
Synctium: a Near-Threshold Stream Processor for
Energy-Constrained Parallel Applications
Evgeni Krimer, Student Member, IEEE, Robert Pawlowski, Student Member, IEEE,

Mattan Erez, Member, IEEE, and Patrick Chiang, Member, IEEE

Abstract—While Moore’s law scaling continues to double transistor density every technology generation, supply voltage reduction
has essentially stopped, increasing both power density and total energy consumed in conventional microprocessors. Therefore, future
processors will require an architecture that can: a) take advantage of the massive amount of transistors that will be available; and b)
operate these transistors in the near-threshold supply domain, thereby achieving near optimal energy/computation by balancing the
leakage and dynamic energy consumption. Unfortunately, this optimality is typically achieved while running at very low frequencies
(i.e. 0.1 − 10MHz) and with only one computation executing per cycle, such that performance is limited. Further, near-threshold
designs suffer from severe process variability that can introduce extremely large delay variations. In this paper, we propose a near
energy-optimal, stream processor family that relies on massively parallel, near-threshold VLSI circuits and interconnect, incorporating
cooperative circuit/architecture techniques to tolerate the expected large delay variations. Initial estimations from circuit simulations
show that it is possible to achieve greater than 1 Giga-Operations per second (1GOP/s) with less than 1mW total power consumption,
enabling a new class of energy-constrained, high-throughput computing applications.

�

1 INTRODUCTION

PROCESSORS at all market segments are increasingly power
and energy-constrained. While current designs can be

further optimized incrementally, some applications demand
orders of magnitude better efficiency while providing high per-
formance at the same time, requiring radical changes at both
the system and circuit levels. For example, in some system-
on-chip (SoCs) applications such as video-enabled sensor net-
works [1], implantable medical devices [3], [15], and mobile
devices, the largest energy consumer is typically the interface
with the external world, such as the analog-digital converters,
wireless transceivers, and displays. In these systems, it is possi-
ble to reduce the input/output energy without compromising
system goals by performing sophisticated and demanding on-
chip computation. For example, recent work on neural im-
plants shows that local on-chip parallel DSP algorithms such as
feature extraction and clustering can improve the total system
power by factors of 4.3 and 26, respectively [3]. Similarly,
parallel video and image processing can extract features from
rich sensors and reduce I/O needs, while parallel half-toning
algorithms can improve the efficiency of low-power bi-stable
displays [14]. Therefore, our goal is to design a new class
of processors that target extremely low power while meeting
the large computational demands required to shift the energy
consumption burden from the I/O to the on-chip computation.

Figure 1 shows the performance and power characteristics of
several academic and industry processors. There is currently a
gap in performance/efficiency tradeoffs. To support the energy
optimizations mentioned above, a new class of processors that
combines the energy efficiency of near-threshold processors
with the high-performance throughput of massively parallel
architectures is needed. With this paper, we present our initial
work on addressing the major challenges of a programmable,

• E. Krimer and M. Erez are with ECE at UT Austin; R. Pawlowski and P.
Chiang are with EECS at Oregon State University.

• Synctium is inspired by syncytium: a cell-like structure with multiple
cooperating nuclei.

�������

	
��	�����

	���������

�����

	���������

���	
� ��� !"

�����
�#$!%

�&'
(�������

����)��#�%�

�������	
���	

�������	
���	

��*

��!

����

���+

��$� ��$! ��$* � ��+

	,����-�

��
��
��
��
��
�	

��
��
���
�
��
��
��
�

���������

Fig. 1: Power and performance († normalized to 16-bit opera-
tions) of a range of processors showing the need for a relatively
high-performance ∼ 1mW processor. ‡ AnySP numbers are from fig. 14 in [19].

massively parallel and ultra-efficient near-threshold processor.
Specifically, we present decoupled SIMD parallel pipelines (DPSP)
and pipeline weaving to overcome the very high dynamic and
static timing variations that can significantly reduce the effi-
ciency of parallel near-threshold processors.

Prior work on sub-/near-threshold processors and dynamic
variability tolerance has almost exclusively focused on simple
scalar pipelines [4], [6], [16], coarse-grained approaches to
variability [17], and designs with large timing and device mar-
gins [9], [18]. In this paper, we re-examine this prior work in
the context of programmable parallel processors that can attain
both performance and efficiency by utilizing parallel stream
architectures along with near-threshold design principles. We
show how timing speculation and dynamic integrated recov-
ery [6] developed for scalar pipelines must be re-architected
for efficient SIMD architectures.

Initial simulations in a standard 90nm-CMOS process show
a 10MHz clock frequency with a performance of 640 16-bit
MOP/s while consuming less than 1mW in under 4mm2 of
die area (1.2pJ/op). Furthermore, scaling this design to a
16nm-CMOS process can yield 30GOP/s at 17mW and still

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010 21

Posted to the IEEE & CSDL on 5/25/2010
DOI 10.1109/L-CA.2010.5

 1556-6056/10/$26.00 © 2010 Published by the IEEE Computer Society

under 4mm2– a computational efficiency of a lean 560fJ/op.
In order to meet these low power metrics, new architectural
mechanisms presented in this paper will be required to enable
parallel operation of near-threshold computational units.

2 BACKGROUND AND RELATED WORK

Research has shown that operating in the sub-threshold and
near-threshold regimes leads to an order of magnitude better
energy efficiency than conventional processors at the same
technology node [8]. For example, a 16-bit 1024-point .18μm
FFT test-chip operating at a Vddof 0.35V (with Vth= 0.45V)
achieves 155nJ per FFT at 10KHz [18] (equivalent to roughly
1.5pJ per 16-bit arithmetic operation), while an 8-bit processor
achieves 540fJ/operation at a Vddof 0.3V and a frequency of
160KHz [9].

Unfortunately, obtaining these high computational efficien-
cies uncovers two critical architectural challenges: (1) the op-
erating frequency is very low (∼ 0.1 − 10MHz); (2) timing
variability and violation are accentuated because transistors in
the near-threshold domain are extremely sensitive to process
variation such as random dopant fluctuations [8].

The low clock frequency dictates the use of highly-parallel
architectures for attaining the required performance. Further, in
order to maximize the efficiency attained with near-threshold,
programmable architectures must rely on efficient control, such
as wide SIMD/vector execution [12], [19]. Unfortunately, as
we explain later, wide SIMD with a large number of ALUs
exacerbates the timing variability problem. Operating in the
near-threshold domain is limited by variability, which contin-
ues to degrade with future CMOS scaling. Random dopant
fluctuations (RDF), such as threshold voltage mismatch due
to statistical fluctuations of the dopant atoms severely alter
the transistor Ion current, thereby affecting the logic delay.
As the supply voltage is reduced, the transistor no longer
acts as a traditional velocity-saturated transistor and begins
to behave as a bipolar device. As shown in our experiments
(Figure 2) and in [8], the strong dependence of Ion on Vth in
near-threshold results in as much as an 18× degradation in
transistor current and logic delay across Monte Carlo variation.
Even worse, because these critical RDF threshold variations are
not related to any spatial distances, parallel functional units
will not exhibit spatial correlations that would enable similar
timing delays between vector units [5]. Prior work [9], [18]
has shown that using non-minimal device sizes and longer
logic chains can reduce variation, but this is still expected to
be a very large problem in deep sub-micron nodes. Further,
increasing transistor sizes diminishes the benefits of technology
scaling.

Process-induced timing variations may be both static (requir-
ing functional unit sparing as described later) and dynamic,
input vector dependent (see bottom of Figure 2). Prior research
identified mechanisms to tolerate dynamic timing variations
within a scalar pipeline [2], [6]. The idea of these techniques
is to dynamically identify timing errors and correct them in
one of two ways: (1) flushing the pipeline and re-executing the
instruction with more relaxed timing; or (2) stalling the pipeline
for one cycle while waiting for the correct result to be gener-
ated, and then proceeding with execution. The first approach
has a larger performance penalty, but is easier to implement in
high-speed and complex pipelines, while the second approach
has a smaller performance and power penalty.

Unfortunately, extending either the stall or flush approach
to conventional wide parallel SIMD pipelines is problematic.

 0
 5e-09
 1e-08

 1.5e-08
 2e-08

 2.5e-08
 3e-08

 400 450 500 550 600 650

D
el

ay
 [s

]

Vdd [mV]

min

max

avg std

 0
 2e-09
 4e-09
 6e-09
 8e-09
 1e-08

 1.2e-08
 1.4e-08
 1.6e-08

D
el

ay
 [s

]

Fig. 2: Results of random-dopant fluctuation Monte Carlo
experiments for delay of a 16-bit multiplier (90nm , Vth=0.4V):
worst-case delay as function of Vdd (top) and delay of 10
random input vectors at Vdd= 0.45V (bottom).

In a conventional parallel design, all parallel functional units
operate in lock step off of a single clock, such that any error
encountered in single stage will result in a stall or flush across
all the functional units within that processing element. This
multiplies the performance/power penalty of tolerating an er-
ror by the pipeline width. This overhead is compounded by the
fact that the likelihood of an error occurring is effectively larger
with a parallel pipeline because the chance of a timing violation
in one functional unit is independent from the other functional
units that are processing different inputs (see Figure 2). This
is depicted in Figure 4a that shows preliminary calculations of
the expected resulting fraction of peak throughput as a function
of the width of a 5-stage pipeline and the probability of error.
The wider the pipeline, the steeper the degradation rate with
respect to timing violation probability.

3 SYNCTIUM PROCESSOR

Synctium is a parallel near-threshold stream processor, that
achieves near-optimal energy efficiency with high throughput
by relying on parallel, low-frequency, near-threshold circuits.
Because of the low operating frequency, it is paramount to pro-
vide a large number of ALUs and, unlike conventional super-
threshold designs, Synctium is constrained by area rather than
power. Therefore, to emphasize simplicity and area efficiency,
the baseline architecture is a fairly-traditional, multi-core wide-
SIMD processor. Each core has multiple Processing Elements
(PEs), each composed of an instruction sequencer and 16 execu-
tion lanes with each lane accessing a 16KB local memory. Initial
estimates of area and power for a future 16nm CMOS processor
(to be detailed in a full-length paper) are under 4mm2 of area
with a peak performance of 30 16-bit GOP/s consuming less
than 17mW . We also propose a 90nm configuration that we
intend to prototype. This configuration will consume less than
1mW , achieve up to 640 16-bit MOP/s, and also require just
4mm2 of die area. The analysis was done by synthesizing the
RTL for a 16 bit MADD unit and obtaining its energy and
area costs from extracted layout simulations in 90nm . We used
a conventional 2-read, 1-write, RF generator and a 1-read, 1-
write SRAM generator and scaled the results up by 30% to
account for modifications needed for near-threshold operation.
Wires are modeled as lumped RC-wires, with a 250fF/mm
capacitance extrapolated from the ITRS roadmap.

Our architectural innovations are not in this straight-forward
baseline architecture, but rather in the way in which we ad-

22 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010

opQ
RF

ORF

DATA
ADDR

LOCAL
MEM

clk

opQfull

op

shuffle

I/O

(a) Baseline PE SIMD lane

L
an

e
0

L
an

e
1

La
ne

 1
5

L
an

e
2

L
an

e
3

LOCAL
SEQ MEMSEQ

I/O

(b) Baseline PE

sequencer
SRAM

sequencer

���

�
�
�

ALU
RF

lane SRAM

(c) PE floor plan

Fig. 3: Overall design of a Synctium lane, processing element, and initial floorplan. Each lane contains a fused 16-bit MADD
ALU, with two inputs provided by a standard RF and the third input by a small and efficient operand register file. The
highlighted paths and components within a lane enable DPSP to tolerate dynamic timing variability. Note that the floorplan
includes redundant components and paths. Sizes mentioned are for 90nm technology.

Psingle-stage-errorwidth

 0.5
 0.6
 0.7
 0.8
 0.9

 1

Frac. of Peak
Throughput

0
0.05

0.1204060

Frac. of Peak
Throughput

(a)

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

0 0.05 0.1

Fr
ac

. o
f P

ea
k

Th
ro

ug
hp

ut

Psingle-stage-error

SIMD
DPSP
SISD

(b)

Fig. 4: Expected fraction of throughput of a 5-stage SIMD
pipeline and a 5-stage decoupled parallel SIMD pipelines with
decoupling queues as a function of the total probability of error
compared to a SISD pipeline (legend for both figures appears
in (b)): (a) for varying SIMD width; (b) for 16-wide SIMD.

dress the challenges of extreme static and dynamic timing vari-
ations in near-threshold. We propose two architectural mech-
anisms that complement prior work on variation tolerance
in parallel architectures [10]. Decoupled parallel SIMD pipelines
extends the work on timing speculation to parallel pipelines,
providing tolerance of input-dependent and dynamic varia-
tions. Pipeline weaving provides efficient fine-grained spatial
redundancy within the parallel pipeline.

Tolerating Dynamic Timing Variations Using DPSP

In order to address dynamic variations, where the ALU
pipeline delays dynamically depend on specific instructions
and data inputs, we propose a decoupled parallel SIMD pipeline
(DPSP) microarchitecture. With DPSP, all functional units in
the SIMD organization still execute the same instructions in
the same order, but parallel pipelines are allowed to slip
with respect to one another so that they can tolerate timing
violations independently. Thus, timing violations which are
input dependent will occur randomly in all parallel pipes,
such that the average throughput will be optimal. To enable
independent timing recovery in each lane, we use decoupling
queues and micro-barriers.

First, we replace the pipeline latch between the decode stage
and the register access and execute stages of the sequential
parallel pipeline with a set of shallow FIFO decoupling queues
(one per SIMD lane). When a timing violation is detected in
one of the lanes, only that particular lane stalls and initiates
local recovery. The sequencer continues to place instructions
into the decoupling queues and all non-faulting lanes execute
normally. If timing violations are equally distributed between
operations and lanes, the average execution rate would be
identical across the PE. The entire parallel pipeline stalls only
if violations are not balanced between the lanes and one of

the decoupling queues fills up. The DPSP concept, shown in
Figure 3a can be generalized by placing additional queues
between additional pipeline stages to allow for re-balancing
of the violations internally within each pipeline. Preliminary
results based on a simple throughput simulation indicate that
DPSP can indeed maintain high parallel throughput in the face
of input-dependent timing variations (Figure 4a). Figure 4b
shows a cross-section of the 3D curve for a 16-wide SIMD
pipeline and demonstrates how DPSP experiences much lower
and more gradual degradation in throughput as the likelihood
of a violation grows, maintaining a 50−80% better throughput
than a simple SIMD with recovery. Note that these queues
are for pipeline registers and control and are entirely different
from prior approaches that use queues to communicate data
for dataflow style computation.

Additional mechanisms are necessary to ensure the correct
execution of shuffle operations, as well as cross-lane scatters
and gathers. For shuffles, Each lane must wait for its producer
lane to place the correct value on the interconnect (switch or
shuffle network) before it can complete the shuffle operation.
Similarly, gathers cannot access memory that is shared between
lanes until all previous writes complete, while scatters must
store values in memory in program order. To address these
issues, we introduce micro-barriers between the SIMD lanes
of a single PE. In their simplest form, micro-barriers require
each communication operation (a shuffle, a scatter, or a gather
that follows a store) to block the DPSP and act as implicit
barrier synchronization points between the lanes. Each lane
notifies the other lanes that it has reached a blocking operation,
and then waits until all lanes are ready to execute the same
instruction in lock step. Because they are performed within a
near-threshold PE, the micro-barriers can be done in less than
a cycle and only impact performance if the lanes experience
unbalanced timing violations between synchronizations.

Pipeline Weaving for Addressing Static Timing Uncertainties
While DPSP can tolerate dynamic variations, process-

dependent static variations require a different approach. For
example, if a single wide-SIMD pipeline has large delay vari-
ability between ALUs, it will have poor energy efficiency, as
faster components will have higher leakage and thus need
to be clocked faster to reach optimal energy-per-computation
targets. Additionally, process variations can lead to non-
functioning pipeline components, which may reduce both yield
and performance. Prior approaches addressed this challenge
at a coarse granularity, adjusting the supply voltage for entire
PEs [10], [17]. Fine-grained approaches, such as voltage inter-
polation [13], are problematic because of the large overheads
involved in providing the numerous supplies necessary for the
massive number of low-power computational units.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010 23

���

���

���

���

���

��

��

��

��

��

���

���

���

���

���

�	

�	

�	

�	

�	

��

��

Fig. 5: Weaved-pipeline sparing for DPSP and SIMD PEs.
Shared pipeline components are replicated once and, in this
example, a sparing of 1

4
is added to the parallel SIMD path.

Components that failed testing are marked with an X and are
disabled along with their wires.

In addition to utilizing coarse-grained techniques, we pro-
pose a new complementary technique for intra-PE sparing
called pipeline weaving (Figure 5). With this technique, we du-
plicate the shared fetch and decode stages of the parallel SIMD
pipeline, but only add a small number of redundant parallel
components. Each component is connected to two other down-
stream components, such that the overall parallel pipeline
exhibits a ’weave’ pattern of local wires. This is an adaptation
of the two-dimensional PE-array sparing design originally
presented in [11] for a SIMD pipeline. Figure 5 also shows how
this weaved pipeline design can be disabled and reconfigured
around units or pipeline stages that do not meet minimum
specification during configuration time. Shaded components
are disabled as are all the wires that connect them (indicated
with a red X in the figure).

Pipeline weaving is similar to the recently presented Sta-
geNet [7] architecture, with two important differences. First,
we specialize our technique for the DPSP pipeline described
above and do not replicate all components of the pipeline.
Second, the weaved SIMD pipeline approach does not use
centralized switches as required by StageNet and instead relies
entirely on local wires. This is particularly important in the
near-threshold domain, because of the much higher energy cost
of communication (relative to computation).

4 SUMMARY AND FUTURE WORK

This paper briefly presents Synctium stream architecture that
achieves near energy-optimal operation by combining efficient
parallel computation using near-threshold circuits. Synctium
fills a gap in the programmable processor tradeoff space by
offering the efficiency of near-threshold circuits (which have
so far been constrained to simple sequential control pipelines),
combined with the potential of massively-parallel processing.
To the best of our knowledge, this is the first attempt at a
programmable massively parallel processor entirely in near-
threshold. The combination of parallelism and near-threshold
operation raises multiple challenges, with the most important
architectural challenge being the high static and dynamic tim-
ing variability. We propose two new techniques that extend
and complement prior work: Decoupled SIMD Parallel Pipelines
for dynamic variation handling, and Pipeline Weaving to com-
pensate for the static variations. When combined with coarse-
grained approaches for managing PE voltage and frequency,
the overall architecture offers unparalleled efficiency while still
meeting the performance requirements of important ultra-low-
power applications.

Our next research steps are to refine the architectural and
circuit tradeoffs, while more carefully exploring the application
space. Concurrently, we are working towards fabricating a
90nm prototype chip to validate our unique techniques for
massively-parallel near-threshold operation and demonstrate
the potential of Synctium. We will also verify near-threshold
process variations models using the prototype to better guide
and evaluate decisions on DPSP width and depth and weaving
redundancy.

REFERENCES

[1] I. Akyildiz, T. Melodia, and K. Chowdhury, “A survey on wireless
multimedia sensor networks,” Computer Networks, vol. 51, no. 4,
pp. 921–960, 2007.

[2] K. Bowman, J. Tschanz, C. Wilkerson, S. Lu, T. Karnik, V. De, and
S. Borkar, “Circuit techniques for dynamic variation tolerance,”
in DAC’09. ACM, 2009, pp. 4–7.

[3] R. Chandler, S. Gibson, V. Karkare, S. Farshchi, D. Markovic, and
J. Judy, “A system-level view of optimizing high-channel-count
wireless biosignal telemetry.” in EMBC’09, 2009.

[4] A. Chandrakasan and R. Brodersen, “Minimizing power con-
sumption in CMOS circuits,” Proc. of the IEEE, vol. 83, no. 4, pp.
498–523, 1995.

[5] N. Drego, A. Chandrakasan, and D. Boning, “All-digital circuits
for measurement of spatial variation in digital circuits,” IEEE
JSSC, vol. 45, pp. 640–651, March 2010.

[6] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors
for low-power operation,” IEEE MICRO, pp. 10–20, 2004.

[7] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The
StageNet fabric for constructing resilient multicore systems,” in
MICRO’08. IEEE Computer Society, 2008, pp. 141–151.

[8] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang,
K. K. Das, W. Haensch, E. J. Nowak, and D. M. Sylvester,
“Ultralow-voltage, minimum-energy cmos,” IBM J. Res. Dev.,
vol. 50, no. 4/5, pp. 469–490, 2006.

[9] S. Hanson, B. Zhai, M. Seok, B. Cline, K. Zhou, M. Singhal,
M. Minuth, J. Olson, L. Nazhandali, T. Austin, D. Sylvester, and
D. Blaauw, “Exploring variability and performance in a sub-200
mv processor,” JSSC, no. 4, April 2008.

[10] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, R. Krish-
namurthy, and S. Borkar, “A 300mV 494GOPS/W Reconfigurable
Dual-Supply 4-Way SIMD Vector Processing Accelerator in 45nm
CMOS,” in ISSCC’09, 2009, pp. 260–261.

[11] I. Koren and A. Singh, “Fault tolerance in VLSI circuits,” Computer,
vol. 23, no. 7, pp. 73–83, 1990.

[12] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanovic, “The Vector-Thread Architecture,” in
ISCA’04, 2004.

[13] X. Liang, G. Wei, and D. Brooks, “Revival: A variation-tolerant
architecture using voltage interpolation and variable latency,” in
ISCA’08, 2008.

[14] Mirasol, “MEMS Drive IMOD Reflective Technology,”
http://www.mirasoldisplays.com/mobile-display-imod-
technology, 2010.

[15] K. Oweiss, A. Mason, Y. Suhail, A. Kamboh, and K. Thomson, “A
scalable wavelet transform VLSI architecture for real-time signal
processing in high-density intra-cortical implants,” IEEE Tran. Cir.
and Sys. I, vol. 54, no. 6, pp. 1266–1278, 2007.

[16] M. Seok, S. Hanson, Y. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu,
D. Sylvester, and D. Blaauw, “The Phoenix Processor: A 30pW
platform for sensor applications,” in VLSI Circuits Symposium,
2008, pp. 188–189.

[17] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge,
M. Meeuwsen, C. Watnik, A. Tran, Z. Xiao et al., “A 167-Processor
Computational Platform in 65 nm CMOS,” JSSC, vol. 44, no. 4,
p. 1, 2009.

[18] A. Wang and A. Chandrakasan, “A 180-mV subthreshold FFT
processor using a minimum energy design methodology,” JSSC,
vol. 40, no. 1, pp. 310–319, 2005.

[19] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flaut-
ner, “AnySP: Anytime Anywhere Anyway Signal Processing,”
ISCA’09, 2009.

24 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 9, NO. 1, JANUARY-JUNE 2010

