timetrader: Exploiting latency tail to save
datacenter energy for online search. In Proceedings of the 48th
International Symposium on Microarchitecture. ACM, 2015.

[60] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.
Bubble-flux: Precise online qos management for increased
utilization in warehouse scale computers. In ACM SIGARCH
Computer Architecture News. ACM, 2013.

[61] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Cac-
camo, and Lui Sha. Memguard: Memory bandwidth reserva-
tion system for efficient performance isolation in multi-core
platforms. In Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), 2013 IEEE 19th. IEEE, 2013.

[62] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo
Gokhale, and John Wilkes. Cpi2: Cpu performance isolation
for shared compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13,
New York, NY, USA, 2013. ACM.

[63] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and
Lingjia Tang. Smite: Precise qos prediction on real-system
smt processors to improve utilization in warehouse scale com-
puters. In Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-47, 2014.

[64] Jiacheng Zhao, Huimin Cui, Jingling Xue, Xiaobing Feng,
Youliang Yan, and Wensen Yang. An empirical model for
predicting cross-core performance interference on multicore
processors. In Proceedings of the 22Nd International Confer-
ence on Parallel Architectures and Compilation Techniques,
PACT ’13, 2013.

[65] Yanqi Zhou and David Wentzlaff. The sharing architecture:
sub-core configurability for iaas clouds. In ACM SIGARCH
Computer Architecture News. ACM, 2014.

