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Abstract—This paper describes and evaluates a scalable and
efficient resilience scheme based on the concept of containment
domains. Containment domains are a programming construct
that enable applications to express resilience needs and to interact
with the system to tune and specialize error detection, state
preservation and restoration, and recovery schemes. Containment
domains have weak transactional semantics and are nested to
take advantage of the machine and application hierarchies and
to enable hierarchical state preservation, restoration, and recov-
ery. We evaluate the scalability and efficiency of containment
domains using generalized trace-driven simulation and analytical
analysis and show that containment domains are superior to both
checkpoint restart and redundant execution approaches.

I. INTRODUCTION

Reliability and resilience are major obstacles on the road
to exascale computing. The growing number of components
required for exascale systems and the decreasing inherent
reliability of components in future fabrication technologies
may result in error and fault rates that are orders of mag-
nitude higher than those of petascale systems today. Current
reliability and resilience techniques simply cannot cope with
the simultaneous increase in scale and fault rates while main-
taining high efficiency.

We present containment domains (CDs), a new approach
for achieving low-overhead resilient and scalable execution.
CDs abandon the prevailing one-size-fits-all approach to re-
silience and instead embrace the diversity of application needs,
resilience mechanisms, and the deep hierarchies expected in
exascale hardware and software. CDs give software a means
to express resilience concerns intuitively and concisely. With
CDs, software can preserve and restore state in an optimal
way within the storage hierarchy and can efficiently support
uncoordinated recovery. In addition, CDs allow software to
tailor error detection, elision (ignoring some errors), and
recovery mechanisms to algorithmic and system needs. To
achieve these goals, CDs rely on five key insights: (1) different
errors and faults can be tolerated most efficiently in different
ways; (2) machines are becoming increasingly hierarchical and
this hierarchy can be exploited to reduce resilience overhead;
(3) scalable execution requires uncoordinated local recovery
for common-case errors; (4) it is often more efficient to trade
off lower error-free execution overheads for higher recovery
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overheads; and (5) carefully designed and analyzed algorithms
can ignore, or efficiently compensate for, some errors without
resorting to rollback and re-execution.

Containment domains are programming constructs for in-
corporating these insights within a programming model and
system. CDs have weak transactional semantics and are de-
signed to be nested to form a CD hierarchy. The core semantic
of a CD is that all data generated within the CD must be
checked for correctness before being communicated outside
of the domain and that each CD provides some means of
error recovery. Failures in an inner domain within the CD
hierarchy are encapsulated and recovered by the domain
in which they occur—therefore, they are contained without
global coordination. A specific error may be too rare, costly,
or unimportant to handle at a fine granularity. For this reason,
an inner CD can escalate certain types of errors to its parent.
This flexibility of expressing how and where to preserve and
restore data, as well as how to recover from errors, sets CDs
apart from prior system-level reliability schemes.

CDs enable a new range of resilience tradeoffs and can
significantly improve application efficiency and performance
relative to prior reliability approaches. We demonstrate the
potential benefits of CDs by simulating synthetic application
models with error injection. The application models are based
on a set of mini-applications that we map to CDs and span
a range of characteristics that impact CD effectiveness. We
compare CDs to previously proposed techniques across a range
of machine scales and error models. We show how CDs
flexibly utilize the five insights described above to improve
resilience overheads and provide superior scalability. To sum-
marize the key aspects of the CD approach are:

1) Hierarchical preservation and restoration enables local-
ized handling; errors that can be recovered locally are
handled by the innermost CD in a cost-effective manner.

2) Specialized and hierarchical state preservation effectively
utilizes the storage hierarchy and reduces preservation
volume, overcoming the low bandwidth and high error
rates associated with system scaling.

3) The transactional semantics of CDs improve scalability,
and uncoordinated recovery enables applications to tol-
erate high error rates on very large systems. While prior
approaches drop below 50% efficiency for large systems
with high error rates, CDs remain efficient.

4) The structure imposed by the CD abstraction expresses
resilience schemes in a way that is both general and
amenable to automatic analysis and tuning.
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The rest of the paper is organized as follows: we compare
and contrast CDs with prior work in Section II, describe the
CD framework and its use in Section III, develop a flexible
analytical model for CDs and uncoordinated recovery in Sec-
tion IV, summarize our evaluation methodology in Section V,
present the evaluation results and discuss their implications in
Section VI, and conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

System-level reliability has been addressed in a variety
of ways through prior work spanning many years. Con-
tainment domains are necessitated by the increasing need
for an efficient, comprehensive, and flexible mechanism to
handle all errors in the most appropriate manner, and draw
concepts and inspiration from this large body of work. Related
work includes the distributed, hierarchical checkpointing used
in large-scale systems as well as programming languages
which use hierarchical transactional semantics to interface
with checkpointed state.

Checkpointing is a generic state preservation and restoration
mechanism which is widely used by large-scale compute
clusters to tolerate failures. Many current systems take a global
checkpoint and restart (g-CPR) approach, and establish a
synchronized program state of every node in a centralized
location. Global checkpointing, however, is not feasible in
future systems–application working set sizes are increasing,
while I/O bandwidth for transferring data to a centralized non-
volatile location scales poorly.

Researchers have proposed coordinated local checkpoint
and restart (l-CPR) to distribute state preservation and to
overcome some of the inefficiency associated with centralized
global checkpoints. Local checkpoints store the state of each
node in a distributed fashion and are faster and more scalable
than global checkpoints. While the checkpoints are stored
locally, all checkpoint and recovery actions are globally coor-
dinated and may perform poorly when failure rates are very
high. A naive implementation of local checkpointing, however,
cannot recover from permanent node failures. Accordingly,
infrequent global checkpointing is often combined with local
checkpointing to tolerate such failures [1], [2]. Local check-
pointing schemes may utilize DRAM [3], [4], non-volatile
memory [5] or other methods to gain efficiency. However, their
motivation and operation remains fundamentally the same.
Moody et al. further generalize local/global checkpointing into
scalable multi-level checkpoint and restart (SCR) [6]. Hierar-
chical checkpointing (h-CPR) employs multiple checkpoints
with differing costs and levels of error coverage. This multi-
level approach can improve efficiency by speeding up the
recovery of common-case errors, while using slower and more
powerful checkpoints to preserve functionality.

In addition to coordinated l-CPR, researchers have sug-
gested recovering checkpoints and re-executing without co-
ordination between nodes. Uncoordinated distributed check-
pointing, however, may result in the domino effect [7]–given
an arbitrary set of interacting processes with distributed check-
points, a single error local to one process can cause all pro-
cesses to completely roll back. Common approaches to elim-
inate the domino effect include communication logging [8]–
[10] and coordinated checkpointing based on communication
history [11], [12]. Such mechanisms, however, often sacrifice

a certain degree of process autonomy and incur extra (often
unpredictable) run-time and messaging overheads [13].

Unlike checkpointing schemes, other existing reliability
approaches allow for fine-grained and flexible programmer
control. Randell’s recovery blocks (RBs) [7] hierarchically
decompose a program into nested elements. Each Recovery
Block is implemented in two independent-yet-equivalent rou-
tines and a functionality check. If a recovery block executes
incorrectly, the secondary (fault-tolerant) routine is executed.
Properly implemented recovery blocks may tolerate hard, soft,
or software errors, and the programmer can nest blocks such
that an parent block can resolve an error from an inner child.

Transactional programming is primarily used for controlling
concurrency in shared-resource systems [14], but it can also
be used to enforce reliability. Transactions, if so defined, can
be nested to any depth. The nested transaction structure is nat-
urally used to localize the effects of failures within the closest
possible level of nesting in the transaction tree. This style
of programming, including [15]–[18], is a generalization of
the recovery block to the domain of concurrent programming.
A significant challenge and source of inefficiency with such
transactions is that each transaction must be made durable to
guarantee recovery, resulting in storage and contention issues
similar to those of checkpointing schemes.

Recent research on transactional memory (TM) [19]–[21]
mainly aims to enable efficient concurrent and lock-free pro-
gramming. Transactional memory inherently provides state
preservation and restoration at transaction boundaries. There
has been prior work that extends transactional memory con-
cepts to reliability, including Relax [22] and FaulTM [23].
Both use TM-like semantics for hardware/software collabora-
tive reliability; both provide state preservation and restoration
at a transaction boundary. These techniques, however, can only
tolerate soft errors in computation and memory that can be
detected while a transaction is still running.

Advantages of Containment Domains
Containment domains share some features and strengths

with all the above approaches, but offer substantive usability
and efficiency improvements (see Section III). The hierarchical
state preservation and restoration capabilities of CDs are simi-
lar in concept to multi-level distributed checkpoints. However,
the flexibility of CDs allows the programmer and software
system to tune the location and method of preservation and
recovery to meet a desired level of reliability while maxi-
mizing the performance of the system. Generic checkpointing
approaches, on the other hand, only have the notion of
time intervals between state preservation and restoration; the
programmer has little control, thus making these checkpoints
inefficient and inflexible to application needs. As described
in this paper, CDs are not susceptible to the domino effect
because of their transactional qualities.

Conceptually, CDs are similar to recovery blocks – each
constrains the detection and correction of errors to a local
boundary, and each is able to pass uncorrectable errors up-
wards to be handled by the parent domain or block. CDs are,
themselves, a limited form of hierarchical transactional pro-
gramming. Unlike other transactional programming models,
CDs allow more aggressive optimization by fully exploiting
the storage hierarchy and by allowing the partial preservation
and selective rematerialization of data. By flexibly using a

2



Preserve

Domain
Body

Recover

Detect

Fig. 1: The organization of hierarchical CDs. Each domain has
four components, shown in color. The relative time spent in each
component is not to scale.

range of error detection and correction mechanisms, CDs also
allow for varying levels of reliability and performance depend-
ing on application needs. Using a range of error protection
mechanisms also allows CDs to avoid the shortfalls of TM–
CDs are able to provide high levels of reliability against a
variety of errors, including permanent machine faults.

III. CONTAINMENT DOMAINS

Each containment domain has four explicit components,
which enable the application to express resilience tradeoffs
and take advantage of the key insights described in Section I.
The preserve component locally and selectively preserves state
for recovery. This preservation need not be complete – unpre-
served state, if needed, may be recovered from elsewhere in the
system or rematerialized. The body is then executed, followed
by a detect routine to identify potential errors. Detection is
always performed before the outputs of a CD are committed
and advertised to other CDs. Detection can be as simple as
utilizing underlying hardware and system mechanisms or may
be an efficient algorithm-specific acceptance test. Specialized
detection can also be designed to ignore errors that are known
not to impact the running computation. If a fault is detected,
the recover routine is initiated. Recovery may restore the
necessary preserved state and re-execute the CD, or it can
escalate the error to the parent CD.

As explained in Section I, CDs are designed to be hierarchi-
cally nested; failures in an inner domain are encapsulated and
recovered by that inner domain whenever efficiently possible.
Erroneous data is never communicated outside of a CD, and
there is no risk of an error escaping containment. Because
of constraints on available storage, bandwidth, and the need
for inter-CD communication, some errors and faults are too
rare or costly to recover at a fine granularity. If such an error
occurs, an inner CD escalates the error to its parent, which in
turn may escalate it further up the hierarchy until some CD
can recover the error. Potentially, an error may be escalated
to the root of the CD tree, which is functionally equivalent to
recovery through g-CPR. Figure 1 gives the organization of a
hierarchy of nested CDs, with their four components shown.

A. Illustrative Example
To make the explanations below more concrete we show

a simple and illustrative example through iterative sparse
matrix-vector multiplication (SpMV). This computation con-
sists of iteratively multiplying a constant matrix by an input
vector. The resultant vector is then used as the input for
the next iteration. We assume that the matrix and vector are
block partitioned and assigned to multiple nodes and cores.

void task<inner> SpMV( in M, in V i , out R i ) {

cd = create_CD(parentCD);

add_to_CD_via_copy(cd, M, …);

forall(…) reduce(…)
SpMV(M[…],V i […],R i […]);

commit_CD(cd);

}

void task<leaf> SpMV(…) {

cd = create_CD(parentCD);

add_to_CD_via_copy(cd, M, …);

add_to_CD_via_parent(cd, V i , …);
for r=0..N 

for c=rowS[r]..rowS[r+1] {
Ri [r]+=M[c]*vec i [cIdx[c]];
check { fault<fail>(c > prevC) ;}
prevC=c;

}
commit_CD(cd);

}

Fig. 2: Sequoia-style pseudocode for SpMV with CD API calls.
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Fig. 3: An example system with 6 potential levels of CDs. Based on
the configuration of [6].

This simple application demonstrates many of the features of
CDs and how they can be used to express efficient resilience.
We evaluate these features in depth using multiple mini-
applications later in the paper.

Figure 2 provides high-level pseudo-code for SpMV. The
program structure and syntax are inspired by the Sequoia
programming model [24] with explicit CD API calls [25] and
target the hierarchical machine shown in Figure 3. The root-
level task performs the iterative computation by hierarchically
decomposing the matrix multiplication. Hierarchy is formed
through a divide and conquer decomposition by recursively
calling SpMV to form a tree of tasks. The leaves of the tree
perform sub-matrix multiplications that are then reduced into
the final result. Each compute task is encapsulated by a CD
with its own preservation and recovery routines, which we
will explain in the subsections below. The hierarchy of the
CD tree is created by nesting domains using the parentCD
handle; the full management of these CD handles is not shown
for brevity. The syntax given in Figure 2 is for illustrative
purposes and is based on an initial research prototype of CDs
that is currently under development.

Table I summarizes how the SpMV program is partitioned
into CDs and then mapped to the machine. We focus on
representative error types and how they are protected with
CDs. We also summarize what data is preserved at each
level and how it is preserved – whether data is recovered
locally (L), through a parent (P), or through a sibling (S).
Note that we form our example with a deep CD hierarchy
to illustrate the potential uses of containment domains. Later,
when evaluating the CD approach with a reasonable error
model, the optimal mapping does not utilize CDs at a level
finer than the processor-core granularity.

Figure 4 gives another example of the CD partitioning
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TABLE I: Protecting SpMV with CDs.
Error CD Preservation Method

Component Type Level Min Vin Vout

Datapath Soft 0 P P L

L1 Cache Soft 1 P S L

L2 Cache Soft 1 P S L

Core Soft 1 L S L

DRAM Soft 2 L S L

Processor Hard 3 L S L

Node Hard 4 L S L

Cabinet Hard 5 L S L

Material (PBs)
+

Tally (GBs)
to

Parallel
Disk

Per
Cabinet

Per
Module

Per
Socket

Part of
Material (TBs)

+
Part of

Tally (GBs)
to

Buddy Cabinet

Part of Material VIA PARENT
+

Part of Tally (GBs)
to Buddy Module

Part of Material
VIA PARENT

+
Part of Tally (MBs)

to Local DRAM

Fig. 4: Mapping example of neutron transport.

and mapping process. The application shown is a Monte-
Carlo neutron transport problem, and is described later in
Section V-C. Computation occurs in leaf CDs; leaves are
grouped together under parent CDs, which are in turn nested.
This nested CD structure is amenable to automatic analysis
and optimization and we describe a tool that can be used to
explore and auto-tune the design space in Section IV.

B. Hierarchical and Partial Preservation
One of the advantages of containment domains is that

preservation and recovery can be tailored to exploit natural
redundancy within the machine. A CD does not need to
fully preserve its inputs at the domain boundary; partial
preservation may be utilized to increase efficiency if an
input naturally resides in multiple locations. Examples for
optimizing preserve/restore/recover routines include restoring
data from sibling CDs or other nodes which already have a
copy of the data for algorithmic reasons.

The SpMV program in Figure 2 exhibits natural redundancy
which can be exploited through partial preservation and spe-
cialized recovery. The input vector is distributed in such a way
that redundant copies of the vector are naturally distributed
throughout the machine. This is because there are N0 × N0

fine-grained sub-blocks of the matrix, but only N0 sub-blocks
in the vector. If a fault occurs that requires the recovery of
an input vector for a CD, the vector is copied from another
domain that holds it, as indicated in Figure 2 through the call to

M Vi iR

1iRM1

Vi Vi1iRM1

M0

M0

R0i

R0i

Send
Vi

Send
Vi(P)

(S)

Fig. 5: Examples of recovery using the natural redundancy of SpMV.

add_to_CD_via_parent. The CD which sends recovery
data is determined by the parent of the faulting CD and is
chosen to maximize locality, thus minimizing the bandwidth
and power strain on limited resources. Figure 5 shows how
the input vector of SpMV can be recovered from multiple
sources (either directly from the parent or through a sibling
CD), even if it was not preserved locally by the faulty leaf CD.
Such partial preservation tradeoffs cannot be easily expressed
or exploited by prior resilience models.

The inner CDs in the hierarchy specify that the input
matrix should be preserved explicitly, ideally in non-volatile
memory (through the add_to_CD_via_copy call in Fig-
ure 2). Each node has its own unique portion of the matrix,
and thus the matrix can only be restored from explicitly
preserved state. If the matrix is not preserved, data corruption
may be unrecoverable, except by rolling back to the root
CD at great cost. When mapping to the example system
(Figure 3), every CD responsible for protecting against failures
in DRAM, nodes, and cabinets preserves the matrix “locally”
to their domain (e.g., using a buddy approach), and can thus
recover locally as well. CDs responsible for protection within
a processor, on the other hand, may or may not preserve
the matrix depending on the expected soft-error rate. If the
matrix is not preserved, it will be restored by re-fetching
the data from the parent. Such flexible state preservation
optimizations have been proposed in the past and have also
been expressed as automatic analysis algorithms [26], [27].
CDs enable such automation without changing the underlying
resilience paradigm while still providing the programmer with
explicit control when needed.

The flexibility of CDs allows the application writer or
runtime system to balance the overhead of preserving state at
each level of hierarchy at the cost of recomputing or refetching
data which was not locally preserved. Optimizing this tradeoff
is critical in order to avoid excessive preserved state which can
waste valuable storage, bandwidth, and energy. We show how
these crucial tradeoffs are amenable to automatic optimization
in Section IV. Later, in Section VI, we demonstrate how these
tradeoffs impact performance and efficiency for a range of
machine and application characteristics.

C. Flexible Error Detection and Recovery

We now describe how CDs enable flexible detection and
recovery in combination with the state preservation and
restoration schemes described above. The first step towards
resilience is to detect errors and faults. Fault detection is not
the focus of this paper and we assume that the hardware and
runtime system support the detection of errors and faults in
memory and compute modules. It is, however, rare for current
systems to support error detection for arithmetic operations.
Fortunately, the CD framework does not depend on full error
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detection support, and can evolutionarily exploit improved
error detection capabilities as they become available. In cases
where silent data corruption is intolerable and the system does
not provide complete error detection, the CD methodology can
encapsulate the ideas of instruction or task duplication and can
integrate them with the CD preservation and recovery mecha-
nisms. In some systems, duplication-in-space is preferable and
may improve performance.

Another interesting tradeoff that is natural within the con-
tainment domains framework is the inclusion of selective
algorithmic-based fault tolerance. Algorithmic techniques can
offer tremendous reductions in the overhead of error detection
and correction, but may require certain guarantees for some
portions of the code, as with fault-tolerant iterative meth-
ods [28]. With CDs, it is easy to tune the level of redundancy
and reliability and to trade it off with resilience inherent to
the algorithm. A simple example is to utilize duplication to
selectively increase the reliability of susceptible CDs, while
saving this extra overhead from inherently resilient CDs.

Recovery from soft errors requires re-executing a CD, which
may include re-establishing its context after certain control
failures. To recover from hard failures that disable a node
(or group of nodes), the application must interact with the
system to either request that new resources be mapped in (e.g.,
spare nodes) or to re-map its tasks onto a reduced-capability
machine. The CD framework enables this application-level
remapping. We anticipate, given the scale of future machines
and the reliability trends of individual devices, that degraded
operating will become necessary. While CDs allow remapping
for graceful degradation without a change in paradigm, we do
not discuss this aspect of recovery further in this paper.

Finally, in addition to the ability of CDs to fully utilize
the memory hierarchy and to minimize the average restoration
latency, the CD recovery routine offers an orthogonal area of
potential performance optimization. Taking into account the
relative availability of memory and CPU bandwidth for a given
failure, an intelligent recovery routine may be able to trade
off the advantages of restoring the inputs of a faulty structure
versus rematerializing those inputs from a reduced amount of
state. While we believe this ability may be used to improve
the performance and scalability of CDs, a detailed analysis of
rematerialization is left for future work.

An important property of CDs is their weakly transactional
nature. The recovery procedure described above is not coordi-
nated between the different CDs. Instead, it is initiated locally
by a faulting CD and propagates up the hierarchy to the closest
CD that can contain and recover the fault. This has several
important advantages. First, no global barrier is imposed by the
resilience scheme, improving scalability. Second, the recovery
of multiple independent errors in different parts of the system
can be overlapped, further improving scalability. These trans-
actional semantics, however, disallow communication between
concurrent CDs. This restriction may constrain the mapping
of an application into the CD framework, and may reduce the
advantages of CDs accordingly.

D. Relaxed CDs
As described above, the strict CD hierarchy ensures that

uncoordinated recovery is possible, but prohibits communi-
cation between concurrent CDs. If two parallel tasks need
to communicate, they must both be within the same CD

Outer CDs

Inner CDs

Sync+
comm

Fig. 6: Illustration of the tradeoffs between strict and relaxed CDs.

context. This restriction may introduce significant overheads
in some cases. An illustration of this overhead is shown on
the left hand side of Figure 6. In this example, each inner
CD requires significant preservation to ensure that common
errors can be recovered entirely by re-executing the inner
CD. Local recovery is essential because the communication
patterns limit the depth of the CD hierarchy, increasing the cost
of escalation to encompass all 12 inner CDs of this example.
As an alternative to strict CDs in such a case, we offer the
relaxed CD variant.

Relaxed CDs permit communication between concurrent do-
mains. This requires the ability to log all communication into
a CD. In addition, as with strict CDs, all data must be verified
for correctness before being communicated. Given that only
correct data is communicated, a failing CD may restore and
re-execute in an uncoordinated manner by replaying received
communications using its local log. Outbound communication
is squashed during replay because the receiver cannot respond
to an unexpected communication. In this manner, relaxed CDs
allow uncoordinated recovery in the presence of communica-
tion (at the cost of some increased book-keeping overheads).
This enables a new set of preservation/overhead tradeoffs as
shown on the right hand side of Figure 6.

Another possible use case of relaxed CDs is in situa-
tions where multiple tasks communicate in a chained fashion
(taski+1 depends only on communication from taski). In such
a scenario, strict CDs effectively impose a non-programmatic
barrier because all tasks must be within the same parent CD to
communicate. This problem does not exist with relaxed CDs.

IV. CD MAPPING, TUNING, AND MODELING

Mapping an application to CDs involves two main parts.
The first is identifying the application-specific CD properties
(which are generally machine-agnostic); the second is mapping
the application to a specific machine with information about
the storage and bandwidth hierarchy, machine scale, and
expected error model. The CD properties are represented by
the structure of the CD tree and the properties of each CD
in the tree. The CD tree conveys information on parallelism,
locality, communication, and synchronization. Each CD within
the tree specifies both the volume of data implicitly used by
the CD from its parent and the volume of data communicated
to it by its siblings. The CD also specifies which preservation
methods are possible for each input. These machine-agnostic
characteristics can ideally be determined by a compiler or
profiler from the CD-annotated source code, but were extracted
manually for this paper.

After the first stage of mapping, the CD tree is still abstract
and has not yet targeted a specific machine. The exact instanti-
ation of the tree and choice of preservation/restoration methods
are determined during the second mapping phase. Finding the
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optimal mapping of the application onto a machine is chal-
lenging because of the numerous optimization options offered
by CDs and the difficulty of estimating expected performance
in large systems. Fortunately, the concise abstractions of CDs
are amenable to automatic tuning and optimization using the
CD characteristics. Towards this end, we developed a tool that
takes a high-level description of an application structure and
automatically sweeps the CD design space. The modeling tool
can be used to determine tradeoffs such as: (1) what level of
storage should be used for each preservation; (2) whether the
CD hierarchy should be made deeper or more shallow to trade
off localized recovery with preservation overheads (levels can
be arbitrarily added or removed, so long as communication
and synchronization semantics are preserved); (3) whether
relaxed CDs provide compelling benefits for the application;
and (4) whether data should be preserved locally, recovered
from elsewhere in the machine, or rematerialized (trading off
preservation and recovery overheads). We use the tool to map
the applications and report the results, which are verified with
a simulator, in Section VI.

A. Model Assumptions
To simplify the analytical model and focus on the mapping

and analysis of CDs, we make several assumptions. At the
machine level, we assume that there are sufficient spare nodes
and cabinets to recover from errors and that those spares
can be brought on line quickly without slowing down the
recovery process. Prior work has shown that this assumption
is reasonable given typical fault rates and repair times [29],
[30]. For the error model we assume the presence of multiple
independent fault/error processes that affect different aspects
of the system. Each CD has an error rate associated with
those errors it can locally recover (without escalation). We
then associate these error processes with different levels of
CD recovery. Finally, we assume that events within each
error process are independently and identically distributed. Our
error model is described in greater detail in Section V. The
implication of these assumptions is that we can use a binomial
model for CD failure and re-execution: the probability that a
CD fails, p, is directly proportional to its run time and the sum
of all error rates that it contains.

At the execution model level, we assume that all errors
associated with a CD are equivalent, regardless of their type
and when they occur. Preservation and restoration may be
asymmetric, but we do not account for errors triggering
different forms of recovery in the same level of the CD tree.
When a CD experiences an error, it restores its preserved state
from the location at which it was preserved and then reexecutes
the CD body. We assume zero overlap between execution and
recovery; the extra time required for recovery is added to the
time of a faulty CD. Recovery of different siblings, however,
can proceed in an uncoordinated fashion in the absence of a
synchronization or blocking communication.

B. Analytical Model
Our analytical model estimates the execution time (per-

formance) and average power consumption (or energy) of
an application. We describe the execution-time model first
and later discuss power modeling. The performance model
accepts a description of the CD tree, which conveys in-
formation on the properties of each CD, as well as the

parallelism, synchronization, and communication boundaries
between CDs. Each CD includes information on the expected
preservation and restoration times (preservation and restoration
may be asymmetric) and leaf CDs also include their expected
execution time, encompassing both the CD body and any
detection overheads. Each CD may have multiple sequential
CDs executing within it (which may, in turn, include nested
CDs). Sequential child CDs allow us to express preservation,
restoration, and execution at intermediate levels of the CD
tree, because nesting degree may differ for each of the CDs
in sequence. Note that the analysis tool derives preservation
time and restoration time from the volume of preserved and
communicated state and available machine bandwidths. For
simplicity, we assume that the parameters of a CD are fixed
for all of its dynamic instantiations.

Because of the CD hierarchy we need only consider the
impact of resilience on two CD levels at any given time – a
parent and its children. Analysis starts with the lowest two
levels, where children are leaves, and derives the impact of
resilience on the parent. At that point, the parent execution
properties are modified based on the preservation and recovery
overheads associated with it children and the entire two levels
are encapsulated. This process continues until the root level
is reached and the entire application properties are estimated.
Due to this recursive process, we describe the model with
respect to a parent with a set of child CDs. To explain the
model, we present the performance model in four steps: (1)
for a parent CD that has n identical children that all execute
in parallel with no sequential loops; (2) we extend the model
to include serial dependencies; (3) we then allow sequential
groups of CDs to be heterogeneous; and (4) finally include
asymmetric preservation and recovery times.

Parent with n identical parallel children: We start with
a parent CD that has n identical parallel CDs. We first restrict
ourselves to the case where the execution and recovery times
for a particular child CD, Tc are uniform and do not account
for execution variation. When a child fails, it is re-executed in
full. During re-execution, the child CD may experience another
error and may re-execute again. When n independent parallel
CDs are grouped within the parent, the expected execution
time of the parent is directly proportional to the expected
maximum number of consecutive failures experienced by any
one of the n parallel CDs.

Due to the model assumptions, the number of iterations
of each CD follows a geometric random variable. While the
statistics of geometric variables are well understood, we derive
our model from first principles to allow us to incorporate
the more complex behavior of asymmetric recovery and het-
erogeneous CDs. Let q[x, n] be the probability that all child
CDs experience at most x consecutive failures. We then derive
d[x, n], the probability that the child with the most consecutive
failures experiences exactly x failures and then succeeds. We
derive d[x, n] iteratively by subtracting the probability that
fewer than x failures occur from the probability that at most
x failures occur (thus leaving only the probability of exactly
x failures). We use d[x, n] to compute the expected run time
of the parent. In all equations, we use pc to represent the
probability that a child fails; we derive from the inherent error
rate (p) associated with the child.
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Fig. 7: Example of 7 nodes, each executing 2 sequential child CDs.
Some CDs fail and require re-execution, which is overlapped between
nodes with uncoordinated recovery.

pc = Tcp (1)
q[0, n] = (1− pc)n (2)

q[x, n] =

(
x−1∑
i=0

(
pic (1− pc)

))n

(3)

d[0, n] = q[0, n] (4)

d[x, n] = q[x, n]−
x−1∑
i=0

d[i, n] (5)

Tparent[x, n] =

∞∑
i=0

(i+ 1)Tcd[i, n] (6)

Serial dependencies between children: We now include
the case where there are n parallel siblings, each responsi-
ble for executing m CDs sequentially. We follow the same
derivation as above, but extend the definitions of the functions
as follows. Let q[x,m, n] be the probability that each of the
siblings experiences at most x failures in the m serial CDs
they contain. Similarly, d[x,m, n] is the probability that the
sibling with the most failures experiences exactly x failures
before all of its m CDs succeed. This behavior is illustrated
in Figure 7 and the model is shown below.

q[0,m, n] = (1− pc)m·n (7)

q[x,m, n] =

(
x−1∑
i=0

((
i+m− 1

i

)
pic (1− pc)

m

))n

(8)
d[0,m, n] = q[0,m, n] (9)

d[x,m, n] = q[x,m, n]−
x−1∑
i=0

d[i,m, n] (10)

Tparent[x,m, n] =

∞∑
i=0

(i+m)Tcd[i,m, n] (11)

Heterogeneous CDs: We now extend the model to allow
sequential CDs within a parent to differ. We rely on the
assumption that all error processes are independent and derive
the properties of an equivalent “average” child CD that can be
directly substituted into the model for expected parent execu-
tion time. These properties are shown below assuming there
are t CD types, each with its own error model (different failure
probabilities {pi}ti=1 and execution time {Tc,i}ti=1(these CDs
execute sequentially, which allows us to generalize the error
model easily). Note that because the re-execution time now

depends on which type of CD failed, we weight the average
recovery time based on the execution time of each CD type.

pc,avg =

t∑
i=1

Tc,ipi
t

(12)

Tc,noerr =

t∑
i=1

Tc,i
t

(13)

Tc,rexec =

∑t
i=1 T

2
c,i∑t

i=1 Tc,i
(14)

Tparent[x,m, n] =

∞∑
i=0

(mTc,noerr + iTc,rexec) d[i,m, n]

(15)
Asymmetric preservation and restoration: Finally, to

account for the asymmetric preservation and restoration times
needed for certain preservation tradeoff optimizations, we
modify the above model slightly and replace Tc,rexec with
Equation 16, where Tc,i,exe is the time to execute the body
of CD type i, Tc,i,prsrv is the time for preservation, and
Tc,i,rstr is the restoration time, which may be different than
preservation time. This modification relies on the simplifying
assumption that the error rates are low and that the asymmetry
is relatively small (i.e. that compute time dominates preserva-
tion and restoration time).

Tc,rexec =

∑t
i=1 (Tc,i,prsrv + Tc,i,exe) (Tc,i,rstr + Tc,i,exe)∑t

i=1 Tc,i
(16)

Power model: Because CDs enable localized recovery,
execution resources associated with CDs that are not re-
executing may remain idle. We account for this effect using
a simple model and evaluate the relative power consumed by
CDs. We assume that actively executing a CD has a relative
power of 1, while a node that is idling consumes a relative
power of α (α is a machine-dependent parameter, which we
set to α = 0.25 in our experiments). For a particular parent
CD with n parallel children (or child sequences), we estimate
the expected idle time as follows. Assuming that n is large,
the overall expected number of re-executions is simply n times
the average number of times a child re-executes. Thus, the idle
time is the total execution slots occupied by the parent CD (n
times the expected execution time of the parent) minus the
expected re-executions.

V. METHODOLOGY

Evaluating the viability of resilience schemes at exascale is
challenging. Several days of run time (and prohibitively many
CPU hours) are required to observe a meaningful number of
errors. This necessitates coarse-grained modeling. We use a
combination of a generalized and simplified trace-driven sim-
ulator that operates at the granularity of CDs and the analytical
model described above. Both the simulator and analytical
model reproduce the essential behavior of resilience schemes
and follow the execution model of CDs and the CD mapping
parameters as described in Section IV. We use the simulator
on smaller configurations to verify our intuition and to validate
the analytical model, and report results for full-scale systems
using the analytical model only. As mentioned earlier, the CD
framework is flexible enough to subsume and encompass many
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prior resilience approaches. We demonstrate this by using
our tools to also evaluate coordinated global checkpointing
(g-CPR) and multi-level hierarchical checkpoint-restart (h-
CPR). In the subsections below we briefly describe the system
parameters, error model, and applications that are used to
evaluate the CD framework.

A. System Parameters
Table II lists the seven system configurations we use for

evaluation. We base the systems on reasonable assumptions
concerning future technology trends towards exascale, target-
ing the 7nm technology node. We assume that each core
will have a peak performance of 10GFLOPS and that system
performance scales linearly with the number of cores. We
model main memory based on the expected parameters of
future memory packaging and advanced I/O technology that
may reach 200GB/s per socket.

We fix memory capacity at 1GB per core. We also assume
that high-bandwidth non-volatile memory (NVM) is integrated
within each module (or node). Integrated NVM may offer
about an order of magnitude less bandwidth than DRAM
and provide about an order of magnitude larger capacity. We
expect that NVM will be used for preserving local and/or
remote data (buddy storage), assuming that unused DRAM
may be at a premium for many applications. We expect
that intra-module interconnect will not limit bandwidth to
NVM, but that bandwidth to remote NVM decreases by an
order of magnitude per level because of the global network.
Lastly, we set the per-core parallel file system bandwidth of
the smallest configuration to 0.001GB/s/core, based on the
bandwidth reported for the 2.5PFLOPS Jaguar system [31]; we
assume that global file system bandwidth per core decreases
by 10% each time the number of cores doubles.

While we believe our machine configurations are reason-
able, different machines will have different parameters. We
therefore run sensitivity experiments and vary the ratios of
available bandwidths for preservation. We do not model ap-
plication execution time directly and do not attempt to evaluate
application scalability beyond the impact of resilience. We do
this by ignoring any potential bottlenecks of communication
and synchronization on the run time of the leaf CDs. The
projected memory capacities and bandwidths are used solely
for estimating the overheads of preservation and restoration.

B. Error/Fault Model
Projecting fault and error rates to the exascale regime

is arguably more error-prone than the prediction of system
parameters. Our assumptions on error scaling are summarized
at the bottom of Table II. We assume that the per-core soft-
error susceptibility will remain roughly constant as technology
scales. This accounts for increased transistor density and
susceptibility coupled with improvements in error protection
and detection techniques. Even under this assumption, the per-
processor error rate we use is more than an order of magnitude
greater than typical HPC processors today. For memory, we
project that error rates will increase in proportion to memory
capacities. We assume that socket failures, due to either system
software or hard faults, will scale directly with the number of
sockets, and similarly that power and network related failures
will scale with the number of modules and cabinets. We
expect multi-cabinet and global failures to be one and two

orders of magnitude less frequent than single-cabinet failures,
respectively. We base the initial values for fault and error rates
on numbers reported in recent published work [32]–[35] and
on private conversations with several hardware vendors. As
with system configurations, we did our best to choose what
we believe are reasonable numbers for future systems, and also
evaluate sensitivity by sweeping error rates.

C. Applications
We evaluate three mini-applications that we map to

CDs: a Monte Carlo method neutron transport application,
hierarchically-blocked iterative sparse matrix-vector multipli-
cation, and the HPCCG conjugate-gradient based linear system
solver from the Mantevo mini-application suite [36]. We break
each application into hierarchical CDs and then map it onto
each of the system configurations. We tune CD parameters
using the tool described in Section IV. We discuss the mapping
options and parameters in the next section. We also obtain the
optimal checkpoint intervals for h-CPR and g-CPR for each
application, machine configuration, and error rate.

Neutron Transport (NT): A Monte Carlo approach to
the simulation of neutron transport is desirable because the
creation and simulation of every particle is independent,
making the problem embarrassingly parallel. The major source
of communication takes place in a parallel reduction to ag-
gregate particle properties over the whole system. CDs can
take advantage of the stochastic nature of the Monte Carlo
approach – the only state that needs to be preserved (and
cannot be quickly rematerialized) is a global tally of particle
densities and directions. Erroneous particles and failed CDs
may be discarded without consequence, such that particle-
local data does not need to be preserved or recovered. For
this application, we assume that the checkpointing schemes
preserve a volume equivalent to 80% of each node’s memory.

Sparse Matrix Vector Multiplication (SpMV): We scale
SpMV to use a fixed percentage of memory and to per-
form roughly the same amount of work per core of each
machine. One iteration takes roughly 0.5 seconds to execute
and consumes 50% of memory. At the end of each iteration
there is a barrier, followed by communication. In the strict
model, all leaf CDs must complete before any communication
can occur. Thus, the run time of each leaf CD is limited
by its communication interval. As explained in the detailed
example in Section III, leaf CDs utilize preservation tradeoffs:
intermediate indices and sums are preserved locally in DRAM
while the inputs are preserved via parent. SpMV can take
advantage of relaxed CDs to increase the interval between
full preservation, but our experiments did not indicate signif-
icant gain in performance efficiency. For this application, the
checkpointing schemes preserve a volume equivalent to 50%
of each node’s memory.

HPCCG: HPCCG is a linear system solver that uses the
conjugate gradient method and can scale to a large num-
ber of nodes [36]. This mini-application uses a simple and
standard sparse implementation with MPI. The application
evenly partitions rows across cores (leaf CDs) with each core
responsible entirely for its partition. This application is similar
to SpMV, but our SpMV implementation is hierarchically
nested and HPCCG distributes entire rows. We scale the size
of the input matrix linearly with the number of cores and
assume weak scaling. Because each node communicates with
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TABLE II: Machine Parameters

Parameters Peak Performance (PFLOPS)
2.5 10 40 160 640 1280 2560

Number of Cores per Socket 64 64 64 128 128 256 256
Numbr of Sockets per Module 2 2 4 4 8 8 8

Number of Modules per Cabinet 32 32 64 64 128 128 128
Number of Cabinets 64 256 256 512 512 512 1024

Total Number of Cores 262144 1048576 4194304 16777216 67108864 134217728 268435456
Total Memory Capacity (TB) 256 1024 4096 16384 65536 131072 262144

Failure in Time (FIT)
Processor 1.89E+07 7.55E+7 3.02E+08 1.21E+09 4.83E+09 9.66E+09 1.93E+10
Memory 3.60E+04 1.44E+05 5.76E+05 2.30E+06 9.21E+06 1.84E+07 3.68E+07
Software 3.41E+05 1.37E+06 2.73E+06 5.46E+06 1.09E+07 1.09E+07 2.18E+07

Power (Module) 4.10E+05 1.64E+06 3.28E+06 6.55E+06 1.31E+07 1.31E+07 2.62E+07
Power (Cabinet) 1.18E+05 4.71E+05 4.71E+05 9.42E+05 9.42E+05 9.42E+05 1.88E+06

Power (Multi-cabinet) 1.18E+04 4.71E+04 4.71E+04 9.42E+04 9.42E+04 9.42E+04 1.88E+05
Power (Global) 4.09E+03 4.09E+03 4.09E+03 4.09E+03 4.09E+03 4.09E+03 4.09E+03

Mean Time To Interrupt in hours 50.52 12.63 3.24 0.82 0.21 0.10 0.05

its neighboring nodes at the end of each computation, every
node is dependent on every other node and, in effect, a soft
barrier is necessary before a new iteration can start. Thus, with
strict CDs, data is preserved at the beginning of each iteration.
Since it is communicating frequently, similar to SpMV, the
duration of a leaf CD is limited by the soft barrier. HPCCG
takes mostly read only data as input, thus, it is mapped to
preserve those data to the parent level CD, and the leaves
preserve the state that is essential for re-execution. HPCCG
offers similar relaxed-CD tradeoffs as SpMV and similarly did
not exhibit significant differences in performance efficiency.
For this application, the checkpointing schemes preserve a
volume equivalent to 10% of each node’s memory.

D. Simulator and Model Validation

As mentioned previously, containment domain semantics
can capture the behavior of other resilience schemes. To
validate our simulator, we simulate the multi-level hierarchical
checkpoint restart resilience scheme with the configuration de-
scribed by Moody et al. [6]. We thus make a direct comparison,
which demonstrates a good match between the two evaluation
methodologies (Figure 8). We use the performance efficiency,
which is the fraction of machine resources (nodes and time)
used to make forward progress, as our main evaluation metric.
We also tested a range of configurations and verified that the
analytical model and the CD-level simulator match within 3%
in reported performance efficiency. Note that a full system
implementation of CDs requires the management of substantial
metadata, the cost of which is not captured by either the
model or simulator. The application mappings in this paper
do not use deep CD hierarchies or fine-grained domains,
however, such that these metadata management overheads can
be neglected. Initial experiments with a prototype that is still
under development confirm this assumption.

VI. EVALUATION

In this section, we discuss the results of exploring a realistic
subset of the CD design space. We find that CDs offer
superior flexibility and that fine-tuning resilience schemes
improves performance and energy efficiency when compared
to alternative approaches. The results also show that CDs scale
well to very large system sizes and error rates, while even
hierarchical checkpoint-restart loses significant efficiencies in
such cases. Note that the point of the evaluation is to study the
effectiveness of CDs and that the optimizations are enabled
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Fig. 8: Comparison of the CD simulator and an h-CPR analytical
model [37]

in a structured manner, using our modeling tool for tuning
rather than relying ad-hoc approaches. We do not claim that
previous methods are inadequate or that similar benefits cannot
be attained with explicit tuning and code modifications.

Figure 9 shows the expected performance efficiency and
energy overheads due to resilience for each application when
using CDs, h-CPR, and g-CPR. The solid bars indicate per-
formance efficiency when compared to an implementation that
assumes no failures or errors and performs no preservation or
recovery. Similarly, the clear bars represent the overall relative
energy overhead (average power multiplied by execution time
relative to baseline, or more accurately, average power divided
by performance efficiency). Because uncertainty exists in both
machine parameters and error rates, we also evaluate the
applications and systems with error rates that are 10 and
50 times higher than our baseline and with a preservation
overhead that is 10 times higher than baseline (to model lower
global bandwidth than we projected). We summarize these
results in Figure 10.

The overall conclusion from our experiments is that CDs
consistently outperform the alternatives. Both CDs and h-
CPR utilize the storage hierarchy well, and (with our baseline
machine parameters) both scale to the largest configuration.
At that configuration, CDs exhibit a 5 − 15% performance
efficiency and a 7 − 19% energy efficiency advantage over
h-CPR. Note that h-CPR causes all nodes to re-execute
on recovery, and thus energy overheads precisely track the
inverse of performance efficiency. With the uncoordinated
and overlapped recovery enabled by CDs, energy efficiency
is improved when compared to overall execution time. This
improvement is, however, small in the applications we evaluate
because they have short-duration leaves and a small degree
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Fig. 10: Performance efficiency of the three applications using CDs and h-CPR with different relative error rates and preservation overheads.

of nesting, limiting the potential benefits of hierarchical re-
execution. Global checkpoint-restart, as expected, does not
scale well in terms of either performance or energy overheads.
In fact, in some experiments, g-CPR failed to make forward
progress. When either error rate or preservation overhead is
increased from the baseline, even h-CPR starts suffering from
low efficiency at the target configurations. With CDs, however,
high efficiency is achieved; the lowest efficiency with CDs is
still better than a full replication approach [38], which suffers
from a greater than 50% penalty.

Of all three applications, neutron transport (NT) is best at
utilizing the hierarchy and tradeoffs enabled by CDs. Because
the computation of NT has long periods of time between
communications, each CD level can be tuned to the optimal
preservation interval. In addition, by preserving most of its
data via a parent, the error-free preservation overhead is much
lower than with a straightforward implementation using h-
CPR. Even though the memory footprint of NT is 80% of
all available memory, leaf CDs only preserve a small fraction
to DRAM. We assume a single checkpointing scheme with
h-CPR, which requires preserving the entire dataset at each
interval. Because a large fraction of memory is utilized h-
CPR must forgo DRAM-level preservation entirely and rely
on NVM. The efficient preservation of NT with CDs enables
it to tolerate even a 10× increase in error rate or preservation
overhead while achieving greater than 80% efficiency.

Like NT, SpMV and HPCCG also preserve some of the
leaf data via a parent. Unlike NT, these two applications
have a smaller memory footprint. SpMV utilizes 50% of
memory, which reduces the preservation overhead of direct
checkpointing, but still prevents h-CPR from preserving to
DRAM. CDs thus offer a very substantial benefit, espe-
cially for larger configurations and higher error rates and
preservation overheads. Despite this advantage, the overall
performance of SpMV is worst among the three applications.
The reason is that the tight communication requirements of
the program, coupled with significant memory use, reduce

the efficiency of preservation, even with CD optimizations.
HPCCG only uses 10% of memory and is thus the most
scalable when using either CDs or h-CPR. With CDs, even
with the largest machine and an error rate 50× higher than our
baseline estimate, HPCCG with CDs still achieves over 80%
efficiency, which is far better than the only 30% achievable
with h-CPR or the < 50% expected with full redundant MPI
ranks. Because its memory footprint is small and the fact that
preservation is optimized, HPCCG with CDs is insensitive to
preservation overheads.

VII. CONCLUSIONS

We present the concept of containment domains, a flexible
abstraction which encapsulates and expresses resilience con-
cerns. CDs rely on weak transactional semantics and nesting
to enable hierarchical and distributed state preservation, state
restoration, and recovery. In addition, CDs can tune error
detection and recovery for different error types, allowing the
resilience scheme to adapt to available error detection mecha-
nisms and changing application needs. CDs are flexible enough
to leverage a large variety of existing system resilience ap-
proaches without changing the programming model or revert-
ing to ad-hoc implementations. Thus, the single CD abstraction
can be used to tune across a wide range tradeoff options. We
demonstrate through experimental evaluation that the tradeoffs
introduced by CDs are amenable to automatic optimization
with a CD-oriented analysis tool that we implemented. The
results show that hierarchical state preservation and restoration
with uncoordinated hierarchical recovery can be exploited by
CDs to improve performance and energy efficiency even at
very large machine scales in the presence of a high rate of
errors and failures. Some of our planned future work includes
the full-scale analysis of large applications mapped to the
CD framework, a deeper integration with existing program-
ming models, and the investigation of CD performance with
application-specific fault tolerant algorithms.
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