
Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems

Min Kyu Jeong*, Doe Hyun Yoon†, Dam Sunwoo‡, Michael Sullivan*, Ikhwan Lee*, and Mattan Erez*

* Dept. of Electrical and Computer Engineering, The University of Texas at Austin
† Intelligent Infrastructure Lab, Hewlett-Packard Labs

‡ ARM Inc.

{mkjeong, mbsullivan, ikhwan, mattan.erez}@mail.utexas.edu
doe-hyun.yoon@hp.com dam.sunwoo@arm.com

Abstract

Modern memory systems rely on spatial locality to
provide high bandwidth while minimizing memory device
power and cost. The trend of increasing the number of cores
that share memory, however, decreases apparent spatial lo-
cality because access streams from independent threads are
interleaved. Memory access scheduling recovers only a
fraction of the original locality because of buffering lim-
its. We investigate new techniques to reduce inter-thread
access interference. We propose to partition the internal
memory banks between cores to isolate their access streams
and eliminate locality interference. We implement this by
extending the physical frame allocation algorithm of the
OS such that physical frames mapped to the same DRAM
bank can be exclusively allocated to a single thread. We
compensate for the reduced bank-level parallelism of each
thread by employing memory sub-ranking to effectively in-
crease the number of independent banks. This combined
approach, unlike memory bank partitioning or sub-ranking
alone, simultaneously increases overall performance and
significantly reduces memory power consumption.

1 Introduction

Modern main memory systems exploit spatial locality to
provide high bandwidth while minimizing memory device
power and cost. Exploiting spatial locality improves band-
width and efficiency in four major ways: (1) DRAM ad-
dresses can be split into row and column addresses which
are sent to the memory devices separately to save address
pins; (2) access granularity can be large to amortize con-
trol and redundancy overhead; (3) page mode is enabled,
in which an entire memory row is saved in the row-buffer

c©2012 IEEE HPCA-18 New Orleans, Louisiana USA. Personal use
of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, cre-
ating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

so that subsequent requests with the same row address need
only send column addresses; and (4) such row-buffer hit re-
quests consume significantly less energy and have lower la-
tency because the main data array is not accessed.

Many applications present memory access patterns with
high spatial locality and benefit from the efficiency and per-
formance enabled by page mode accesses. However, with
the increasing number of cores on a chip, memory access
streams have lower spatial locality because access streams
of independent threads may be interleaved at the memory
controller [2, 23]. Figure 1 shows, for example, the impact
of access interleaving on the spatial locality of the SPEC
CPU2006 benchmark lbm. The DRAM row-buffer hit rate
of one lbm instance is shown for three different workload
mixes. When lbm runs alone, 98% of the accesses hit in the
row-buffer. When 4 instances of lbm run together, however,
the hit rate drops to 50%. The spatial locality of an inter-
leaved stream can drop even further depending on the ap-
plication mix, because some applications are more intrusive
than others. The SPEC CPU2006 benchmark mcf, for ex-
ample, is memory intensive but has very poor spatial local-
ity, and thus severely interferes with the memory accesses of
other applications. In a multi-programmed workload con-
taining mcf, the row-buffer hit rate of lbm drops further to
35%. Loss of spatial locality due to inter-thread interference
increases energy consumption because of additional row ac-
tivations, increases the average access latency, and typically
lowers the data throughput of the DRAM system.

Out-of-order memory schedulers reorder memory oper-
ations to improve performance and can potentially recover
some of the lost spatial locality. However, reclaiming lost
locality is not the primary design consideration for these
schedulers. Instead, they are designed either to simply
maximize the memory throughput for a given interleaved
stream (e.g., FR-FCFS [20]), or to maximize some notion
of fairness and application throughput (e.g., ATLAS [9] and
TCM [10]). In other words, improved scheduling can some-
what decrease the detrimental impact of interleaving but
does not address the issue at its root. Furthermore, the effec-
tiveness of memory access scheduling in recovering local-
ity is constrained by the limited scheduling buffer size and

1

0%

20%

40%

60%

80%

100%

lbm lbm x 4 lbm,libq,mcf,omnetpp

D
R

A
M

 R
B

 H
it

 R
at

e

Figure 1: DRAM row-buffer hit rate of lbm when
run alone, with 4 instances, and when run with
other applications. FR-FCFS scheduling is used
for higher hit rate. See Section 4 for details of the
simulation setup.

the (often large) arrival interval of requests from a single
stream. As the number of cores per chip grows, reordering
will become less effective because the buffer size does not
scale and contention for the shared on-chip network can in-
crease the request arrival interval of each thread. With an
increased arrival interval, subsequent spatially adjacent re-
quests have a higher chance of missing the scheduling win-
dow, and the row is precharged prematurely.

We investigate a fundamentally different approach that
addresses locality interference at its root cause. Rather
than recovering limited locality with scheduling heuristics,
we propose to reduce (and possibly eliminate) row-buffer
interference by restricting interfering applications to non-
overlapping sets of memory banks. In some cases, however,
restricting the number of banks available to an application
can significantly degrade its performance as fewer banks
are available to support concurrent overlapping memory re-
quests. This is of particular concern because the total num-
ber of banks available to a processor is growing more slowly
than the total number of threads it can concurrently execute.
Therefore, we combine bank partitioning with memory sub-
ranking [24, 27, 3, 2, 4], which effectively increases the
number of independent banks. Together, bank partitioning
and memory sub-ranking offer two separate tuning knobs
that can be used to balance the conflicting demands for row-
buffer locality and bank parallelism. We show that this pow-
erful combination, unlike memory sub-ranking or bank par-
titioning alone, is able to simultaneously increase overall
performance and significantly reduce memory power con-
sumption.

The rest of this paper is organized as follows: Section
2 discusses how the DRAM address mapping affects local-
ity interference and describes our bank partitioning mecha-
nism. Section 3 describes how bank partitioning reduces the
available DRAM bank-level parallelism, and investigates
how sub-ranking can recover the lost parallelism. Section
4 describes our evaluation methodology, and Section 5 dis-
cusses results. Section 6 reviews related work, and Sec-
tion 7 concludes.

2 Bank Partitioned Address Mapping
Row-buffer locality interference in multicore processors

results from the mechanisms used to map the addresses of
threads onto physical memory components. Current map-

ping methods evolved from uniprocessors, which do not
finely interleave independent address streams. These meth-
ods are sub-optimal for chip multi-processors where mem-
ory requests of applications can interfere with one another.
In this section, we first describe the mechanism commonly
in use today and then discuss our proposed mapping mech-
anism that simultaneously improves system throughput and
energy efficiency.
2.1 Current Shared-Bank Address Mapping

In traditional single-threaded uniprocessor systems with
no rank-to-rank switching penalty, memory system perfor-
mance increases monotonically with the number of avail-
able memory banks. This performance increase is due to
the fact that bank-level parallelism can be used to pipeline
memory requests and hide the latency of accessing the in-
herently slow memory arrays. To maximize such overlap,
current memory architectures interleave addresses among
banks and ranks at fine granularity in an attempt to distribute
the accesses of each thread across banks as evenly as possi-
ble. However, because row-buffer locality can be exploited
to improve efficiency and performance, it is common to map
adjacent physical addresses to the same DRAM row so that
spatially close future accesses hit in the row-buffer. There-
fore, the granularity of bank interleaving in this case is equal
to the DRAM row size.

Figure 2 gives an example of the typical row-interleaved
mapping from a virtual address, through a physical address,
to a main memory cell. The mapping given in Figure 2(a)
is for a simple memory system (1 channel, 1 rank, and
4 banks) and is chosen to simplify the following discus-
sion. The mapping in Figure 2(b) is given for a more re-
alistic DDR3 memory system with 2 channels, 4 ranks, and
8 banks. When two threads concurrently access memory,
both threads may access the same memory bank because
the address space of each thread maps evenly across all
banks. Figure 2(c) depicts the full address translation pro-
cess and shows how two threads with the simple mapping
(Figure 2(a)) can map to the same bank simultaneously.
When thread P0 and P1 accesses their virtual pages 2 and
3, they conflict in banks 2 and 3. Bank conflicts, such as
this one, thrash the row-buffers and can significantly reduce
the row-buffer hit rate. The likelihood of this type of in-
terference grows with the number of cores as more access
streams are interleaved.
2.2 Bank Partitioned Address Mapping

If independent threads are not physically mapped to the
same bank, inter-thread access interference cannot occur.
We call this interference avoidance mechanism bank par-
titioning as proposed by Mi et al. [13]. Figure 3(a) gives
an example address mapping scheme for a simple system
which utilizes bank partitioning. In this example, bit 14 of
the physical address denotes the core ID. Core 0 is allocated
physical frames {0, 1, 4, 5, 8, 9, ...}, and core 1 is allocated
frames {2, 3, 6, 7, 10, 11, ...}. This mapping partitions the
banks into two sets such that processes running on differ-
ent cores are constrained to disjoint banks, thus avoiding
row-buffer interference. Figure 3(c) shows the correspond-
ing change in virtual page layout in DRAM and illustrates

2

Virtual Address

Physical Address

DRAM Address Bit-mask

… 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

Physical Frame Number Frame Offset

Row Bank Column

Bit index

(a) Virtual to physical to DRAM address mapping scheme for a simple memory system.

Virtual Address

Physical Address

DRAM Address Bit-mask

… 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

Physical Frame Number Frame Offset

Row Rank Bank Column Ch Column

Bit index

(b) Generalized Virtual to physical to DRAM address mapping scheme.

Page # Frame #
0 x00
1 x01
2 x02
3 x03

Frame Table Page Table P0

Frame # DRAM Addr
x00 Bank 0, Row 0
x01 Bank 1, Row 0
x02 Bank 2, Row 0
x03 Bank 3, Row 0
x04 Bank 0, Row 1
x05 Bank 1, Row 2
… ….

x40 Bank 0, Row 16
x41 Bank 1, Row 16
x42 Bank 2, Row 16
x43 Bank 3, Row 16

x00

x04

x40

Bank 0 Bank 1 Bank 2 Bank 3

Row 0

Row 1

…

Row 16

x01

x05

x41

x02

x06

x42

x03

x07

x43

Page # Frame #
0 x04
1 x05
2 x42
3 x43

Page Table P1

Physical Frame Layout in DRAM

(c) The layout of virtual pages allocated to each process in the DRAM banks according to the map (a).

Figure 2: Conventional address mapping scheme

how bank interference is eliminated. Virtual pages in P0
and P1 are mapped to only banks {0, 1} and {2, 3}, respec-
tively. Therefore, they do not share row-buffers and cannot
interfere with one another. Figure 4 gives an example of
memory behavior with and without bank partitioning. P0
and P1 concurrently access their virtual page #2 in an inter-
leaved manner; bank partitioning eliminates the precharge
commands and the second activate command for P0. This
improves both throughput and power efficiency relative to
the memory behavior using conventional frame allocation.

Figure 3(b) shows a generalized bank partitioning ad-
dress mapping scheme for a typical DDR3 memory system
with 2 channels, 4 ranks, and 8 banks. Different colors rep-
resent independent groups of banks. Given a number of col-
ors, there is a wide decision space of allocating colors to
processes. We can imagine an algorithm that allocates col-
ors depending on the varying applications’ need for bank-
level parallelism. However, this study uses a static parti-
tion which assigns an equal number of colors to each core.
Such static partitioning does not require profiling of work-
loads and is robust to dynamic workload changes. We find
that there is a diminishing return in increasing the number
of banks that a modern out-of-order core can exploit from
more bank-level parallelism. For realistic modern memory
system configurations which have internal banks and con-
sist of multiple channels and ranks, sub-ranking can com-
pensate for reduced per-thread bank count. More details on
bank-level parallelism will be discussed in Section 3.

Note that the mapping between physical and DRAM ad-
dresses stays the same, allowing the address decoding logic

in the memory controller to remain unchanged. Bank iso-
lation is entirely provided by the virtual to physical address
mapping routine of the operating system. Therefore, when a
core runs out of physical frames in colors assigned to it, the
OS can allocate different colored frames at the cost of re-
duced isolation. The decision of whose color the frames are
spilled to can be further explored, but is beyond the scope
of this paper.

XOR-permuted bank indexing is a common memory op-
timization which reduces bank conflicts for cache-induced
access patterns [26]. Without any permutation, the set in-
dex of a physical address contains the bank index sent to
DRAM. This maps all cache lines in a set to the same mem-
ory bank, and guarantees that conflict-miss induced traffic
and write-backs will result in bank conflicts. XOR-based
permutation takes a subset of the cache tag and hashes it
with the original bank index such that lines in the same
cache set are mapped across all banks.

XOR-permuted bank indexing nullifies color-based bank
partitioning and re-scatters the frames of a thread across all
banks. We use a technique proposed by Mi et al.[13] to
maintain bank partitioning. Instead of permuting the mem-
ory bank index, we permute the cache set index. In this
way, a single color still maps to the desired set of banks. At
the same time, cache lines within a set are mapped across
multiple banks and caches sets are not partitioned.

3 Bank-Level Parallelism
Bank partitioning reduces the number of banks available

to each thread. This section examines the impact that re-

3

Virtual Address

Physical Address

DRAM Address Bit-mask

… 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

Physical Frame Number CID PFN Frame Offset

Row Bank Column

Bit index

(a) Virtual to physical to DRAM address mapping scheme for a simple memory system.

Virtual Address

Physical Address

DRAM Address Bit-mask

… 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

Physical Frame Number Colors PFN Frame Offset

Row Rank Bank Column Ch Column

Bit index

(b) Generalized Virtual to physical to DRAM address mapping scheme.

Page # Frame #
0 x00
1 x01
2 x04
3 x05

Frame TablePage Table P0

Frame # DRAM Addr
x00 Bank 0, Row 0
x01 Bank 1, Row 0
x02 Bank 2, Row 0
x03 Bank 3, Row 0
x04 Bank 0, Row 1
x05 Bank 1, Row 2
… ….

x40 Bank 0, Row 16
x41 Bank 1, Row 16
x42 Bank 2, Row 16
x43 Bank 3, Row 16

x00

x04

x40

Bank 0 Bank 1 Bank 2 Bank 3

Row 0

Row 1

…

Row 16

x01

x05

x41

x02

x06

x42

x03

x07

x43

Page # Frame #
0 x02
1 x03
2 x42
3 x43

Page Table P1

Physical Frame Layout in DRAM

(c) The layout of virtual pages allocated to each process in the DRAM banks according to the map (a).

Figure 3: Address mapping scheme that partitions banks between processes.

A R

D

P A R

D

P A R

D

A R

D

A R

D

R

D

P0 P1 P0

Bank 2
Row 0

Bank 2
Row 16

Bank 2
Row 0

Bank 0
Row 1

Bank 2
Row 16

(a) Conventional Frame Allocation

(b) Bank Partitioned Frame Allocation

CMD

DATA

CMD

DATA

Figure 4: Benefits of bank partitioning. The upper
diagram corresponds to Figure 2(c), and the lower
diagram corresponds to Figure 3(c). A, R, P, and
D stand for activate, read, precharge, and data, re-
spectively. The row-buffer is initially empty.

duced bank-level parallelism has on thread performance,
and investigates the ability of memory sub-ranking to add
more banks to the system.

3.1 Bank-level Parallelism

The exploitation of bank-level parallelism is essential to
modern DRAM system performance. The memory system
can hide the long latencies of row-buffer misses by overlap-
ping accesses to many memory banks, ranks, and channels.

In modern out-of-order processor systems, a main mem-
ory access which reaches the head of the reorder buffer
(ROB) will cause a structural stall. Given the disparity
of off-chip memory speeds, most main memory accesses
reach the head of the ROB, negatively impacting perfor-
mance [8]. Furthermore, memory requests that miss in
the open row-buffer require additional precharge and acti-
vate latencies which further stall the waiting processor. If a
thread with low spatial locality generates multiple memory
requests to different banks, they can be accessed in parallel
by the memory system. This hides the latency of all but the
first memory request, and can dramatically increase perfor-
mance.

A thread, especially one with low spatial locality, can
benefit from many banks up to the point where its latency
is completely hidden. With DDR3-1600, a row-buffer miss
takes about 33 DRAM clock cycles before it returns data (in
the following 4 DRAM clock cycles). Therefore, to com-
pletely hide the latency of subsequent requests, a thread
needs to have 8 banks working in parallel 1 2. In general,
as more requests are overlapped, the CPU will stall for less
time and performance will increase.

While bank-level parallelism undoubtedly improves per-
formance, its benefits have a limit. After the available par-

1tFAW limits the number of activate commands to 6 per row-buffer
miss latency, due to power limitations. Also, tRRD has increased so that
activates should be separated by more than 4-cycle data burst, causing idle
cycles on the data bus in the case that all requests miss in the row-buffer.

2Since a row-buffer miss takes a constant latency, more bank-level par-
allelism is needed with faster interfaces such as DDR3-1866 and 2133.

4

0.9

1.1

1.3

1.5

1.7

1.9

2x1 4x1 8x1 8x2 8x4 8x8 8x16 Sp
ee

d
u

p
 o

ve
r

2
 b

an
ks

 s
ys

te
m

Number of banks X Number of ranks
lbm milc soplex libquantum
mcf omnetpp leslie3d sphinx3
sjeng bzip2 astar hmmer
h264ref namd

Figure 5: Normalized application execution time
with varying number of banks.

allelism can hide memory latencies, there is no further ben-
efit to increasing the number of banks. Figure 5 shows ap-
plications’ sensitivity to the number of banks in the mem-
ory system. Most applications give peak performance at
8 or 16 banks. After this point, applications show no fur-
ther improvement or even perform worse, due to the 2 cycle
rank-to-rank switching delay. lbm is an outlier that benefits
beyond 16 banks. lbm shows a higher row-buffer hit-rate
as the number of banks increases– it accesses multiple ad-
dress streams concurrently, and additional banks keep more
row-buffers open and can fully exploit each stream’s spatial
locality.

3.2 Sub-ranking

The most straightforward way to retain sufficient bank-
level parallelism with bank partitioning is to increase the
total number of banks in the memory system. The total
number of banks in the system is equal to the product of
the number of channels, the number of ranks per channel,
and the number of internal banks per chip. Unfortunately,
increasing the number of available banks is more expensive
than simply adding extra DIMMs.

There are a number of factors which complicate the addi-
tion of more memory banks to a system. First, and most fun-
damentally, paying for additional DRAM chips and power
just to increase the number of banks is not a cost-efficient
solution for system designers. Also, the number of channels
is limited by the available CPU package pins. Furthermore,
when fine-grained channel interleaving is used to maximize
data link bandwidth, the contribution of the channel count
to the effective number of banks is limited. In addition,
the number of ranks per channel is constrained by signal
integrity limitations. Point-to-point topologies as used in
FB-DIMMs [12] can overcome this problem, but come at a
cost of additional latency and power consumption. Finally,
adding internal banks to each DRAM chip requires expen-
sive circuitry changes. Considering the extreme competi-
tion and low margin of the DRAM market, more internal

banks would be difficult to achieve in a cost effective man-
ner. For these reasons, with continued device scaling and
the recent trend of increasing core count, future systems are
expected to have higher core to bank ratio than current sys-
tems.

We propose an alternative approach to increase the bank-
level parallelism without adding expensive resources. We
employ DRAM sub-ranking [2, 27, 24, 25] to effectively in-
crease the number of banks available to each thread. DRAM
sub-ranking breaks a wide (64-bit) rank into narrower (8-
bit, 16-bit, or 32-bit) sub-ranks, allowing individual control
of each sub-rank. In the conventional memory system, all
banks within a rank work in unison and hold the same row.
In the 32-bit sub-ranked system, two groups of four banks
are independent and can hold different rows. By controlling
the sub-ranks independently, multiple long-latency misses
can overlap, effectively increasing the available bank-level
parallelism. However, since fewer devices are involved in
each request, sub-ranked DRAM takes more reads (and thus
a longer latency) to complete the same size of request. Al-
though narrow 16-bit and 8-bit sub-ranks can provide abun-
dant bank-level parallelism, additional access latencies due
to sub-ranking become prohibitive. Given a 4GHz proces-
sor, 16-bit and 8-bit sub-ranks take 40 and 80 additional
CPU cycles, respectively, to access main memory. In addi-
tion, narrow sub-ranks put greater pressure on the address
bus, which could impact performance or necessitate expen-
sive changes to DRAM. Accordingly, we use 32-bit sub-
ranks to balance bank-level parallelism and access latency,
and avoid the need for extra address bus bandwidth.

4 Evaluation Methodology

We evaluate our proposed bank partitioning and sub-
ranking scheme using Zesto, a cycle-level x86 out-of-order
processor simulator [11], and a detailed in-house DRAM
simulator [7]. Zesto runs user space applications bare-metal
and emulates system calls. We extend the physical frame
allocation logic of Zesto to implement bank partitioning
among cores as presented in Section 2.2. Our DRAM simu-
lator supports sub-ranked memory systems. It models mem-
ory controllers and DRAM modules faithfully, simulating
the buffering of requests, scheduling of DRAM commands,
contention on shared resources (such as address/command
and data buses), and all latency and timing constraints of
DDR3 DRAM. It also supports XOR interleaving of bank
and sub-rank index to minimize conflicts [26], which is
used for the baseline shared-bank configuration and re-
placed with cache-set index permutation described in 2.2
for bank-partitioned configurations.

System Configuration

Table 1 summarizes the system parameters of our simu-
lated systems. We simulate the following 4 configurations
to evaluate our proposed mechanism.

5

Table 1: Simulated system parameters

Processor 8-core, 4GHz x86 out-of-order, 4-wide
L1 I-caches 32KiB private, 4-way, 64B line size, 2-cycle
L1 D-caches 32KiB private, 8-way, 64B line size, 2-cycle
L2 caches 256KiB private for instruction and data, 8-way

64B line size, 6-cycle
L3 caches 8MiB shared, 16-way, 64B line size, 20-cycle
Memory FR-FCFS scheduling, open row policy
controller 64 entries read queue, 64 entries write queue
Main memory 2 channels, 2 ranks / channel, 8 banks / rank

8 x8 DDR3-1600 chips / rank
All parameters from the Micron datasheet [14]

1. shared: Baseline shared-bank system.
2. bpart: Banks partitioned among cores. Each core

receives consecutive banks from one rank.
3. sr: Ranks split into two independent sub-ranks.
4. bpart+sr: Bank partitioning with sub-ranking used

together.

Power models
We estimate DRAM power consumption using a power
model developed by the Micron Corporation [1]. For pro-
cessor power, we use the IPC-based estimation presented
in [2]: the maximum TDP of a 3.9GHz 8-core AMD bull-
dozer processors is reported as 125W; half of the maximum
power is assumed to be static (including leakage) and the
other half is dynamic power that is proportional to IPC. Our
study focuses on main memory and, as such, our mecha-
nisms have a minimal impact on the core power.

Workloads
We use multi-programmed workloads consisting of bench-
marks from the SPEC CPU2006 suite [22] for evaluation.
Our evaluation is limited to multi-programmed workloads
due to the limitation of our infrastructure. The principle of
placing memory regions that interfere in access scheduling
in different banks to better exploit spatial locality, however,
applies to both multi-programming and multi-threading.
Identifying conflicting regions can be more challenging
with multi-threading, yet doable (e.g., parallel domain de-
composition can indicate bank partitions; and thread-private
data is often significant).

To reduce simulation time, we use SimPoint [5] and de-
termine a representative 200 million instruction region from
each application. Memory statistics from identified region
are used to guide the mix of applications in our multi-
programmed workloads. Table 2 summarizes the charac-
teristics of each application. Some benchmarks are not in-
cluded in our evaluation due to limitations of Zesto.

Two key application characteristics which are perti-
nent to our evaluation are the memory access intensity
and the row-buffer spatial locality. The memory access
intensity, represented by last-level cache misses-per-kilo-
instructions(LLC MPKI), is an indicator of how much an

Table 2: Benchmarks statistics when running on
the baseline. IPC: Instructions per cycle, LLC
MPKI: Last level-cache misses per 1000 instruc-
tions, RB Hit Rate: Row-buffer hit rate, and Mem
BW: Memory bandwidth used in MiB/S.

Benchmark IPC LLC MPKI RB Hit Rate Mem BW

lbm 0.71 12.80 97% 3394.56
milc 0.69 16.15 82% 3576.32
soplex 0.53 20.88 90% 3246.08
libquantum 0.53 15.64 98% 2967.04
mcf 0.54 16.15 10% 2258.94
omnetpp 0.69 9.51 49% 2136.83
leslie3d 0.73 8.04 89% 1942.53
sphinx3 1.03 0.66 77% 171.72
sjeng 0.81 0.68 17% 141.49
bzip2 0.94 0.49 82% 114.48
gromacs 1.35 0.54 96% 88.76
astar 0.91 0.17 62% 36.07
hmmer 1.00 0.13 97% 34.20
h264ref 0.71 0.16 81% 28.03
namd 1.09 0.09 91% 23.25

application is affected by the memory system performance.
We focus most our evaluation on workloads that include
memory intensive applications.

The spatial locality of application, represented by the
row-buffer hit rate, is another key characteristic. Applica-
tions with high row-buffer hit rates suffer the most from
row-buffer locality interference; conversely, they stand to
benefit the most from bank partitioning. On the other hand,
applications with low row-buffer hit rates rely on bank-level
parallelism, and may be adversely affected by any reduction
in the number of available banks.

Among the memory-intensive benchmarks, mcf and
omnetpp have low spatial locality. libquantum, lbm,
milc, soplex and leslie3d all demonstrate high spa-
tial locality in the absence of interference.

Table 3 shows the mix of benchmarks chosen for our
multi-programmed workloads. Unless otherwise noted, all
benchmark mixes contain programs with high memory in-
tensity. Group HIGH consists of workloads with high spa-
tial locality. Group MIX is a mixed workload of pro-
grams with both high and low spatial locality. Group
LOW consists of workloads with low spatial locality. Fi-
nally, group LOW BW is composed of workloads that con-
tain non-memory-intensive benchmarks to see the effect of
our mechanisms on compute-bound workloads. Each mix
in the table contains one, two, or four benchmarks. These
benchmark mixes are replicated to have eight benchmarks
to run on each of the eight cores in our simulated system.

Metrics

To measure system throughput, we use Weighted Speedup
(WS) [21], as defined by Equation 1. IPCalone and
IPCshared are the IPC of an application when it is run
alone and in a mix, respectively. The number of applica-
tions running on the system is given by N .

6

Table 3: Multi-programmed workloads composi-
tion. Workloads are then replicated to have 8 pro-
grams per mix. RBH : Row-buffer hit rate.

Memory Intensive Memory non-intensive

Workload High RBH Low RBH High RBH Low RBH

HIGH
H1 lbm,milc,soplex,libq
H2 lbm,milc,libq,leslie3d
H3 lbm,milc,soplex,leslie3d
H4 lbm,soplex,libq,leslie3d
H5 milc,soplex,libq,leslie3d

MIX
M1 milc,libq,leslie3d mcf
M2 lbm,milc,libq omnetpp
M3 soplex,leslie3d mcf,omnetpp
M4 lbm,libq mcf,omnetpp
M5 milc,leslie3d mcf,omnetpp
M6 soplex,milc mcf,omnetpp
M7 libq,soplex mcf,omnetpp

LOW
L1 mcf
L2 mcf,omnetpp
L3 omnetpp

LOW BW
LB1 leslie3d,libq,soplex bzip2
LB2 milc,leslie3d omnetpp sphinx3
LB3 milc,soplex sphinx3 sjeng
LB4 lbm mcf bzip2 sjeng
LB5 libq omnetpp bzip2 sjeng

WS =

N−1∑
i=0

IPCshared
i

IPCalone
i

(1)

System power efficiency, expressed in terms of through-
put (WS) per unit power, is also reported. System power
is the combined power consumption of cores, caches, and
DRAM. Since we adopt a multi-programmed simulation en-
vironment, we report power efficiency, rather than energy
efficiency. Each application starts executing at its predeter-
mined execution point. We simulate the mix until the slow-
est application in the mix executes the desired number of in-
structions. Statistics per application are gathered only until
each core (application) reaches the fixed number of instruc-
tions. However, we keep executing the faster applications
to correctly simulate the contention for shared resources.
When IPCs are compared, the IPCs for the same number of
instructions across different configurations are used. Con-
sequently, the same application in a different configuration
can complete a different amount of work. For this reason, it
is difficult to make fair energy comparisons across configu-
rations; we compare power efficiency instead.

We also use minimum speedup (i.e. maximum slow-
down) to determine the fairness of the system [9]. The min-
imum speedup of a workload is defined by Equation 2

MinimumSpeedup =
N−1
min
i=0

IPCshared
i

IPCalone
i

(2)

The minimum speedup of a workload helps to identify
whether a technique improves overall system throughput
by improving the performance of some applications signif-
icantly while degrading the rest. The harmonic mean of

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

D
R

A
M

 R
o

w
 B

u
ff

er
 H

it
 R

at
e

shared bpart sr bpart+sr

Figure 6: Average DRAM row-buffer hit rate of
each benchmark.

speedups is also widely used as a system fairness metric; we
favor the minimum speedup, however, to highlight the dis-
advantage that a program can suffer due to each approach.

5 Results
5.1 Row-buffer Hit Rate

We first present the effect of bank partitioning on row-
buffer hit rate. Figure 6 shows the row-buffer hit rate of
each benchmark with varying configurations. We gather
the per-core (and thus per-benchmark) row-buffer hit rate
and average the row-buffer hit rate for the same benchmark
across different workloads. For most benchmarks, the row-
buffer hit rate improves with bank partitioning. The most
improved benchmark is libquantum, which recovers half
of the locality lost due to inter-thread interference. On the
other hand, the row-buffer locality of lbm is degraded. This
may be surprising considering that lbm has a very high row-
buffer hit rate (98%) when run alone. As seen in Figure
5, the spatial locality of lbm is sensitive to the number of
banks. With a reduced number of banks due to bank parti-
tioning, lbm cannot keep enough concurrent access streams
open and loses row-buffer locality.

With sub-ranking, the row-buffer hit rate drops since the
granularity of sub-rank interleaving is 64B and the number
of independent, half-sized banks that a program accesses in-
creases. For example, two consecutive 64B accesses would
normally result in 50% hit rate, but result in a 0% hit rate
once sub-ranking is introduced. Note that this is a start-up
cost and is amortized over the subsequent accesses if the
application has sufficient spatial locality. However, when
sub-ranking is applied on top of bank partitioning, the row-
buffer hit rate drops slightly due to this effect.

5.2 System Throughput
Figure 7 shows the system throughput for each mem-

ory configuration and workload. As expected, the workload
group with many high spatial locality benchmarks (HIGH)
benefits most from bank partitioning. These benchmarks
recover the locality lost due to interference and their in-
creased row-buffer hit rate results in improved throughput.
Since many of the benchmarks in group HIGH have high
spatial locality, they do not gain much from the additional

7

0.9$

0.95$

1$

1.05$

1.1$

1.15$

1.2$

H1$ H2$ H3$ H4$ H5$ Avg$ M1$ M2$ M3$ M4$ M5$ M6$ M7$ Avg$ L1$ L2$ L3$ Avg$ LB1$ LB2$ LB3$ LB4$ LB5$ Avg$

HIGH$ MIX$ LOW$ LOW_BW$

N
or
m
al
iz
ed

+W
ei
gh
te
d+
Sp
ee
du

p+

shared$

bpart$

sr$

bpart+sr$

Figure 7: Normalized throughput of workloads.

banks that sub-ranking provides. Sub-ranking alone does
not affect (or slightly improves) performance for the HIGH
benchmarks, but it degrades the improvements of bank par-
titioning when both are applied. With shared banks, inter-
thread interference results in many long-latency row-buffer
misses. Additional latencies due to sub-ranking are in-
significant compared to row-buffer miss latencies (4 cycles
vs. 37 cycles). With bank partitioning, however, many re-
quests are now row-buffer hits and take little time (11 cy-
cles). Therefore, the extra latency from sub-ranking be-
comes relatively more costly and affects performance.

Workload group MIX enjoys less benefit from bank par-
titioning since it includes benchmarks with low spatial lo-
cality. MIX is also moderately improved by sub-ranking.
When both techniques are applied together, however, most
MIX workloads show synergistic improvement. Exceptions
to this observation include workloads M1, which has only
one application with low spatial locality to benefit from sub-
ranking, and M4, whose performance with sub-ranking is
slightly degraded due to the presence of lbm (for reasons
described above). M2 suffers from both afflictions, and its
performance relative to bank partitioning degrades the most
from the addition of sub-ranking, though it is still within
3% of the maximum throughput.

Workload group LOW shows interesting results. Intu-
itively, workloads composed of only low spatial locality
benchmarks would suffer performance degradation with
bank partitioning due to reduced bank-level parallelism.
However, benchmarks L1 and L3 show a healthy 5%
throughput improvement from bank partitioning. This is
because bank partitioning load-balances among banks. As
most of the requests are row-buffer misses occupying a bank
for a long time waiting for additional precharge and acti-
vate commands, the banks are highly utilized. Therefore,
all the bank-level parallelism the DRAM system can offer
is already in use and bank load-balancing becomes critical
for the DRAM system throughput. Figure 8 shows the av-
erage queueing delay of requests at the memory controller
scheduling buffer. When banks are partitioned among low
spatial locality threads, the requests are evenly distributed
among banks, lowering the average queueing delay.

Workloads in group LOW BW contain non-memory-
intensive benchmarks, thus the collective impact on

0

5

10

15

20

25

30

L1 L2 L3

LOW
A

ve
ra

ge
 q

u
e

u
ei

n
g

la
te

n
cy

 in

 D
R

A
M

 c
yc

le
s

shared

bpart

sr

bpart+sr

Figure 8: Average queueing delay of requests for
workload group LOW

throughput is smaller but has a similar trend. Workload
LB4 is an outlier that shows a 7.6% throughput drop from
bank partitioning. It consists of lbm, mcf, bzip2, and
sjeng, where lbm and mcf are ill-affected by bank par-
titioning as shown in Figure 6; bzip2 and sjeng are
non-memory-intensive and, thus, remain unaffected. Al-
together, no improvement results from bank partitioning
for this workload. However, memory sub-ranking recov-
ers some of the lost bank-level parallelism and performance.
Bank partitioning combined with sub-ranking gives average
throughput improvements of 9.8%, 7.4%, 4.2%, and 2.4%
for HIGH, MIX, LOW, and LOW BW, respectively. The max-
imum throughput improvement for each group is 12.2%,
11.4%, 4.5%, and 5%.

Workload throughput alone only shows half of the story.
Figure 9 shows the minimum speedup of workloads. Al-
though bank partitioning alone could provide almost all of
the system throughput improvements, it does so at the ex-
pense of benchmarks with low spatial locality. Workloads
in group MIX and LB4 and LB5 in group LOW BW show a
significant reduction in minimum speedup when bank parti-
tioning is employed. In all such cases, the benchmark which
suffers the lowest speedup is either mcf or omnetpp;
both benchmarks have low spatial locality. By partitioning
banks, these programs suffer from reduced bank-level par-
allelism. When sub-ranking is employed along with bank
partitioning, the minimum speedup recovers from this drop
in addition to providing system throughput improvements.
Bank partitioning and memory sub-ranking optimize con-

8

0.2$
0.25$
0.3$
0.35$
0.4$
0.45$
0.5$
0.55$
0.6$
0.65$

H1$ H2$ H3$ H4$ H5$ Avg$ M1$ M2$ M3$ M4$ M5$ M6$ M7$ Avg$ L1$ L2$ L3$ Avg$ LB1$ LB2$ LB3$ LB4$ LB5$ Avg$

HIGH$ MIX$ LOW$ LOW_BW$

M
in
im

um
&&S
pe

ed
up

&

shared$

bpart$

sr$

bpart+sr$

Figure 9: Minimum speedup of workloads.

0"

2"

4"

6"

8"

10"

12"

14"

16"

H1" H2" H3" H4" H5" Avg" M1" M2" M3" M4" M5" M6" M7" Avg" L1" L2" L3" Avg" LB1" LB2" LB3" LB4" LB5" Avg"

HIGH" MIX" LOW" LOW_BW"

DR
AM

%P
ow

er
%(W

)%

shared"

bpart"

sr"

bpart+sr"

Figure 10: DRAM power consumption.

flicting requirements, locality and parallelism, and employ
them together results in a more robust and fairer solution.

5.3 Power and System Efficiency

As described in Section 4, we estimate the system power
by modeling the DRAM power and the power consumed by
the processor. Figure 10 shows the DRAM power compo-
nent. Although the DRAM power reduction due to bank
partitioning only appears to be modest, the actual energy
reduction is significantly greater since bank partitioning
greatly reduces activations by improving the row-buffer hit
rates, and thus performance, as shown in Figures 6 and 7.
Sub-ranking reduces DRAM power consumption by only
activating a fraction of the rows. Naturally, bank partition-
ing and sub-ranking, combined, brings additive benefits.
With both schemes together, the DRAM power consump-
tion is reduced dramatically, averaging at a 21.4% reduction
across all benchmark mixes.

System efficiency is measured by throughput (WS)
per system power (Watts), where system power includes
DRAM and CPU power. Since the dynamic power con-
sumption of the CPU is modeled as a function of IPC (Sec-
tion 4), the CPU power slightly increases with the improved
IPC. However, the combined system power (DRAM+CPU)
remains fairly constant across benchmark mixes.

Figure 11(a) shows the normalized throughput per sys-
tem power. In group HIGH, most of the benefit comes from
bank partitioning alone. As mentioned earlier, this group
has mixes of benchmarks that all have high row-buffer hit
rates and does not benefit much by sub-ranking. On aver-

age, the improvement in system efficiency is 10%. In group
MIX, the overall system efficiency is best enhanced by the
synergy of bank partitioning and sub-ranking. This is the
result of the throughput improvement from bank partition-
ing combined with the dramatic power savings from sub-
ranking. Efficiency improves by 9% on average, whereas
bank partitioning and sub-ranking alone improve efficiency
only 6% and 4%, respectively. In group LOW BW, although
the improvement is relatively lower, using bank partition-
ing and sub-ranking together still brings the best benefit.
Workload LB4 again shows degraded power efficiency with
bank partitioning because of its impact on throughput for
this workload.

Current processor and memory scaling trends indicate
that DRAM power is a significant factor in system power,
especially in servers with huge DRAM capacities [6]. Such
systems will see greater improvement in system efficiency
with combined bank partitioning and sub-ranking. Figure
11(b) verifies this trend with the normalized throughput per
DRAM power. Only taking DRAM power into account,
bank partitioning with sub-ranking shows improvements of
up to 45% over the baseline.

5.4 Bank limited systems

Processor and memory scaling trends also indicate that
CMP core count increases faster than available memory
banks in the system, especially for embedded or many-core
systems. To approximate a system with limited memory
banks per core, we conduct experiments on a system with
a single rank per channel instead of the two ranks previ-

9

0.8$

0.85$

0.9$

0.95$

1$

1.05$

1.1$

1.15$

H1$ H2$ H3$ H4$ H5$ Avg$ M1$ M2$ M3$ M4$ M5$ M6$ M7$ Avg$ L1$ L2$ L3$ Avg$ LB1$ LB2$ LB3$ LB4$ LB5$ Avg$

HIGH$ MIX$ LOW$ LOW_BW$

N
or
m
al
iz
ed

+T
hr
ou

gh
pu

t+/
++

Sy
st
em

+P
ow

er
+

shared$

bpart$

sr$

bpart+sr$

(a) Normalized throughput per system power.

0.8$

0.9$

1$

1.1$

1.2$

1.3$

1.4$

1.5$

H1$ H2$ H3$ H4$ H5$ Avg$ M1$ M2$ M3$ M4$ M5$ M6$ M7$ Avg$ L1$ L2$ L3$ Avg$ LB1$ LB2$ LB3$ LB4$ LB5Avg

HIGH$ MIX$ LOW$ LOW_BW$

!N
or
m
al
iz
ed

!T
hr
ou

gh
pu

t!/
!

DR
AM

!P
ow

er
!

shared$

bpart$

sr$

bpart+sr$

(b) Normalized throughput per DRAM power.

Figure 11: System efficiency of two-rank systems.

ously shown. Figure 12(a) illustrates the system efficiency
for this bank-limited machine. The results show that the
bank-limited system enjoys greater benefit from bank par-
titioning with sub-ranking. The average improvements in
system efficiency on the bank-limited system are 18%, 19%,
25%, and 7% for groups HIGH, MIX, LOW and LOW BW, re-
spectively. Figure 12(b) shows the system efficiency per
DRAM power for a single rank system; combining bank
partitioning and sub-ranking again provides significant im-
provements.

6 Related Work

6.1 DRAM bank partitioning

DRAM bank partitioning is first proposed by Mi et al.
[13], who use page coloring and XOR cache mapping to re-
duce inter-thread interference in chip multiprocessors. They
develop a cost model and search the entire color assignment
space for each workload off-line. While this approach can
approximate a near-optimal color assignment for a specific
memory system and workload mix, the cost of this search
is prohibitive for dynamically changing workload mixes.
Also, Mi et al. do not consider the impact of reduced bank-
level parallelism; rather, they assume a very large number
of banks, exceeding the practical limit of modern DRAM
systems. The number of banks can be increased by adding
more ranks to a system, but rank-to-rank switching penalties
can limit performance as we show in Figure 5. We propose
a sub-ranking-based alternative which is both cost-effective

as well as power efficient, and provide in-depth analysis of
the interaction between locality and parallelism.

Another existing approach by Muralidhara et al. parti-
tions memory channels instead of banks [15]. Their par-
titioning method is based on the runtime profiling of ap-
plication memory access patterns combined with a mem-
ory scheduling policy to improve system throughput. How-
ever, they do not account for or analyze the impact of re-
duced bank-level parallelism. Also, their method interferes
with fine-grained DRAM channel interleaving and limits
the peak memory bandwidth of individual applications. To
the best of our knowledge, our work is the first to preserve
both spatial locality and bank-level parallelism.

6.2 Memory scheduling policies
A number of memory scheduling policies have recently

been proposed that aim at improving fairness and system
throughput in shared-memory CMP systems.

Computer-network-based fair queuing algorithms using
virtual start and finish times are proposed in [18] and [19],
respectively, to provide QoS to each thread. STFM [16]
makes scheduling decisions based on the stall time of
each thread to achieve fairness. A parallelism-aware batch
scheduling method is introduced in [17] to achieve a bal-
ance between fairness and throughput. ATLAS [9] pri-
oritizes threads that attained the least service from mem-
ory controllers to maximize system throughput at the cost
of fairness. TCM [10] divides threads into two separate
clusters and employs a different memory request schedul-
ing policies to each cluster. The authors claim that both

10

0.8$

0.9$

1$

1.1$

1.2$

1.3$

1.4$

H1$ H2$ H3$ H4$ H5$ Avg$ M1$ M2$ M3$ M4$ M5$ M6$ M7$ Avg$ L1$ L2$ L3$ Avg$ LB1$ LB2$ LB3$ LB4$ LB5$ Avg$

HIGH$ MIX$ LOW$ LOW_BW$

N
or
m
al
iz
ed

+T
hr
ou

gh
pu

t+/
++

Sy
st
em

+P
ow

er
+

shared$

bpart$

sr$

bpart+sr$

(a) Normalized throughput per system power

0.8$
0.9$
1$

1.1$
1.2$
1.3$
1.4$
1.5$
1.6$
1.7$
1.8$

H1$ H2$ H3$ H4$ H5$ Avg$ M1$ M2$ M3$ M4$ M5$ M6$ M7$ Avg$ L1$ L2$ L3$ Avg$ LB1$ LB2$ LB3$ LB4$ LB5$ Avg$

HIGH$ MIX$ LOW$ LOW_BW$

!N
or
m
al
iz
ed

!T
hr
ou

gh
pu

t!!
/!

DR
AM

!P
ow

er
!

shared$

bpart$

sr$

bpart+sr$

(b) Normalized throughput per DRAM Power

Figure 12: System efficiency of one-rank systems.

throughput and fairness are enhanced with the proposed
scheme.

These previous works address the same problem of inter-
thread interference in shared memory, but focus on improv-
ing the scheduling of shared resources to threads consid-
ering their memory access behavior and system fairness.
Our approach is orthogonal to the existing scheduling pol-
icy work, as it focuses on improving efficiency by preserv-
ing row-buffer locality, and on balancing parallelism with
access latency. Bank partitioning can benefit from better
scheduling, and better scheduling policies can benefit from
improved row-buffer spatial locality.

6.3 Sub-ranking
Recently, several schemes to reduce the active power of

DRAM have been proposed. Sub-ranking is a technique
that breaks the conventional wide (64-bit) rank into nar-
rower (8-bit, 16-bit or 32-bit) sub-ranks. As each access
involves fewer DRAM chips, it reduces the power consump-
tion significantly.

Ware and Hampel [24] propose the Threaded Memory
Module, in which the memory controller itself controls in-
dividual sub-ranks with chip-enable signals. They analyt-
ically present the potential performance improvement due
to the effective increase in the number of memory banks.
Zheng et al. [27] propose Mini-Rank memory. They keep
the memory controller module interface the same, and ac-
cess sub-ranks using a module-side controller. They fo-
cused on savings in activate power from sub-ranking. Ahn

et al. [3, 2] propose MC-DIMM. Their work is similar to the
Threaded Memory Module, except demultiplexing and the
repetitive issue of sub-rank commands are handled on the
module side. Also, Ahn et al. empirically evaluate MC-
DIMM on multi-threaded applications, with full-system
power evaluation. Their target is a heavily threaded sys-
tem which can naturally tolerate the additional latency from
narrow sub-ranks. Unlike the previous works, we focus on
the additional bank-level parallelism that sub-ranking can
provide in the context of latency sensitive, general purpose
out-of-order processor systems.

7 Conclusion
In this paper, we present a mechanism that can funda-

mentally solve the problem of interleaved memory access
streams at its root. Our technique balances the conflicting
needs of locality and parallelism. We rely on bank parti-
tioning using OS-controlled coloring to assign a set of in-
dependent banks to each potentially conflicting thread. To
compensate for the reduced bank parallelism available to
each thread we use DRAM sub-ranking to effectively in-
crease the number of banks in the system without increasing
its cost. This combined bank partitioning and sub-ranking
technique enables us to significantly boost performance and
efficiency simultaneously, while maintaining fairness. Our
evaluation demonstrates the potential of this technique for
improving locality, which leads to performance and effi-
ciency gains. Moreover, we show that our technique is even
more important when considering system configurations

11

that inherently have a small number of banks per thread. We
expect future systems to have such bank-constrained con-
figurations because of the relatively high cost of increasing
memory banks compared to the cost of increasing the num-
ber of concurrent threads in the CPU.

Bank partitioning works best when all applications in
a multi-programmed workload have high spatial locality.
In such mixes, partitioning eliminates interference and im-
proves performance and power efficiency by 10 − 15%.
When applications with low spatial locality, which require
a larger number of banks to achieve best performance, are
added to the application mix then combining partitioning
with sub-ranking yields superior results. The combina-
tion yields execution throughput improvements (weighted
speedup) of 7% and 5% on average for mixed workloads
and workloads consisting of only low spatial locality appli-
cations respectively. Our combined technique even slightly
improves the performance and efficiency of applications
that rarely access memory. The importance of combining
partitioning with sub-ranking is more apparent when fair-
ness and power efficiency are considered. The minimum
speedup (a fairness metric) improves by 15% with the com-
bined technique. In addition, our experiments show that
system power efficiency improves slightly more than the
measured improvement in system throughput.

The previously given power efficiency improvements are
shown for systems that are dominated by CPU power, in
which DRAM power is only 20% or less. When looking
just at DRAM power, power efficiency improvements are
20−45% for the combined technique as opposed to roughly
10−30% when the techniques are applied separately. For a
bank-constrained configuration, improvements are roughly
50% better, relative to the whole-system measurements.

8 Acknowledgements
This work is supported, in part, by the following orga-

nizations: The National Science Foundation under Grant
#0954107, Intel Labs Academic Research Office for the
Memory Hierarchy Innovations program, and The Texas
Advanced Computing Center.

References
[1] Calculating memory system power for DDR3. Technical Report TN-

41-01, Micron Technology, 2007.
[2] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.

Schreiber. Future scaling of processor-memory interfaces. In Proc.
the Int’l Conf. High Performance Computing, Networking, Storage,
and Analysis (SC), Nov. 2009.

[3] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi. Multi-
core DIMM: An energy efficient memory module with independently
controlled DRAMs. IEEE Computer Architecture Letters, 8(1):5–8,
Jan. - Jun. 2009.

[4] T. M. Brewer. Instruction set innovations for the Convey HC-1 com-
puter. IEEE Micro, 30(2):70–79, 2010.

[5] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster
and more flexible program analysis. In Proc. the Workshop on Mod-
eling, Benchmarking and Simulation (MoBS), Jun. 2005.

[6] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 1st edition, 2009.

[7] M. K. Jeong, D. H. Yoon, and M. Erez. DrSim: A platform for
flexible DRAM system research. http://lph.ece.utexas.
edu/public/DrSim.

[8] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss.
In Workshop on Memory Performance Issues, 2002.

[9] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A scal-
able and high-performance scheduling algorithm for multiple mem-
ory controllers. In Proc. the 16th Int’l Symp. High-Performance
Computer Architecture (HPCA), Jan 2010.

[10] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In Proc. the 43rd Ann. IEEE/ACM Int’l Symp. Microarchi-
tecture (MICRO), Dec. 2010.

[11] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A cycle-level simu-
lator for highly detailed microarchitecture exploration. In Proc. the
Int’l Symp. Performance Analysis of Software and Systems (ISPASS),
Apr. 2009.

[12] M. McTague and H. David. Fully buffered DIMM (FB-DIMM) de-
sign considerations. Intel Developer Forum (IDF), Feb. 2004.

[13] W. Mi, X. Feng, J. Xue, and Y. Jia. Software-hardware cooperative
DRAM bank partitioning for chip multiprocessors. In Proc. the 2010
IFIP Int’l Conf. Network and Parallel Computing (NPC), Sep. 2010.

[14] Micron Corp. Micron 2 Gb ×4, ×8, ×16, DDR3 SDRAM:
MT41J512M4, MT41J256M4, and MT41J128M16, 2011.

[15] S. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda. Reducing memory interference in multicore systems
via application-aware memory channel partitioning. In Proc. the 44th
Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Dec. 2011.

[16] O. Mutlu and T. Moscibroda. Stall-time fair memory access schedul-
ing for chip multiprocessors. In Proc. the 40th IEEE/ACM Int’l Symp.
Microarchitecture (MICRO), Dec. 2007.

[17] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems.
In Proc. the 35h Ann. Int’l Symp. Computer Architecture (ISCA), Jun.
2008.

[18] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith. Fair queuing mem-
ory systems. In Proc. the 39th Ann. IEEE/ACM Int’l Symp. Microar-
chitecture (MICRO), Dec. 2006.

[19] N. Rafique, W. Lim, and M. Thottethodi. Effective management of
DRAM bandwidth in multicore processors. In Proc. the 16th Int’l
Conf. on Parallel Architecture and Compilation Techniques (PAC),
Sep. 2007.

[20] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens.
Memory access scheduling. In Proc. the 27th Ann. Int’l Symp. Com-
puter Architecture (ISCA), Jun. 2000.

[21] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a si-
multaneous multithreaded processor. In Proc. the 9th Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Nov. 2000.

[22] Standard Performance Evaluation Corporation. SPEC CPU 2006.
http://www.spec.org/cpu2006/, 2006.

[23] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Rethinking DRAM design and organiza-
tion for energy-constrained multi-cores. In Proc. the 37th Ann. Int’l
Symp. Computer Architecture (ISCA), Jun. 2010.

[24] F. A. Ware and C. Hampel. Improving power and data efficiency with
threaded memory modules. In Proc. Int’l Conf. Computer Design
(ICCD), Oct. 2006.

[25] D. H. Yoon, M. K. Jeong, and M. Erez. Adaptive granularity memory
systems: A tradeoff between storage efficiency and throughput. In
Proc. the 38th Ann. Int’l Symp. Computer Architecture (ISCA), Jun.
2011.

[26] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page inter-
leaving scheme to reduce row-buffer conflicts and exploit data local-
ity. In Proc. the 33rd Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), Dec. 2000.

[27] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-
rank: Adaptive DRAM architecture for improving memory power ef-
ficiency. In Proc. the 41st IEEE/ACM Int’l Symp. Microarchitecture
(MICRO), Nov. 2008.

12

