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Abstract
Wide SIMD-based GPUs have evolved into a promising plat-

form for running general purpose workloads. Current pro-
grammable GPUs allow even code with irregular control to ex-
ecute well on their SIMD pipelines. To do this, each SIMD lane
is considered to execute a logical thread where hardware ensures
that control flow is accurate by automatically applying masked
execution. The masked execution, however, often degrades perfor-
mance because the issue slots of masked lanes are wasted. This
degradation can be mitigated by dynamically compacting multi-
ple unmasked threads into a single SIMD unit. This paper pro-
poses a fundamentally new approach to branch compaction that
avoids the unnecessary synchronization required by previous tech-
niques and that only stalls threads that are likely to benefit from
compaction. Our technique is based on the compaction-adequacy
predictor (CAPRI). CAPRI dynamically identifies the compaction-
effectiveness of a branch and only stalls threads that are pre-
dicted to benefit from compaction. We utilize a simple single-level
branch-predictor inspired structure and show that this simple con-
figuration attains a prediction accuracy of 99.8% and 86.6% for
non-divergent and divergent workloads, respectively. Our perfor-
mance evaluation demonstrates that CAPRI consistently outper-
forms both the baseline design that never attempts compaction and
prior work that stalls upon all divergent branches.

1 Introduction
The importance of performance efficiency, in terms of

both power and cost, has led to a growing number of proces-
sors that support single-instruction multiple-data (SIMD),
or vector execution. SIMD improves efficiency, and hence
potential performance, by minimizing control and partition-
ing register storage. Some general-purpose processors have
recently extended their SIMD width from 4 to 8 [15] with a
width of 16 possible in the future [26]. Graphics processors
from NVIDIA currently use an instruction vector width of
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32 [20] and those from AMD are 64 wide [2]. While the
peak performance possible with SIMD is higher, mapping
applications with irregular control flow to a SIMD architec-
ture is challenging.

The execution model adopted by GPUs simplifies map-
ping irregular applications to SIMD compared to tradi-
tional vector/SIMD designs. GPUs have hardware support
for conditional branches, which allows each SIMD lane
to act as a logical thread. NVIDIA refers to this execu-
tion as single-instruction multiple-thread (SIMT) because
logically each SIMD lane represents a different thread of
control. When a conditional branch requires some lanes
to execute the true path and other lanes to execute the
false path, performance degrades. This is because only
a single instruction is issued to all SIMD lanes, imply-
ing that only a subset of the lanes should actually exe-
cute operations and commit results. Recent research has
shown that the impact of this control divergence problem
can be reduced by dynamically forming SIMD-instructions
from large collections of threads [8, 19]. These collections
of threads are called cooperating thread arrays (CTAs) or
thread blocks by NVIDIA’s CUDA [21] and workgroups by
OpenCL [3]. The SIMD instructions on GPUs are known
as warps in CUDA and wavefronts in OpenCL, and the pro-
cess of forming new warps after a branch is referred to as
compaction. Compaction hardware identifies threads that
follow the same control flow and groups them together to
better fill the SIMD lanes.

In this paper we address a significant issue with previ-
ously proposed compaction mechanisms [8, 19] that hinders
their effectiveness. In order to identify candidates for com-
paction, hardware stalls all warps within a CTA on any po-
tentially divergent branch until all warps reach the branch
point. The compaction only occurs once all threads are
ready to continue past the branch. When effective, com-
paction improves performance, but the barrier synchroniza-
tion, which is not required for correctness, decreases per-
formance in some cases. We observe that this synchroniza-
tion overhead is common even when there are no benefits to
be gained from compaction; compaction is ineffective when
execution does not actually diverge (all conditions within
a warp resolve in the same direction) or when the pattern
of divergence is aligned across warps, which prevents com-
paction. We show that the recently proposed thread block
compaction mechanism [8], for example, unnecessarily de-
lays an average of 88% of warps in divergent-prone appli-



cations and 99.9% in non-divergent workloads. In many
cases performance is still increased, but in some cases per-
formance degrades by up to 19.6% compared to a baseline
design with no compaction.

We use the above insight about unnecessarily delayed
warps to design a new approach to compaction that avoids
unnecessary synchronization. The proposed mechanism
only stalls those warps that are likely to benefit from
compaction while allowing other warps to bypass com-
paction and continue executing. Our mechanism relies on
a compaction-adequacy predictor (CAPRI), which dynam-
ically classifies branches and warps based on the likeli-
hood that compaction will be effective. Using CAPRI,
the compaction hardware filters out non-divergent control
flow, whether from unconditional branches or similarly-
resolved conditional branches, without software support.
In addition, CAPRI identifies divergent branches that are
unlikely to benefit from compaction and allows warps to
continue executing unhindered. To achieve this, CAPRI
tracks compaction-effectiveness using low-cost hardware
structures inspired by branch predictors, which we show
can achieve an average prediction accuracy of 86.6% and
99.8% on a set of divergent and non-divergent benchmarks,
respectively. To summarize our main contributions:

• We identify unnecessary synchronization as a signif-
icant challenge to effectively mitigating the perfor-
mance degradation due to control divergence in GPUs.
We analyze this phenomenon and show examples of
branch instructions and warps that diverge but do not
benefit from compaction.

• We introduce the concept of compaction-adequacy
prediction and develop the CAPRI microarchitecture.
CAPRI is a pure hardware mechanism that does not re-
quire support from the compiler or application and is
able to dynamically identify which warps should wait
for compaction and which should continue executing.

• We qualitatively and quantitatively evaluate CAPRI in
terms of prediction quality, compaction-effectiveness,
and performance using representative GPU workloads.
We compare CAPRI to previously proposed state-
of-the-art compaction mechanisms [8, 19]. For di-
vergent applications, on which prior techniques do
well, CAPRI provides an additional 7.6% perfor-
mance boost. Moreover, CAPRI avoids the 10.1%
average performance degradation observed for non-
divergent workloads when applying prior compaction
techniques [8, 19]. For non-divergent applications,
CAPRI matches the performance of the baseline archi-
tecture to within ±1%.

2 Background and Related Work
A modern GPU, such as NVIDIA’s Fermi [20] or the

Cayman GPU of AMD’s Radeon HD 6900 series [2], con-
sist of multiple cores (“streaming multiprocessors” and
“SIMD units” in NVIDIA and AMD terminology, re-
spectively), where each core contains a number of par-
allel lanes (referred to as “CUDA cores” and “SIMD

cores” by NVIDIA and AMD, respectively) that operate in
SIMD/vector fashion: a single instruction is issued to each
of the parallel lanes and that instruction is repeated multi-
ple times per lane (vector-style pipelining). In Fermi, each
core schedules the instruction from a warp of 32 threads
while AMD’s current design schedules the instruction from
a wavefront of 64 workitems.

Because of the way these architectures share and parti-
tion certain resources, the SIMD grouping of warps is not
explicitly exposed to the programmer [21]. Instead, the pro-
grammer groups threads into thread blocks, also known as
CTAs, which consist of multiple warps. The number of
threads in a CTA is an application parameter, and a CTA
typically consists of enough threads for multiple warps. The
core may arbitrarily interleave instructions from multiple
warps and multiple CTAs. The GPU execution model and
ISA do not guarantee ordering between threads unless an
explicit barrier synchronization is applied.

2.1 Divergent Control Flow

While the underlying GPU hardware uses SIMD execu-
tion, the execution model allows each thread to follow its
own logical control flow. The basic mechanism that en-
ables independent branching in each thread, while maintain-
ing SIMD execution, is hardware generated active masks
(predicates) that indicate which threads are active and which
threads are not. Inactive threads still execute the operation
because of the SIMD control but the results of the computa-
tion are masked and discarded. The warp scheduler main-
tains a single warp-wide program counter (PC) and tracks
the logical PC of each thread. When issuing an instruction,
hardware masks out the operations from threads that are not
at the current warp-wide PC. There are two common ways
to maintaining the logical PC of each thread. The first, used
by the GPU in Intel’s Sandy Bridge [7, 16], maintains a sep-
arate PC for each thread and masks out threads that do not
match the current per warp PC. NVIDIA and AMD GPUs
use an alternate mechanism in which the active masks are
stored on a reconvergence stack, which we explain below.

A divergent branch partially serializes execution, as the
true and false paths must be executed one after another
with those threads on the non-active path being masked out.
Each divergence reduces the SIMD utilization, which we
define as the average number of active threads issued when
there is at least one ready warp in a core, as more and more
threads are masked. To maintain performance, it is impor-
tant to minimize serialization, which requires the hardware
to identify those points that the true and false paths recon-
verge. Unless these points are identified, a divergent branch
will result in serialized execution from that point until the
threads complete. One option for identifying the reconver-
gence point of a branch is to compute it at compile time,
which corresponds to its immediate post dominator [9, 28]
in the control flow graph. Thus, this mechanism for diver-
gent control flow is known as the post-dominator algorithm
or PDOM. The reconvergence stack [9, 30] is the hardware
structure used to track both the logical PCs of the threads
as they diverge from one another, as well as the points of
reconvergence. In our baseline architecture, a separate re-
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(a) Example control flow graph.

(e) Execution flow using WPDOM.
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Figure 1: Example showing how WPDOM is used to handle branch divergence. Each
CTA has 2 warps of 4 threads each. Each basic block consists of two instructions and
a single cycle is required to consume an instruction. The numbers inside the Active
Mask field represents the thread-IDs that are executing in that path and an x denotes
a thread that is masked (we use numbers for clarity, while hardware uses single bits).

convergence stack is maintained per warp and we thus refer
to this technique as warp-wide PDOM (WPDOM) [9]. We
explain its operation below using the example shown in Fig-
ure 1.

When a warp is to be executed, the entry at the top of
its stack (TOS) is initialized to a full mask and the Next PC
field is set to the first instruction’s PC of its basic block (path
A in Figure 1(a)). Note that each warp’s actual PC is man-
aged by the warp scheduler and that the next PC field in the
stack is utilized to track the PC value of the reconvergence
points. Each time a warp executes a divergent conditional
branch, new active masks are computed for both the true
and false paths and then the stack is updated as illustrated
in Figure 1(b). First, the next PC field of the current TOS
is updated to point to the PC of the reconvergence point,
which is the next instruction to be executed with the current
active mask once warps reconverge. Then, the mask, next
PC, and reconvergence PC (RPC) information of the false
path is pushed onto the stack, followed by the information
for the true path, and TOS is updated to point to the true
path. Thus, after a branch, hardware first executes instruc-
tion from the true path and masks out threads from the false
path. Note that if the warp did not diverge there is no need
to change the reconvergence stack because all threads in the
warp can continue executing with the same PC.

When the threads at the true path consumes all the
instructions in that path and accordingly the warp’s PC
matches the RPC at the TOS, this entry is popped off of
the stack. At this point, hardware starts executing the false
path of the last divergent branch (Figure 1(c)). When the
warp’s PC again equals the RPC on its corresponding en-
try, the stack is popped again, threads are reconverged, and
non-divergent execution resumes (Figure 1(d)). The algo-
rithm described above elegantly handles nested divergent
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(e) Execution flow using TBC.
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Figure 2: High-level operation of TBC. We assume the same control flow graph and
assumptions from Figure 1.

branches. If another conditional branch is executed while
execution is diverged, a new pair of false and true masks
and PCs are pushed onto the stack. These new masks are
logically AND-ed with the current mask at the top of the
stack, so that the top of the reconvergence stack correctly
represents the current warp to be scheduled. Each diver-
gence, however, reduces the number of active threads and
increases the number of wasted execution slots because a
larger fraction of operations is masked. Several mecha-
nisms have been proposed [8, 9, 19] to alleviate the degree
of waste and we discuss the most recent state-of-the-art pro-
posals below.

2.2 Thread Block Compaction
The reason that the WPDOM technique described above

suffers from low SIMD utilization is that each time a warp
diverges, the true and false path must be serialized because
the entire warp can only execute a single instruction at a
time. The basic idea of improving utilization is to consider
multiple warps, up to the entire CTA, as a single unit when a
branch diverges. Instead of allowing a warp to be serialized,
new warps can be dynamically formed to minimize masked
execution slots [8, 9, 19]. Among these, Thread Block
Compaction (TBC) [8] is a low cost and elegant mechanism
to dynamically reform warps. The basic idea of improving
utilization in TBC is to consider the entire CTA as a sin-
gle unit when a branch diverges. TBC considers the active
mask of the entire CTA and compacts it, when possible, into
a smaller number of warps with fewer masked threads. This
is done by changing the reconvergence stack architecture
from one stack per warp to a single stack for the entire CTA
(Figure 2). This single stack is used to determine the point
when the active masks of the true and false path are fully
known in order to apply maximal compaction. TBC, in ef-
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fect, uses its stack structure to introduce a barrier after each
branch so that the compaction unit has access to the entire
active mask of the CTA. This hardware-induced barrier is
meant to enable performance gains but is not needed for
correctness. A similar approach was suggested by Narasi-
man et al. [19], except that the granularity for compaction
is a fixed long warp, which is decoupled from the CTA size,
and unconditional branches do not stall and do not wait for
the entire CTA to reach the jump point. In Section 5, we
compare CAPRI with TBC, as well as an optimized ver-
sion of TBC (TBC+) that does not stall on either uncondi-
tional branches (as in [19]) or on conditional branches that
are guaranteed not to diverge. Such non-divergent branches
are identified by the CUDA compiler (marked with a .uni
qualifier in PTX [22]).

Although a single active mask is maintained per CTA,
warps are still scheduled independently by the warp sched-
uler based on available resources and operands. Unlike
WPDOM, however, the single entry for the entire CTA im-
plies that all active threads across all warps are all execut-
ing instructions from within a single basic block. All active
(unmasked) threads execute the same sequence of instruc-
tions until they reach another branch, at which point they
must wait for all warps to reach the branch to allow another
compaction, or until they reach a reconvergence point. To
achieve this, hardware needs to know when all active warps
have reached a branch or are ready to reconverge. Both
branching and reconvergence can only occur after all active
warps have synchronized.

Accordingly, in addition to the next PC, active mask,
and reconvergence PC, each entry of TBC’s stack also in-
cludes a counter for determining the number of active warps
in the current control flow path (WCnt). When the TOS
is changed, the new TOS entry’s WCnt is initialized to
the number of compacted warps associated with the entry
(Figure 2(c),(d),(f)), which is equivalent to the minimum
number of warps that are executing along that basic block.
Each time a warp executes a branch or reaches a reconver-
gence point, WCnt of the TOS is decremented. When WCnt
reaches zero, all active warps have either reached the end
of the basic block and executed the branch instruction or
reached the reconvergence point. The first time a branch di-
verges, new entries are added to the stack for the false and
true paths (Figure 2(b)). Note that the TOS is not changed
because the entire CTA advances through the control flow
graph in unison. The true and false active masks for the
warp that just executed the branch are then added to the new
entries. Each additional warp that executes the branch incre-

mentally updates its masks as well. When WCnt becomes
zero, the next basic block can execute, at which point the
TOS is updated to point to the true path of the branch and
the CTA-wide active mask is ready for compaction (Fig-
ure 2(c)).

Compaction is performed by the warp compaction unit
(WCU), which is shown in Figure 3. The WCU receives
the CTA-wide active mask, when WCnt becomes zero. The
WCU then uses a set of priority encoders to identify the
minimum number of warps required to execute the active
mask while maintaining the fixed association of each thread
to its SIMD lane. This is necessary to avoid high-overhead
changes to the register file. The output of the WCU is a
new set of active masks and the number of warps needed
to execute them. This information is then used for the new
TOS entry to continue execution. The context information
of how the original threads are associated with the newly
compacted warps, the thread ID mapping, and the individ-
ual warp PC values are stored and maintained by the warp
scheduler are as detailed by Fung and Aamodt [8].

When the WCU successfully compacts the CTA-wide
active mask into fewer warps than would have executed
with WPDOM, performance is likely to improve as illus-
trated in Figure 2. Although TBC introduces more synchro-
nization points and forces all warps within a CTA to exe-
cute in the same basic block, when there are warps avail-
able for scheduling from its own CTA or from other CTAs,
the synchronization overhead can be hidden effectively. As
we show in Section 5, however, in many cases compaction
does not result in reducing the number of warps and paral-
lelism is often limited. In other words, previous compaction
mechanisms are often an overkill as control divergence most
commonly occur in a non-compactable manner, especially
for workloads that rarely experience divergence. Yet, be-
cause they provide no means to differentiate compaction-
ineffective branches, the hardware logic units associated
with compaction (such as the WCU) are always activated
for all branching points – which in turn consume power un-
necessarily for compaction-ineffective branches. In the fol-
lowing section, we discuss how our proposed CAPRI mi-
croarchitecture alleviates this problem.

3 CAPRI
This work is motivated by the fact that not all branch

instructions are likely to benefit from compaction because
conditional branches often follow patterns that are repeated
between warps. For example, a common software optimiza-
tion is to construct kernels such that all threads in any given
warp branch in the same way, which effectively eliminates
branch divergence, even though the conditional branch is
still dynamically determined. A simple example is a loop-
end branch, which is conditional but is most typically evalu-
ated to be the same across all threads (line 17 of Figure 4(a)
and Figure 4(b)). In other cases, conditionals are not well
optimized or some threads are intentionally masked to re-
duce memory traffic. In such cases, a divergent branch may
diverge in a similar way across all warps, which renders
compaction ineffective. An example of a conditional branch
that diverges but is compaction-ineffective is shown in line



  Example 1 Code that contains two potentially divergent branches.

0 /* - Excerpted from __global__ void bpnn_layerforward_CUDA( ) kernel of BACKP.

1  - float input_cuda[ ] designates a global memory region */

2

3 int by   = blockIdx.y;

4 int tx   = threadIdx.x;

5 int ty   = threadIdx.y;

6

7 __shared__  float   input_node[HEIGHT];

8

9 if ( tx == 0 ) // Conditional branch that is divergent but compaction-ineffective

10 input_node[ty] = input_cuda[index_in];

11

12 __syncthreads();

13

14 …
15 for ( i = 1; i < __log2f(HEIGHT) ; i++ ){  

16 …
17 // Loop-end branch: Conditional branch that is non-divergent

18 }

(a) Examples of conditional branches that are either non-divergent or diver-
gent but compaction-ineffective. BACKP is part of the Rodinia benchmark
suite [6].

W1 4567

W0 0123

0123 4567

Active Mask

WCU

Active Warps

W1 4567

W0 0123

0123
4567

A 89ab
cdef

CTA0 CTA1

0123
4567

B 89ab
cdef

CTA0 CTA1

xxxx
xxxx

C xxxx
xxxx

CTA0 CTA1

0123
4567

D 89ab
cdef

CTA0 CTA1

W1 cdef

W0 89ab

89ab cdef

Active Mask

WCU

Active Warps

W1 cdef

W0 89ab

(b) Control flow graph of the loop-end branch on line 17 (non-
divergent).

W1 4xxx

W0 0xxx

0xxx 4xxx

Active Mask

WCU

Active Warps

W1 4xxx

W0 0xxx

0123
4567

A 89ab
cdef

CTA0 CTA1

0xxx
4xxx

B 8xxx
cxxx

CTA0 CTA1

x123
x567

C x9ab
xdef

CTA0 CTA1

0123
4567

D 89ab
cdef

CTA0 CTA1

W1 cxxx

W0 8xxx

8xxx cxxx

Active Mask

WCU

Active Warps

W1 cxxx

W0 8xxx

(c) Control flow graph of the divergent yet compaction-ineffective
branch on line 9.

Figure 4: Example source code and control flow graphs of compaction-ineffective
branches.

9 of Figure 4(a) and in Figure 4(c). Several of the bench-
marks we discuss in Section 5 (LPS, BACKP, RAY, FFT,
and QSRDM) exhibit a significant number of branches that
cause divergence in a regular pattern across warps and as
a result cannot be compacted; the number of warps before
and after compaction is the same.

As we discuss in Section 5, attempting an ineffective
compaction can potentially reduce performance, especially
when a kernel contains a significant number branches that
are mostly compaction-ineffective. In order to collect
candidates for compaction, previous mechanisms stall all
threads in the CTA until the last thread reaches the branch
point. At that time, compaction occurs and the newly com-
pacted warps can be scheduled. This compaction-induced
barrier introduces synchronization overhead, which cannot
always be hidden. While the benefits of compaction usu-
ally outweigh the overhead of synchronization when suc-
cessful, that is not the case when compaction is ineffec-
tive. When unsuccessful, compaction merely result in shuf-
fling the threads between warps which can potentially cause
memory divergence (Figure 5) with no benefits in SIMD uti-
lization and worsening power efficiency through needlessly
activated compaction units. Our goal is to overcome this
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Figure 5: Example of a non-compactable branch that leads to memory divergence
upon compaction.

inefficiency, which we demonstrate can occur quite often
(Section 5), by stalling only those warps that have a high
likelihood of benefiting from compaction. Warps that are
not likely to gain from compaction are bypassed so that they
can continue execution beyond the branch while maintain-
ing its static warp structure.

We achieve this goal by utilizing a compaction-adequacy
predictor (CAPRI), which uses the active mask of a warp,
just after a branch point, and its adequacy history to pre-
dict whether a warp should wait for compaction or con-
tinue to execute, ignoring potential compaction opportuni-
ties. The adequacy history is the history of successes or
failures of compaction with respect to a particular branch.
To predict compaction-adequacy, CAPRI follows a design
similar to a simple single-level branch predictor. CAPRI
uses a prediction table that tracks adequacy history using
prediction bits, which are updated based on a dynamically
computed compaction-adequacy of conditional branches.
Compaction-adequacy is computed, regardless of whether
compaction was applied to the warps or not, because warps
that did not stall for compaction could have benefited from
compaction.

CAPRI consists of three main components: the
compaction-adequacy prediction table (CAPT) that tracks
adequacy history, the decision logic that determines
whether to delay a warp for compaction, and the WCU
which includes logic for determining the compaction-
effectiveness of a branch. We use Figure 6 as an example
to illustrate how TBC and CAPRI execute the control flow
graph in Figure 6(a), which contains a non-divergent branch
and a branch that is divergent but compaction-ineffective.
Notice that with TBC, each branch instruction introduces a
barrier, which in the example leads to three idle cycles be-
cause the barrier restricts the parallelism available to hide
memory latency (Figure 6(b)). With CAPRI, on the other
hand, warps that encounter branches that are compaction-
inadequate do not wait and no barrier is introduced, effec-
tively reducing the number of idle cycles to one. In general,
CAPRI enables greater flexibility in warp scheduling and
better latency hiding, which improves performance (Fig-
ure 6(c)). We will refer back to this example when dis-
cussing CAPRI’s components and operation below.

3.1 CAPT
The CAPT is a fully-associative (potentially set-

associative) tagged structure used to track adequacy history
for branches (Figure 7). Each CAPT entry consists of a tag
that identifies a particular branch using the PC of the branch
instruction (BADDR), one or more adequacy history bits,
and a valid bit. As we show later, the maximum number
of CAPT entries necessary in all the benchmarks we eval-
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Figure 6: (a) Example control flow graph and its corresponding execution flow when (b) TBC or (c) CAPRI is used. We use the same assumptions from Figure 1 except that each
CTA consists of 12 threads.
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Figure 7: Example CAPRI execution (1b-Latest) of the control flow graph of Figure 6.

uated in Section 5 is 24, and in practice, a 8-entry CAPT
was capable of achieving 97% of the benefits provided by
an infinite CAPT among the benchmarks that were sensitive
to the number of entries. Note that because of its small size,
we maintain a separate CAPT for each shader core. We ex-
periment with several configurations of the history bits of
each CAPT entry: a 2-bit saturating counter, a single bit
indicating the last seen compaction-adequacy behavior, and
a single sticky bit that is set once a warp diverged upon a
branch instruction.

3.2 Decision Logic
There are three possible outcomes when a warp executes

a branch. The first is that the warp did not diverge and there
is no benefit to stalling. Therefore, CAPRI’s policy is to
skip checking the CAPT and simply allow a non-divergent
warp to continue executing. This scenario is shown in
Figure 7(a). Even without prediction, the fact that non-
divergent warps are not stalled unnecessarily already pro-
vides an advantage over previously proposed compaction
schemes, but is not the main contribution of this study.

The second possible outcome is that the warp diverged
and that the CAPT has no information about the divergent
branch (Figure 7(b)). In this case, the branch is conserva-
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Figure 8: Evaluating the compaction-adequacy of the branch entering block B
from Figure 6(a).

tively assumed to be an adequate candidate for compaction.
The CAPT is updated to include this branch and the his-
tory is initialized to an “adequate” state. At this point, the
CAPT has information about the branch, which indicates
that future warps should wait for compaction as well.

The third possible outcome is that the warp diverged and
the corresponding branch is already registered in the CAPT.
In such a case, the history bits of the CAPT are used to de-
cide whether to stall the warp or to bypass compaction (Fig-
ure 7(c)). Accordingly, all divergent warps within the CTA
will follow the same CAPRI decision because the CAPT is
only updated once the WCU evaluates compaction effec-
tiveness and because history is maintained per branch as
discussed below. Note that, as a design optimization, warps
that have bypassed compaction are not permitted to execute
more than a single basic block away from one another. This
restriction significantly simplifies the reconvergence stack
and WCU and has minimal impact on performance because
it is rare for warps along the same control flow branch to
have very different execution characteristics.

3.3 WCU, CAPT, and Reconvergence
Stack Management

Regardless of whether the warps have been stalled or
not, in order to evaluate the compaction effectiveness of a
branch, the CTA-wide active mask at the TOS is always for-
warded to the WCU when WCnt is zero. This is because
warps that were predicted as compaction inadequate and
did not wait for compaction could have, in fact, benefited
from compaction. We follow the WCU design described
in [8] and only make one minor change: warps that did
not wait for compaction are marked as bypassed using a
single bit per warp (collectively referred to as the update-



Table 1: GPGPU-Sim configuration.

Number of shader cores 30
Threads per core 1024
Threads per warp 32
SIMD pipeline width 32
Registers per core 16384
Shared memory per core 32KB
L1 Cache (size/assoc/line) 32KB/8-way/64B
L2 Cache (size/assoc/line) 1024KB/64-way/64B
Number of memory channels 8
Memory controller Out-of-order (FR-FCFS)
DRAM request queue size 32

mask (UMask) in Figure 7). The WCU does not consider
the active masks of the bypassed warps when compacting
the warps, but the logic unit that derives the compaction
effectiveness (Predictor in Figure 8) still processes the cor-
responding active masks. An example of this is shown in
Figure 7(c) to (d) and Figure 8.

The predictor, which evaluates compaction-adequacy in-
side the WCU, is simpler than the logic used to form com-
pacted warps – it just counts the number of warps that the
WCU would have output had all warps waited for com-
paction. Figure 8 shows this predictor logic that counts the
number of active threads associated with each SIMD lane.
The maximum number of threads is equal to the minimum
number of required warps. If this minimum is equal to the
number of active warps, no benefit is provided even though
the warps were stalled. In such a case, this branch would not
be adequately compacted and we update the CAPT to reflect
that. If, on the other hand, the number of post-compaction
warps is smaller, the CAPT is updated to indicate adequacy
so that the warps would wait for compaction in future itera-
tions.

We experimented with multiple history bit configura-
tions: 2-bit saturating counter, 1-bit latest adequacy re-
sult, and 1-bit sticky adequacy. Figure 7 shows how the 1-
bit latest history configuration (1b-Latest, 1bL) is updated
to reflect the most recent adequacy result from the WCU.
The 2-bit counters work in a similar manner, increment-
ing and decrementing the counter when the WCU evaluates
a branch to have been effectively and ineffectively com-
pacted, respectively. The 1-bit sticky configuration (1b-
Sticky, 1bS) is the most conservative scheme. It sets the
history bit to adequate when the warp that executed a branch
diverges and the bit remains set until the kernel completes.

4 Methodology

We model CAPRI in GPGPU-Sim (version 2.1.1b) [4],
which is a publicly available, detailed cycle-based simula-
tor of a “general purpose” GPU that supports CUDA version
2.3 and PTX version 1.4. We also implemented TBC as de-
scribed in [8] and TBC+ – a version of TBC that does not
stall warps from branches that cannot diverge (as indicated
by the compiler). We configure the simulator to closely
match NVIDIA’s Quadro FX5800 as recommended in the
GPGPU-Sim manual (see Table 1). We adopt the sticky
round-robin warp scheduling policy, in which the warps in
the currently running CTA maintain the highest scheduling

Table 2: Benchmark properties.

Divergent
WPDOM

Name Description Instr. SIMDutil

BFS Breadth First Search 17M 29%
MUM MUMmerGPU 75M 23%
MUM++ MUMmerGPU++ 139M 28%
LPS 3D Laplace Solver 81M 74%
BACKP Back Propagation 193M 83%
TPACF Two Pt. Ang. Cor. Fun. 293B 81%

Non-Divergent
WPDOM

Name Description Instr. SIMDutil

RAY Ray Tracing 259M 91%
LIB LIBOR Monte Carlo 1B 100%
PFLT Particlefilter 4B 99%
CFD CFD Solver 21.4B 96%
FFT Fast Fourier Transform 250M 91%
QSRDM Quasirandom Generator 729M 95%

priority until all of that CTA’s warps are stalled. We use a
32-entry CAPT with a 1-bit latest history configuration for
our default CAPRI configuration. We explicitly note when
using different parameters to evaluate sensitivity.

We use a collection of benchmarks from the Parboil [14]
and Rodinia [6] suites, CUDA SDK [23], and other 3rd
party applications provided with GPGPU-Sim [4, 10, 11,
12, 13, 25]. We ran all applications that are supported
by GPGPU-Sim and that we could simulate to comple-
tion. Due to space constraints, we present the results of
the 12 most representative workloads that display distinct
differences across compaction schemes (see Table 2). We
use SIMD utilization rate (SIMDutil in Table 2) as an
architecture-level metric for divergence. SIMD utilization
rate is the average number of threads issued when any warp
is ready to execute, divided by the number of threads per
warp. We do not present results for the other 13 benchmarks
we evaluated. Among these, CAPRI consistently outper-
formed TBC and TBC+ by 1− 3% for benchmarks that ex-
perience control divergence, and matched the performance
of WPDOM to within ±1% for workloads with little or no
divergence.

5 Experimental Results
In this section we detail our evaluation of CAPRI, in-

cluding the quality of the predictions, its impact on SIMD
utilization and idle cycles, its impact on performance, pa-
rameter sensitivity, and implementation cost.

5.1 Prediction Quality
CAPRI predicts whether the warps at a given branch

point should stall and synchronize to attempt compaction,
or whether they should continue to execute without com-
paction. CAPRI can thus correctly or incorrectly predict to
stall or to bypass. Figure 9 shows the quality of the pre-
dictions by categorizing each per-warp prediction as cor-
rectly predicting to bypass and not wait for compaction (By-
pass/Bypass), correctly predicting to stall and wait for com-
paction (Stall/Stall), incorrectly predicting to bypass while
compaction would have been effective (Bypass/Stall), and
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Figure 9: Prediction and stall/bypass decision quality. Each bar represents the fraction
of warps that were correctly bypassed or stalled (Bypass/Bypass or Stalled/Stalled),
and incorrectly bypassed or stalled (Bypass/Stall or Stall/Bypass).

incorrectly predicting to wait when compaction is ineffec-
tive (Stall/Bypass). We determine which category each pre-
diction falls into in the following way. For each branch, we
perform an exhaustive search of all potential compactions
and identify the minimum number of warps required to
achieve maximal compaction for each dynamic branch. We
then count how many warps were bypassed and how many
waited at each specific dynamic branch when using the pre-
dictor.

WPDOM and TBC “predict” that all warps should al-
ways bypass or always stall, respectively. TBC, for exam-
ple, only generates correct Stall/Stall or, incorrect, Stall/By-
pass decisions. Because most branches are not adequate
candidates for compaction (recall examples in Section 3),
most decisions made by TBC are to incorrectly stall a warp
when it should have just continued to execute without wait-
ing for compaction. TBC makes the smallest fraction of
correct decisions between all the schemes. In fact, TBC has
near-zero accuracy with non-divergent workloads, which
explains why it degrades performance in some cases. WP-
DOM makes the opposite decisions to TBC, either correct
Bypass/Bypass or incorrect Bypass/Stall. WPDOM makes
near-perfect decisions for non-divergent workloads. For the
divergent benchmarks, WPDOM still makes a significant
number of correct decisions as the majority of branches are
non-compactable. It is interesting to observe that WPDOM
has near perfect accuracy in LPS, BACKP, and TPACF,
while TBC and TBC+ make nearly no correct predictions.
These three benchmarks have significant branch divergence,
but compaction is ineffective (see also Section 5.2).

Unlike TBC, TBC+ decides to bypass warps at branch
points when it is statically known that no divergence can
occur. There is only a small number of these branches,
however, and over 80% of the decisions made by TBC+
are still incorrect. CAPRI, on the other hand, makes high-
quality decisions in nearly all cases. CAPRI accurately
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Figure 10: SIMD utilization rate and idle cycle count.

predicts 99.8% and 86.6% of the warps ideal behavior on
non-divergent and divergent benchmarks, respectively. The
BFS, MUM, and MUM++ benchmarks have highly irregu-
lar divergence patterns that are hard to predict. CAPRI still
achieves an average of 60.2% and 74.3% accuracy for these
three workloads using the 1b-Sticky and 1b-Latest history
bit configurations, respectively. As expected, 1b-Sticky has
overall lower accuracy, but makes more correct Stall/Stall
predictions because of its bias, compared to 1b-Latest that
may incorrectly react to anomalous dynamic behavior. Per-
formance with 1b-Latest is higher, indicating that predic-
tions should not be biased towards stalling. The correct
decisions made in these three benchmarks result in highly-
effective compaction (see Section 5.2). As a result, the
number of dynamic warps is much smaller after compaction
than in the baseline WPDOM, which is why the fraction of
stall decisions is relatively low even though WPDOM has a
large fraction of incorrect Bypass/Stall decisions.

In addition to the configurations discussed above, we
also experimented with history configurations using 2-bit
counters. Accuracy and performance improved marginally,
by less than 1%, and we do not include the results for
brevity.

5.2 Utilization and Idle Cycles
Figure 10(a) and 10(b) show the impact of com-

paction on the SIMD utilization rate and the number of
idle cycles. Note that overall execution time is essen-
tially (SIMDutilization ·Ncores ·Nlanes + Idle) and ide-
ally, utilization is maximized while idle cycles are min-
imized. Overall, TBC and TBC+ significantly improve
SIMD utilization, by up to a factor of 2 for BFS, MUM,
MUM++, and TPACF. CAPRI is able to correctly pre-
dict beneficial compaction and matches the SIMD utiliza-
tion improvements of TBC. The 1b-Sticky history stalls
a larger number of threads but achieves marginally better
compaction than with the 1b-Latest configuration.

TBC does not achieve significant improvements for all
other benchmarks (< 2%), even for LPS and BACKP that
have significant divergence. This indicates that compaction
is ineffective for the majority of branches and will not im-
prove performance – meanwhile, stalling warps and initi-
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Figure 11: Performance of CAPRI compared to WPDOM, TBC, and TBC+.

ating compaction upon the few divergent yet compaction-
ineffective branches may degrade performance as explained
in Section 3. On average, TBC increases idle cycles by
86.4% with 7 applications experiencing an increase greater
than 40%. By avoiding stalls on unconditional branches,
TBC+ introduces fewer idle cycle, but still has 62.2% more
idle cycles than the baseline WPDOM on average. While
CAPRI matches the gains of TBC, it does much better with
respect to idle cycles. By not stalling most warps that do
not benefit from compaction, CAPRI does not increase idle
cycles by more than 50% for any application and incurs an
average of only 13.7% and 9.1% increase for the 1b-Sticky
and 1b-Latest history configurations, respectively. Based
on these results we expect 1b-Latest to outperform all other
schemes because it is nearly optimal in terms of compaction
gains and has the smallest increase of idle cycles.

5.3 Overall Performance Results
Figure 11 shows the performance of CAPRI relative

to that of WPDOM, TBC, and TBC+. We show abso-
lute IPC across the entire processor, as well as normal-
ized IPC with separate harmonic means for the divergent
and non-divergent benchmarks. CAPRI outperforms TBC
and TBC+ on all benchmarks because it generally correctly
distinguishes between warps that can benefit from com-
paction and those that only suffer unnecessary synchroniza-
tion delays. Concerning divergent workloads, CAPRI with
1b-Latest outperforms WPDOM and TBC+ by 12.6% and
7.2% on average (harmonic mean), respectively. As ex-
pected, the 1b-Sticky configuration does not perform as well
as 1b-Latest, but still outperforms WPDOM and TBC+.
Note that TBC and TBC+ degrade the performance of the
divergent LPS, BACKP, and TPACF applications, compared
to WPDOM, because of the ineffective compaction and ex-
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Figure 12: Normalized performance of CAPRI (1b-Latest) with variable CAPT size.
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(a) Normalized L1 misses.
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(b) Normalized L2 misses.

Figure 13: Changes in L1 and L2 miss count from compaction, normalized to WP-
DOM.

cessive synchronization overheads while gaining none or
little in SIMD utilization. On non-divergent benchmarks,
TBC and TBC+ suffer an average of 10.1% and 8.9% per-
formance degradation, respectively. CAPRI correctly pre-
dicts that there is no opportunity for compaction in the non-
divergent workloads and matches the performance of WP-
DOM to within 1%.

5.4 Sensitivity Analysis
Figure 12 shows the normalized IPC achieved when

varying the number of CAPT entries on a subset of the
divergent benchmarks. We show those benchmarks for
which the number of entries has impact. All other bench-
marks achieved at least 98.3% of the IPC of an unlimited
CAPT with just 4 entries. MUM and MUM++ are the most
most sensitive to the number of entries used. Even these
benchmarks achieve over 94% of the IPC benefits of an
unbounded CAPT with just 4 entries and 82.3% with a 2-
entry CAPT. All results use LRU replacement and a fully-
associative organization.

Compacting warps involves rearranging threads from the
CTA. Because different groups of threads execute concur-
rently compared to program order and the baseline WP-
DOM, it is possible that the application memory behavior
changes as well. Figure 13 shows the relative number of
first- and second-level cache misses for TBC+ and CAPRI
normalized to WPDOM. TBC+ significantly increases the
number of L1 misses for many applications, including some
applications in the non-divergent class. The reason for the
latter is that the WCU rearranges threads even when com-
paction is ineffective (number of warps is not reduced),
which can increase miss rate (Figure 5). CAPRI, on the



other hand, does much better than TBC+. CAPRI cor-
rectly predicts the lack of compaction-effectiveness of many
branches, including nearly all in the non-divergent work-
loads. As a result, misses do not increase for these work-
loads and are reduced (compared to TBC+) for the highly-
divergent applications. Note that for BFS and MUM, which
suffer the greatest increase in L1 misses, performance is ac-
tually improved the most because of the large benefits from
compaction. Even though L1 miss rate increases, there is
little impact on actual L2 misses and memory traffic. This
is because of the filtering effect of L1, which increases the
likelihood that a cache line would still be resident and ser-
vice the reordered accesses without increasing the L2 miss
count.

5.5 Implementation Overhead
Fung and Aamodt [8] evaluated the area overhead of

TBC and showed it to be less than 1mm2 for an entire chip
in 65nm technology. In addition to this small area, CAPRI
requires area for the CAPT and for adequacy evaluation in
the WCU. As shown above, an 8-entry CAPT is sufficient
to attain near-maximal performance improvement. Each
CAPT entry consists of a 32-bit tag, 1 valid bit, and 1 his-
tory bit, for a total of 272 bits for an entire shader core.
This structure can be accessed in parallel while the branch
is executing, which enables a simple and low-power imple-
mentation of its 8-way associativity.

The adequacy evaluator (predictor) added to the WCU
can be implemented using simple logic for counting the
number of ones in each SIMD lane, which represent an ac-
tive thread in that lane. This logic is significantly simpler
than the compaction logic itself and should add negligible
area to the WCU.

In terms of power overhead, because the CAPT is
queried once per warp for a branch and is significantly
smaller than the GPU register file (128KB of registers per
shader core in Fermi [20]) for example, we expect the over-
all power consumption of the CAPRI microarchitecture will
not be burdensome – note that the predictor and compaction
logic operate at the granularity of warps or even thread-
blocks.

6 Related Work
We discussed the most relevant works in Section 2 and

briefly summarize additional related work below. The idea
of masked execution dates back to very early SIMD and
vector machines, including the Illiac IV [5] and the Cray-
1 [24]. The idea of masking was extended to software op-
timizations along with the idea of exchanging control flow
for data flow with the concept of predicated execution [1].
In the context of vectors, Smith et al. [27] proposed density-
time execution, which is similar to compaction but operates
in time on traditional masked vector execution. Smith et al.
also provide a good summary of performance comparisons
among various vector ISAs that incorporate conditional op-
erations. An idea similar to the above was developed for
stream processors by Kapasi et al. [17].

Tarjan et al. [29] proposed adaptive slip to address mem-
ory divergence issues. Adaptive slip enables a subset of a

warp to continue executing while other threads are waiting
on memory. This work was extended to dynamic warp sub-
division [18], which allows warp subsets to be scheduled in-
dependently to enhance latency tolerance. Diamos et al. [7]
propose Thread Frontier as an alternative to the immediate
post dominator reconvergence algorithm. Thread frontiers
use the earliest reconvergence point possible in an unstruc-
tured control flow [31]. These other GPU mechanisms are
orthogonal to CAPRI and can be applied on top of CAPRI
for further optimization.

7 Conclusions
In this paper we argue that previously proposed mecha-

nisms to mitigate the negative impact of control divergence
fall short because they introduce excessive synchronization,
even when compaction provides no benefit. We show that a
large fraction of conditional branches cannot benefit from
compaction because they happen not to diverge much or
because their divergence pattern is not amenable to com-
paction. To overcome this fundamental deficiency of de-
creased performance from unnecessary synchronization, we
describe and evaluate a dynamic hardware predictor that
predicts whether a branch point is likely to adequately bene-
fit from compaction. When the prediction is positive, all di-
vergent warps that execute the branch will stall and wait for
compaction. If the adequacy prediction is negative, com-
paction is bypassed and synchronization is avoided.

Prior compaction techniques provide benefit for highly-
divergent applications but degrade performance in some
cases (by up to 19.6%). The CAPRI predictor-based
compaction mechanism provides superior performance im-
provements when improvements are possible. At the same
time, by correctly identifying the lack of compaction-
adequacy, CAPRI matches the performance of the baseline
WPDOM to within ±1%. Furthermore, we also show that
CAPRI’s impact on memory behavior is much smaller than
that of prior compaction mechanisms. In conclusion, with
very small area overhead, CAPRI is able to improve per-
formance by up to average 7.6% (max 10.8%) on top of
TBC on divergent workloads and avoid TBC’s 10.1% aver-
age (max 19.6%) performance degradation in non-divergent
cases.
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