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Abstract—Memory system performance is measured by ac-
cess latency and bandwidth, and DRAM access parallelism
critically impacts for both. To improve DRAM parallelism,
previous research focused on increasing the number of effective
banks by sub-dividing one physical bank. We find that without
avoiding conflicts on the shared resources among (sub)banks,
the benefits are limited. We propose mechanisms for efficient
DRAM resource utilization and resource-conflict avoidance
(ERUCA). ERUCA reduces conflicts on shared (sub)bank
resources utilizing row address locality between sub-banks
and improving the DRAM chip-level data bus. Area overhead
for ERUCA is kept near zero with a unique implementation
that exploits under-utilized resources available in commercial
DRAM chips. Overall ERUCA provides 15% speedup while
incurring <0.3% DRAM die area overhead.

Keywords- Memory System; Memory System Performance;
DRAM Access parallelism;

I. INTRODUCTION

Main memory remains an important bottleneck for many
applications. Both the latency of memory access and overall
memory bandwidth are of concern and both vary depending
on application’s memory access pattern and available paral-
lel resources in the memory system. Memory system paral-
lelism improves latency by overlapping memory accesses
and mitigates bank conflicts as more parallel resources
(banks) can better utilize page locality. A cost-effective way
for increasing parallelism is to grow the number of banks in
each DRAM chip, as has been the trend with recent DRAM
generations (Tab. I). However, additional memory banks
require extra peripheral logic [1], which leads to substantial
chip area overheads. Researchers have therefore proposed to
improve effective bank parallelism with low cost using vari-
ous sub-banking schemes [2], [3], [4], [5]. However, as sub-
banks share resources within one physical bank, conflicts
on such shared resources hamper performance. Conflict rate
depends on the memory access pattern, increasing system
sensitivity and decreasing performance robustness.

Continued DRAM channel clock frequency scaling places
another constraint on DRAM parallelism because of mecha-
nisms needed to keep channel utilization high. Historically,
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DDR DDR2 DDR3 DDR4

Bank count 4 4∼8 8 16
Channel clock(MHz) 133∼200 266∼400 533∼800 1066∼1600

DRAM core clock(MHz) 133∼200 133∼200 133∼200 133∼200

Internal prefetch 2n 4n 8n 8n

Tab. I: Specifications of DRAM generations

DRAM channel clock frequency has doubled with every
new DRAM generation (Tab. I). At the same time, DRAM
core frequency remains roughly fixed [6]. Two techniques
are used to bridge the gap between channel and DRAM
core frequencies. The first is to coarsen the granularity of
access such that a wide internal fetch (prefetch) is used and
the data is then rapidly delivered over the channel (long
burst length). Increasing the burst length (prefetch depth)
is costly because it requires additional internal bandwidth
out of the DRAM arrays and increases access granularity.
The second technique to bridge frequency disparity relies
on bank grouping, as in DDR4, GDDR5, and HBM [7],
[8], [9], [10]. With bank grouping, the global chip-wide
buses internal to a DRAM chip are partitioned such that
accesses to different bank groups are handled in parallel;
each access requires higher latency than the time to traverse
the DRAM channel and internal bus conflicts are avoided by
partitioning. Although bank grouping helps alleviate internal
data bus conflicts, consecutive DRAM accesses to the same
bank group still suffer from intra-group bus contention,
increasing the performance impact of access patterns. In
summary, increasing the number of banks, while important,
is not sufficient to fully utilize memory system parallelism.

In this paper, we introduce ERUCA, an efficient sub-
banking and frequency-scalable DRAM architecture and
memory controller. The main goal of ERUCA is to im-
prove effective parallelism by avoiding or minimizing inter-
(sub)bank resource conflicts with very low area overhead
mechanisms. One of our important observations is that
conflicts on the shared resources among sub-banks can
be effectively avoided when memory access address lo-
cality is taken into account. While physical address hash-
ing schemes already consider channel and bank conflicts,
and row locality, no prior work discusses the interactions
between sub-banks, and other fine-grained DRAM paral-
lelism mechanisms, and address locality. We develop two
techniques that take this locality into account, reduce inter-



sub-bank resource conflicts, and improve performance and
efficiency. Row address permutation (RAP) reduces conflicts
on the shared row address latches between sub-banks by
breaking locality on row addresses within a bank without
any changes in DRAM chip. While reducing conflicts is
desirable, the design of ERUCA exploits internal DRAM
architecture to improve performance when multiple sub-
banks require physically-close row indices. Effective word-
line range (EWLR) enables sub-banks that activate nearby
rows to share expensive word-select signals with a small
number of additional row address latches. EWLR is also
very area-efficient (< 0.1% DRAM die area).

To bridge the frequency gap between DRAM core and
I/O channel, we propose the dual data bus (DDB). DDB
consists of a pair of buses and small switches, and removes
or mitigates the conflicts on chip-level global data buses
to double internal bandwidth. We show how to do this
without requiring sophisticated and non-scalable circuits
like prior work proposed [6], and utilize already-existing
routing resources when possible. As the performance penalty
from global data bus conflicts increases with the growing
frequency gap, and our evaluation demonstrates that the
benefits from DDB increase as DRAM frequency grows.

Even when performance benefits are demonstrated, adding
new features to commercial DRAM designs is difficult.
To make our proposals more practical, we introduce a
unique implementation mechanism to realize ERUCA that
exploits modern DRAM architectures and requires near-
zero area overhead. This implementation is based on the
observation that current server and desktop DRAM chips
utilize a Combo DRAM architecture where a DRAM chip
can be configured post manufacturing to use either a x4 or
a x8 memory interface. Combo DRAM is adopted by all
DRAM manufacturers [11], [12], [13] because it offers ma-
jor cost benefits, reducing design, verification, tooling, and
demand-fluctuation costs. The structure of a Combo DRAM
chip leaves some internal resources unused, and others not
concurrently, when configured as a x4 device. We propose
to use these resources to realize all the proposed schemes
of ERUCA, improving performance without increasing cost
(just 0.05% and 0.06% for EWLR and DDB respectively).

When EWLR and RAP are used together, performance
with ERUCA improves by 13% compared to a DDR4 base-
line. DDB further improves the performance by 2%, and this
additional performance gain scales to 5% when DRAM I/O
frequency is increased. By relying on the already existing
structures in Combo DRAM, implementing all schemes in
ERUCA requires less than 0.3% additional DRAM chip
area—five times less overhead than the lowest-cost prior
work that discusses sub-banking [14], [4]. Implementing
ERUCA for x4 Combo DRAM chips is important because
such chips are preferred by servers for larger memory
capacity and stronger error correction [15], [16], and more
than half of all CPU DRAM sales are expected to be for
servers [17]. Our design optimizes the x4 DRAM configu-
ration and adds only negligible overhead when used as a x8

DRAM configuration and carries huge benefits. We also gen-
eralize ERUCA to non-Combo DRAM designs and describe
and evaluate such implementations. We also note that our
paper describes and evaluates the tradeoffs associated with
sub-banks to much greater detail than prior work, which only
hinted at similar possible optimizations [2], [3].

To summarize our contributions in ERUCA:
• We observe and discuss hardware resource conflicts

among sub-banks. We explain how conflicts on shared
resources hamper sub-banking effectiveness and quantify
the impact on performance and energy. To mitigate the
interference and further improve the performance, we
introduce the RAP and EWLR mechanisms.

• We propose DDB frequency-scalable chip-level data bus
scheme. DDB enables gap-less memory access to the
DRAM (sub)banks, and its performance benefit grows
with increasing channel and DRAM core frequency mis-
match.

• We implement the proposed DRAM parallelism mecha-
nisms of ERUCA with very low area overhead, exploiting
the under-utilized resources of Combo DRAM chips.
Combo DRAM is the current de facto standard DRAM
architecture and ERUCA improves its performance nearly
for free. We also discuss how ERUCA can be imple-
mented in other DRAM architectures.

• We quantitatively compare our proposed mechanisms to
prior work in terms of both performance and hardware
cost. Our proposed schemes (EWLR, RAP, and DDB) are
partially orthogonal to prior schemes and we demonstrate
significant performance synergy when used together.

• Because DRAM performance in general is very access-
pattern dependent (and the performance of RAP and
EWLR is particularly sensitive), we evaluate our tech-
niques using physical addresses captured on a full system
under a range of physical memory fragmentation scenar-
ios.

II. BACKGROUND

We summarize DRAM design aspects necessary to un-
derstand ERUCA in this paper. We rely on a fairly-detailed
understanding of DRAM and encourage the reader to review
this background.

Acronym Description Acronym Description

CSL chip select LWL local wordline
SBL sub-bitline LWL DRV local wordline driver
GBL global bitline LWL SEL local wordline select
SA sense amplifier MWL main wordline

Tab. II: Acronyms used in this paper.

A. DRAM Organization and Operation

The memory sub-system is logically organized as a hier-
archy of channels, ranks, and banks. A channel is the most
independent resource in the memory system hierarchy in that
each channel has a dedicated transaction queue, a command
scheduler, and data and command buses. All these resources



are shared by ranks within each channel. A rank consists of
multiple DRAM chips where each chip contributes a fraction
of the bus width; each chip is typically 4, 8, or 16-bits
wide (referred to as x4, x8, and x16 devices, respectively).
All DRAM chips in a rank operate in parallel and share
a single command. Within a rank (and thus within each
chip), a number of banks share the I/O pins but otherwise
operate independently. Each bank holds an active row that
can be accessed by column read and write commands.
There is thus a hierarchy of resources with significant
parallelism overall. The memory controller is responsible
for scheduling memory operations to take advantage of this
parallelism while adhering to all resource constraints. How
much parallelism can be exploited depends on the address
mapping function and memory access pattern—if accesses
within a short time window target a small subset of the
parallel resources, performance is limited.

Each DRAM bank consists of memory sub-arrays, row
and column address decoders, write drivers, and an IO
sense amplifier (IOSA) array (Fig. 1). The row address
decoder selects the target row in one sub-array, the column
address decoder chooses which bits to access within a row
in that sub-array, and the IOSA and write drivers assist with
performing read and write operations from the bank edge to
the sub-arrays, respectively.

A sub-array is the finest-grained unit of control within
a bank. It performs wordline activation which caches all
data from the selected wordline to a sense amplifier (SA)
array (also called a row buffer or page). To activate a
wordline (row), the target local wordline is raised by a local
wordline driver (LWL DRV). The LWL DRV is selected by
a combination of the main wordline (MWL) and the local
wordline select (LWL SEL) signals ¶. Next, the data cells
in the selected wordline are sensed to the SA array through
local bit lines ·. All wordlines in one sub-array share an SA
array, and each SA array is shared by two vertically-adjacent
sub-arrays. This sharing is done because an SA is wider
than a column of cells and DRAM designers aggressively
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Fig. 1: DDR4 Combo DRAM bank organization: Grey
blocks are underutilized or unused in x4 mode.
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Fig. 2: DRAM sub-array structure.

minimize cell pitch [18]. Therefore, one half of a row is
fetched to the upper SA array while the other half is fetched
to the lower SA array.

After activation is complete, the bank becomes ready for
read and write operations to the active row. For a read
operation, the target data point within the activated row in
the SA array is selected by column select (CSL) signals and
moved to global bitlines (GBLs) through an intermediate
sub-bitline (SBL) level ¸. Because all selection wires and
data path wires are compactly laid out between and over
array tiles (2D arrays of cells that comprise sub-arrays), any
additional wire inserted expands the DRAM die footprint
and incurs significant overhead.

B. DRAM I/O Configuration

DRAM chips with different I/O widths offer different
tradeoffs. Narrower x4 DRAM allows larger memory ca-
pacity because more chips are used for a given rank width
than when using x8 chips. In addition, stronger memory pro-
tection is possible with x4 chips [15], [16]. This combination
of capacity and reliability makes x4 chips very common in
server systems. However, x8 DRAM requires less dynamic
and static power (and energy) and x8 DIMMs are cheaper
because fewer chips are needed in each (non-ECC) rank.
Thus, x8 DRAMs are often used in personal computing
systems.
Combo DRAM. All DRAM vendors design a single DRAM
chip in a way to support multiple I/O width options [11],
[12], [13]. The final chip width is programed post manufac-
turing, and the resources to support all chip configurations
are always implemented within each chip. Fig. 1 shows how
these resources are utilized in x4 and x8 Combo DRAM
chips. When set to x8 mode, all chip-level bus interconnects



are utilized, and one full bank is activated and accessed at
any time. On the other hand, a chip in x4 mode uses only
half of the available bus and only half a bank is activated
and accessed at any time. Such under-utilized resources in x4
chips can be used for various purposes, including expanding
DRAM parallelism. One important benefit of this half-page
DRAM design [7] is that the row buffer of each chip is half
as big in x4 vs. x8 mode (Fig. 2b). This means that the rank-
level DRAM page has the same width when implemented
with either x4 or x8 DDR4 ComboDRAM chips, making
x4 DRAM more power and energy competitive.

III. RELATED WORK

A. Sub-bank parallelism and restrictions

We briefly discuss previously proposed sub-bank paral-
lelism schemes and compare their benefits and constraints to
our proposed mechanisms. We can classify the sub-banking
schemes into two groups: bitline- and wordline-direction
sub-banking.
Bitline direction sub-banking. Bitline direction sub-banking
is proposed by Kim et al [2] and also discussed by Son
et al. [3]. This scheme divides a physical bank into multi-
ple horizontal sub-array groups and utilizes each sub-array
group as a sub-bank for access interleaving and parallelism.
By inserting a dedicated set of row address latches to each
sub-bank, each sub-bank can hold an active wordline and
we can interleave sub-banks to hide memory access latency.

Unfortunately, bitline direction sub-banking has restric-
tions which make it difficult to scale and manufacture.
First, GBL signals are shared by all sub-banks and to avoid
conflicts on a GBL, each sub-bank’s SBL to GBL gating
logic should be controlled independently. This independent
control requires additional sub-bank selection signals, which
increase DRAM chip size and access latency quite signifi-
cantly [2]. The evaluation of area in previous work focuses
more on the penalty from additional row address latches
and SBL gating logic rather than these additional control
wires. However, according to our analysis, the major area
overhead of bitline-direction sub-banking comes from the
additional wires for selecting address latches and gating
logic. This is because these are bank-global signals with
a wide wire pitch and their overhead accumulates as the
number of sub-banks grows. Another constraint is that
the sub-arrays at the boundary of every sub-bank require
additional interleaving constraints because of the SA (sense-
amp) arrays that are shared between tiles (Section II-A). To
avoid this SA conflict, the memory controller should adopt
a sub-array location-aware scheduling policy or extra SA
arrays and dummy cell arrays should be placed at every sub-
bank boundary. Neither of these approaches is discussed in
prior work.

Finally, dividing a bank into many number bitline-
direction sub-banks impacts DRAM manufacturability be-
cause of reduced DRAM row-repair flexibility. DRAM has
spare wordlines placed across a bank, which are mapped
to any faulty wordlines for increasing device manufacturing

yield [20], [21]. With bitline direction sub-banking, repair
mapping is constrained within each sub-bank range due to
row address conflicts. This can potentially lower DRAM
manufacturing yield, especially when DRAM cells have high
defect probability [21], which is expected in future DRAM
generations [22].
Wordline-direction sub-banking. Wordline-direction sub-
banking divides a wordline in a bank into multiple mini-
wordline sections. Each mini-wordline is activated by a
combination of MWL and one of multiple LWL SEL sig-
nals. Such fine-granularity wordline activation was initially
proposed to save activation power [23] and is also discussed
as a sub-banking scheme [4], [3]. Ha et al [14] also proposed
to utilize DDR4 half-page structure for power saving but
they did not discuss about using their schemes for expand-
ing memory parallelism. Like bitline direction sub-banking,
wordline direction sub-banking requires extra row address
latches and their control wires to maintain an active row in
each vertical sub-bank.

Wordline direction sub-banking is also difficult to scale
for three reasons. First, in each horizontal plane, sub-banks
share a set of row address latches and sub-bank interleaving
is restricted because of this resource conflict. When both
sub-banks have memory accesses with high row address
locality, such conflicts can significantly reduce effective
bank parallelism. Second, in order to select the target mini-
wordline, we need to increase the number of LWL SEL
wires proportionally to the number of sub-banks (Fig. 2b).
This has significant impact on the very customized and
constrained array design. Finally, the number of GBL wires
should also grow with the number of sub-banks to transport
data between sub-banks and write drivers and IOSA arrays.
We can reduce GBL wire pitch or occupy additional area,
but both options are critical to DRAM access latency and
area and thus are difficult to implement. Splitting tiles to
create just two sub-banks is free from this issue since both
sub-banks share GBLs [4]. However, this mechanism still
has to double SBL wires in order to transport twice the
data from SA arrays to GBLs [14]. This doubling increases
DRAM size by 1.4% [14], which is a fairly large increase
for cost-sensitive DRAM design.

Specifically for GPU DRAM, Chatterjee et al [5] pro-
posed sub-channeling which applies word-line direction sub-
banking to HBM. Sub-channeling does not require extra
GBL wires as it transfers the entire data via narrow per-
mat channel in serialized fashion. This data serialization
significantly increases memory transaction latency thus sub-
channeling is only applicable to GPU system which is less
sensitive to memory latency.
Advantages of ERUCA. In ERUCA, we focus on how to
avoid inter-sub-bank conflict on shared row address latches
and global data path to maximize the effective memory
parallelism efficiency. In terms of implementation, unlike
prior work, we do not propose to split individual DRAM
array tiles, but rather rely on the existing resources and
half-page organization of DDR4 Combo DRAM so it is



free from the 1.4% overhead to double SBL wires. ERUCA
uses pseudo bitline direction sub-banking, and its purpose
is to reduce row address latch resource conflicts between
sub-banks thus it does not suffer from the additional area
overhead from extra SA arrays. In summary, considering
prior sub-banking mechanisms have scalability concerns
due to the area overhead, row-repair flexibility, and shared
resource conflicts between sub-banks, in ERUCA, we choose
to improve the efficiency of sub-banking parallelism with
minimum cost.

B. Data Bus Parallelism
For general purpose memory operation, data bus paral-

lelism supported by our proposed scheme, DDB, is most
beneficial when in-DRAM data transmission takes longer
than external-channel communication burst. DDMA (De-
coupled Direct Memory Access) also uses two switchable
DRAM data buses, but the goal is to communicate with two
different hosts [24]. DDMA has two sets of data ports, and
each of the two data buses is connected to one set of ports.
Therefore, the memory controller has to specify which data
bus and I/O ports to use through a DRAM command. DDB
is different from DDMA in its purpose, port organization,
resources to build the dual bus structure, control mechanism
and command scheduling policies.

There is other previous work utilizing the redundant data
bus resources of Combo DRAM, but the usage is restricted
to special purpose functions, such as constructing a separate
data channel for communication within NVDIMM (Non-
Volatile DIMM) [25] similar to the purpose of DDMA [26],
[27]. DDB is different from the prior work in that we use
the redundant data bus switchable with the regular bus to
improve DRAM operation parallelism.

Previous work directly addresses the constraints of bank
groups and proposes low-level, and costly, circuit techniques
to allow for faster internal buses and avoid bank groups in
the context of graphics memories [6].

IV. REDUCING SUB-BANK CONFLICTS

One of the main goals of ERUCA is to maximize DRAM
bank parallelism by reducing conflicts on inter-sub-bank
shared resources. Before describing the conflict-reducing
schemes, we first introduce our unique sub-banking imple-
mentation, which uses two mechanisms.
Vertical sub-banks in Combo DRAM. The first mechanism,
vertical sub-banks VSB, splits each bank into two sub-banks
by exploiting already existing hardware resources. In current
x4 DDR4 Combo DRAM chips, only one half of each bank
is activated and accessed at any given time, as this enables
a single design that maintains the same rank-level DRAM
page size. VSB uses each half bank as an independent sub-
bank by adding just extra row address latches that hold an
active wordline address in each sub-bank. Fig. 3a shows
this sub-bank structure, which has two row address latches
positioned at plane0 and plane1, respectively. We define a
plane as the portion of a bank that shares a row address latch.
Each sub-bank is selected through the existing LWL SEL L
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Fig. 3: Inter-sub-bank activation flexibility of different sub-
banking schemes in ERUCA.

or LWL SEL R signals, such that no additional wires are
necessary.

One of the benefits of VSB over prior work [3], [4] is
its dedicated column logic and data path, which it inherits
from the Combo DRAM design. Because each sub-bank
has dedicated GBLs, write drivers, and an IOSA array,
which are needed when operating in the x8 mode, we can
overlap accesses to both sub-banks. This reduces sub-bank
interleaving latency when prefetch width is insufficient to
fully bridge the clock frequency gap between DRAM core
and external channel, as with DDR4. Such aspects are not
discussed in prior work [4], [3] and are unique to our design.
VSB without Combo DRAM. Since our first sub-banking
scheme is restricted to x4 Combo DRAM, we also propose
a paired-bank structure for non-Combo DRAM (Fig. 3e).
A paired-bank constructs a single bank from two adjacent
banks by removing one of the row address decoders, re-
taining all main wordline drivers, and adding row address
latches. The goal of VSB with paired-banks is to reduce
DRAM area without losing performance, rather than im-
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proving performance. The row address decoders require
significant area especially due to global address wires while
the address latches of VSB are very small. In other words,
the paired-bank design is a cheaper alternative to current
DRAM that matches current performance by using the
ERUCA techniques. Unless we note explicitly, discussions
and evaluation below is for VSB with Combo DRAM.
Plane conflicts. The performance of the two-plane
VSB Fig. 3a is constrained by severe conflicts on the per-
plane row address latches and MWLs which are shared
between sub-banks—plane conflicts. When the left sub-bank
has an active row in plane1 and the right sub-bank is idle,
the right sub-bank can only be activated within plane0. If
the right sub-bank attempts to activate plane1, the left sub-
bank should first be precharged, causing inter-sub-bank row
buffer thrashing which does not exist for full banks.
Multiple planes. To alleviate plane conflicts, we can increase
the number of planes which expands the available activation
range. Fig. 3b shows the VSB structure with 4 planes.
Since the row address latches of plane3 are available, plane
conflicts in this address range are removed. Also, because
SA arrays are not shared between sub-banks, adding more
planes does not require additional placement of dummy
SA array and cell array at the border of planes as needed
by prior work [2], [3]. However, the benefit of additional
planes diminishes as the number of planes increases. Also,
like in prior work, each additional plane requires a set of
row address latches and latch control wires and dividing
a bank into too many planes impacts the faulty wordline
repair flexibility (as discussed in III-A) and increases area
overhead. Considering the benefits and the scaling problems
of the many-plane VSB structure, plane count should remain
low.
Inter-sub-bank memory address locality. A large number of
planes is only necessary if multiple accesses within a short
time window have plane conflicts. The frequency of conflicts
and their impact therefore depends on the memory access
pattern and the function that maps physical addresses to
DRAM locations. Specifically, conflicts arise when accesses
within a time window all target the set of row addresses that
fall in different sub-banks but within the same plane. Current
DRAM address mapping schemes do not focus much on

row addresses beyond utilizing row locality by deciding on
column addresses within a row; the focus is on spreading
accesses across channels, ranks, and banks to minimize
bank conflicts and maximize overall throughput. Because
of access locality in physical addresses, it is important
to map those bits that change frequently to select those
resources that must be parallelized. Thus, current DRAM
mapping functions use address hashing schemes allocating
physical memory address LSBs to parallel resources (i.e.,
channels, ranks and banks) to maximize parallelism and to
DRAM columns to utilize row buffer locality. The address
MSBs, which change less frequently, are usually allocated to
DRAM rows [28], [29], [30]. Since plane ID is determined
by DRAM row address in each sub-bank, row address
locality between sub-banks affects plane conflicts; address
locality refers to the similarity of row address between
accesses within a short period of time.

We estimate the DRAM row address locality between sub-
banks using memory access traces (with times and accurate
physical addresses) extracted from a subset of SPEC2006
benchmarks (mcf, lbm, gemsFDTD, omnetpp) [31]. For each
memory access, we evaluate whether it overlaps with another
access to the same bank within a short time window. If it
does overlap, we determine whether it causes a plane conflict
or can utilize another sub-bank without a plane conflict.
We use tRC (the minimum row activation time) as the time
window for this experiment; accesses that are further apart
will not be delayed because of the plane conflict.

Fig. 4 shows the fraction of transactions with or without
plane conflicts in each time interval, averaged across all
benchmarks. We ignore transactions that do not overlap with
other transactions in the same bank. On average, 67% of the
transactions per interval overlap with another transaction to
the same bank and may exhibit a plane conflict. With 2
planes, 51% of transactions have plane conflicts, meaning
they have the same plane ID but target a different sub-bank.
As the number of planes increases, transactions with plane
conflicts diminish. However, even with enough planes such
that each plane is just a single row, 17% of transactions still
exhibit plane conflicts. This shows that memory transactions
to a sub-bank pair have high locality in row address bits;
most locality, and hence conflicts, are mainly found in two
address regions, regions ¶ and · in Fig. 4.

In region ¶, only a few high-order row address bits have
locality. This is mainly caused by the operating system
(OS) page allocation policy. Modern OSs aggressively apply
transparent huge page allocation and promotion [32] to avoid
frequent TLB misses [33], [34]. When huge pages are used,
there are 21 offset bits in an address and bits beyond the
offset change infrequently. On the other hand, in region ·,
a wide range of row address bits have locality, as many ap-
plications exhibit significant spatial locality. We observed the
similar address locality trend in other SPEC2006 application
mixes.

Increasing the plane count can remove plane conflicts
in region ¶ but the conflicts in region · will remain. In
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addition, supporting a large number of planes requires sig-
nificant additional hardware for latches and control signals.
Therefore, we propose two mechanisms to mitigate plane
conflicts effectively and with low cost by manipulating and
exploiting address locality.
EWLR (effective wordline range). The idea behind the
effective wordline range (EWLR) mechanism is that we can
remove conflicts in region ·, if each sub-bank can hold
different active wordlines within a narrow row address range,
even if there is a plane conflict. To do so, EWLR doubles a
small number of row address latch bits—only enough latches
for the LWL SEL signals, which hold low address bits. The
MWL address latches, which hold the high-order bits, must
still be shared between all active rows in a plane. Thus, each
sub-bank can maintain a somewhat different row address
within the same plane, as long as all addresses differ only
within values in the LWL SEL latches (Fig. 6).

In other words, if an incoming row activation command
matches the MWL address of an already active row in a
different sub-bank—an EWLR hit—the sub-bank does not
cause a plane conflict and can directly activate its target
row without precharging other sub-banks (Fig. 3c). In fact,
an EWLR hit not only eliminates a plane conflict but also
saves activation power because it does not consume power
to drive the already selected MWL signal. Since a charge
pump is needed for MWL activation, an EWLR hit saves
18% of Vpp power during wordline activation (based on the
power breakdown of the Rambus power model for a 55nm
2Gb DDR3 device [35]). Fig. 5 illustrates the operation flow
of ERUCA with EWLR with the shaded stages only needed
for handling bank conflicts.

To utilize EWLR, the physical DRAM address bits used
for MWL offset need to be exposed to the memory con-
troller. Also, two sets of row sub-address latches are inserted
to maintain both LWL SEL L and LWL SEL R addresses
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independently. Given the observed high row address locality
among transactions, EWLR effectively removes plane con-
flicts (see also Section VIII).
RAP (row address permutation). The second ERUCA
mechanism, row address permutation (RAP), also exploits
row address locality. However, unlike EWLR which enables
greater activation flexibility across sub-banks within the
same plane, RAP aims to avoid plane address matches. To
do so, RAP applies different plane ID mapping policies in
each sub-bank (Fig. 3d). For example, consider the case of
two sub-banks. RAP maps the high-order row address bits
of the left sub-bank in descending order and those of the
right sub-bank in the inverse order (by inverting their bit
values). As a result, the memory transactions to each sub-
bank are more likely to access different planes, reducing
plane conflicts in region ¶ and ·. RAP does not require
any physical modification to DRAM and is very practical.
Also, like EWLR, the DRAM physical address bits used for
plane IDs need to be exposed to the memory controller.

V. DDB: DUAL DATA BUS

To resolve the constraints on data bus parallelism caused
by the increasing gap between in-DRAM and external chan-
nel frequencies, we propose the dual data bus (DDB). DDB
doubles available bandwidth on the chip-global interconnect
using a dual-bus structure with a set of small switches within
the bus. DDB has very low area overhead because it reuses
existing interconnect that is underutilized in the baseline
Combo DRAM design. We also describe how DDB can be
implemented in other DRAM architectures.

We develop DDB in the context of DDR4 DRAM, which
exhibits data bus conflicts because the time required for
transferring the data of a column command within the
DRAM device exceeds the time required to traverse the



DRAM channel. A Combo DRAM chip in x4 mode uses
half of the available data path in the chip at any given time
while the other half is left unused (Fig. 7a). We enable the
use of both data buses by introducing very small cross-
bar switches and interleave in-DRAM data transmissions
within each bank group. DDB contributes to memory system
performance when a few bank groups are hot, if DRAM
address hashing fails to interleave bank groups well.

Fig. 7b shows the layout of DDB with VSB. DRAM
itself internally selects which bus half to use for any transfer
using very simple logic to control the DDB switches. DDB
supports back-to-back interleaved accesses for read and
write commands both across and within bank groups as
long as two conditions are met. First, the two consecutive
accesses must not conflict on GBLs. GBLs are shared by
a subset of tiles in each bank (Fig. 2a) and are occupied
for one DRAM core clock per access. Second, one of the
dual buses within the same bank group is available. A bus
is occupied for one DRAM core clock while commands are
synchronized with the bus clock. Current DRAMs operate
with a core frequency of 200MHz while the bus frequency
can be over 10 times higher [8].

It is worth noting that DDB is synergistic with VSB. VSB
increases the number of effective banks per bank group and
thus raises the pressure on the data bus. DDB mitigates the
pressure by parallelizing bus utilization and we observe that
VSB performs better with DDB (Section VIII).

Controller changes. To prevent conflicts within DDB with
growing channel frequency, we must prevent commands
from violating the two conditions stated above. The first
condition is already disallowed in existing designs because
regardless of the core-to-bus frequency ratio, GBLs are
shared within a bank (tCCD L timing parameter). We handle
the second condition by introducing a new timing parameter,
the two-command window (tTCW), which defines the timing
window in which only two column access commands are
allowed. This is similar in concept to the four activation
window (tFAW) timing parameter, but is motivated by bus
conflicts rather than power constraints.

Application to other DRAM types. Although we mainly
develop DDB using the underutilized Combo DRAM inter-
connect as a cost efficient implementation mechanism, DDB
is also applicable to other DRAM types. For none-Combo
DRAM, the DDB switches can be extended to connect the
buses of vertically-adjacent bank groups to mitigate bank-
group timing constraints. Such DDB switches should con-
nect the buses of bank groups 0 and 2 in Fig. 7a, for example.
This can be applied to GDDR5 and HBM devices that also
rely on bank groups for their high-frequency channel. For
example, we conducted preliminary experiments with such
a GDDR5 with a simulated GPGPU [36] and observed 10%
speedup on memory-intensive applications from the Rodinia
benchmark suite [37]. We leave the evaluation of other
applications of our ideas to future work.
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VI. IMPLEMENTATION DETAILS

A. Sub-bank Implementation

Row address latches. Our sub-banking schemes (VSB and
paired-bank) with n planes require n sets of row address
latches to support independent wordline activation in each
sub-bank (Fig. 8). For row address latch selection, each bank
requires n plane ID bits. We place the plane ID address
decoder near the address latches, thus reducing the number
of global wires for plane ID to log(n). The same sub-bank
selection mechanism is used for paired-bank, except that
sub-banks are located at each side of each row decoder. For
EWLR, additional row address latches are inserted to hold
LWL SEL L and LWL SEL R address bits independently
for each sub-bank. Also, a LWL SEL latch selection wire
along with a single bit decoder is added to choose the target
LWL SEL address latches.
Partial precharge. When both sub-banks hold an active row
within the same EWLR, precharging one of the sub-banks
should be performed without deactivating the shared MWL.
We propose a partial precharge command which precharges
only the logic blocks and data paths of one sub-bank. For
this, the memory controller checks the EWLR hit status of
both sub-banks. The partial precharge uses one of the unused
address bits of the regular precharge command (precharge
does not specify a row address) and DRAM simply regulates
MWL driver inputs by this command without additional
hardware.
DRAM address mapping. Both EWLR and RAP require
mindful selection of DRAM address hashing to maximize
efficiency. When only EWLR is used, we use the row address
LSBs for plane ID to give each sub-bank a higher chance
to access different planes; the low-order row address bits
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change more frequently than the high-order bits (Fig. 9 ·).
The next 3 row address bits are allocated for the EWLR
offset. Thus, because the high-order change infrequently, this
mapping maximizes the likelihood that if a plane conflict
does occur, it can be satisfied with an EWLR hit.

If RAP is used alone, we invert the row address MSBs
with a bit-wise XOR and use the sub-bank ID to select
between the original bits and the inverted bits for the final
plane ID. Address inversion proceeds in parallel with other
address bit permutation and takes just two more gate delays
for multiplexing by sub-bank ID.

Fig. 9 ¶ shows the DRAM address when EWLR and
RAP are combined. We use the row address MSBs for
plane ID and move the EWLR offset next to the plane
ID. This decision is based on our observation that EWLR
ID randomization using low-order row address bits is more
effective because row address MSBs are frequently changed
by RAP.

B. DDB Implementation

Cross-bar switch organization and control. To implement
the set of switchable dual buses using the redundant data
bus, we construct cross-bar switches between the two data
buses and all banks in each bank group. We implement the
switches using pass-transistors to minimize area overhead.
The switch controller in each sub-bank generates the control
signals using bank ID, sub-bank ID, and bus ID as inputs.
Because bank and sub-bank IDs are already available in each
bank, we only need to add two bus ID signals across the
entire chip for both upper and lower bank groups. This is a
small addition in the context of the already wide chip-global
buses. At the other end of the DDB, we also have to modify
the MUX and DEMUX logic to select the correct data from
one of dual buses to transfer to the memory channel. Taking
the existing MUX and DEMUX logic for bank groups as a
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base [7], we add just a single stage of a 32b 2-input MUX
and DEMUX logic. This additional stage adds just two gate
delays.
Two-command window. The two-command window pre-
vents more than two column accesses within a single DRAM
core clock cycle time (5ns) in order to avoid a conflict on
the DDB. The two-command window constraints consist of
two timing parameters, tTCW (two column window) and
tTWTRW (two write to read window). The first parameter,
tTCW, applies to consecutive read or write commands and
blocks the third command until the window expires. Because
the time that the data occupies the global data bus from
the point of command issue is different for reads and
writes, the memory controller has to keep track of two
separate tTCW constraints for read and write commands, as
depicted in Fig. 10a and Fig. 10b, respectively. Secondly,
tTWTRW regulates the read command timing after two
successive write commands; this is analogous to write-
read turnaround. The value of tTWTRW is derived from
the minimum timing margin needed between the first of
the two write command and the read command to avoid
conflicts on the DDB (Fig. 10c). Both tTCW and tTWTRW
are managed independently for each bank group since each
bank group possesses its own DDB. Again, two-command
window constraints are applied only when the DRAM core
clock cycle time is longer than twice the data burst time on
the external DRAM channel.

C. Overhead Estimation
We use 8Gb x4 DDR4 in 32nm technology as a baseline

and estimate its size as 120.992mm2 (8.98mm×13.47mm)
using CACTI-3DD [38]. To estimate the area overhead of
our proposed schemes, we synthesize the additional logic
blocks using the Synopsys SAED 32nm technology library.
The latch selection wire pitch is conservatively estimated
as 1µm, which is three times the CSL wire pitch; each
CSL wire has the width of 4 bitlines in 32nm DRAM
technology [38].

VSB with 2 planes requires 40-bit latches in each latch
set with 3 : 8 row address pre-decoding. With EWLR, the
number of bit latches per latch set increases to 48 due to the
doubled LWL SEL bits. As the number of planes increases,
so does the number of latch sets, but the latch count in each
latch set reduces slightly. Based on synthesis results, each
40b and 48b latch set occupies only 203µm2 and 244µm2,
respectively. The overhead from the latch selection signals



running across the row decoder grows as the number of
planes increases, because the signals expend the width of
the DRAM die. The latch selection signals are placed in the
bitline direction. Therefore, we need to multiply the number
of latch selection wires by the number of row decoders in
the chip in the wordline direction. There are 8 such decoders
in DDR4 [7]. Hence, every doubling of the number of planes
expands the width of the DRAM die by 8µm (1µm × 8).
EWLR adds another 2µm for the left and right sub-bank
selection signals.

DDB requires 64 switches and some switch control logic
per sub-bank. Each switch is implemented as a CMOS
pass-transistor pair. Based on our synthesis results, the
switches and their control logic take 191µm2 per sub-bank.
In addition, the 32b 2-input MUX and DEMUX logic blocks
account for 674µm2. The four bus selection wires running
across the DRAM die expand the chip height by just 4µm.

Fig. 11 shows the DRAM area overhead with different
combinations of ERUCA mechanisms. The key components
of our proposed mechanisms are constructed using existing
resources in Combo DRAM and the area overhead is thus
very small. DDB incurs 0.05% area overhead, 85% of which
is from the bus selection wires. ERUCA with 2-plane VSB
with RAP alone increases DRAM die area by 0.06% and
EWLR further increases area by 0.06%. As the number of
planes increases, the additional address latch selection wires
expand DRAM size linearly. Considering we need to restrict
the plane count due to lowering row repair flexibility, up to
4 planes the area overhead is less than 0.3%.

Paired-bank based ERUCA reduces DRAM area by 1.1%
even with all schemes added (EWLR, RAP, and DDB). This
is because we can remove half of the row address decoders in
the chip. Because we still have to maintain two MWL driver
sets and row repair fuses, we assume 25% row decoder width
reduction.

Comparing the overhead of VSB based ERUCA to Half
DRAM [4], [14], our approach incurs five times lower
hardware overhead; Half DRAM is one of the cheaper
options described in prior work and which also has two
wordline direction sub-banks. MASA (the highest perform-
ing SALP scheme) has significant area overhead of 3.03%
and 4.76% with 4 and 8 sub-array groups respectively due
to the additional SA arrays and dummy mats between sub-
array groups. The small area overhead of ERUCA makes its
implementation more practical.

VII. EVALUATION METHODOLOGY

We use USIMM [39] as our baseline memory simulator
and add support for ERUCA. To model performance, we
use Sniper [40] with the processor configuration described
in Tab. III. Tab. III also describes the DDR4-based memory
system and timing parameters. We detail those parameters
that govern the operation of an idealized DDR4 without bank
groups, standard DDR4, and the use of DDB. Also, we use
a single tRRD of 4 clocks assuming tFAW constrains the
power consumption. The rest of DRAM timing parameters
follow the DDR4 standard [8].

System configuration

Processor 4-core OoO x86, 4GHz, Fetch/Issue width (8),
LSQ (32), ROB (192)

TLB I-TLB:128, D-TLB:64, Associativity (4)

L1 32KB, Associativity (L1I: 4, L1D: 8), LRU

LLC 1MB per core, Associativity (16), LRU

DRAM
DDR4, 1.33GHz (18-18-18), 2channels × 1rank, FR-FCFS,
Adaptive-open page [42], Power (Micron DDR4 8Gb [13]),

Intel Skylake address mapping [30], [28] (Fig. 9)

DRAM timing parameters
Parameter (Value) Ideal Bank groups DDB
tCCD S (4CLKs) diff banks diff BGs diff banks

tCCD L (5ns) same bank same BG same bank
tWTR S (2.5ns) diff banks diff BGs diff banks
tWTR L (7.5ns) same bank same BG same bank

tTCW (5ns) - - same BG
tTWTRW (WL+4CLKs+tWTR) - - same BG

Benchmarks MPKI
mix0 mcf:lbm:omnetpp:gemsFDTD H:H:H:H
mix1 mcf:lbm:gemsFDTD:soplex H:H:H:H
mix2 lbm:omnetpp:gemsFDTD:soplex H:H:H:H
mix3 omnetpp:gemsFDTD:soplex:milc H:H:H:M
mix4 gemsFDTD:soplex:milc:bwaves H:H:M:M
mix5 soplex:milc:bwaves:leslie3d H:M:M:M
mix6 milc:bwaves:astar:leslie3d M:M:M:M
mix7 milc:bwaves:astar:cactusADM M:M:M:M
mix8 bwaves:leslie3d:astar:cactusADM M:M:M:M

Tab. III: Evaluation parameters.

We evaluated our proposed schemes on the high and
medium memory intensity applications of the SPEC2006
benchmark suite [31]. We also ran all experiments with
low memory intensity benchmarks but omit their results
because they are simply not impacted by the memory system
performance. We form 4-program mixes from the chosen
applications as shown in Tab. III). We simulate 200M repre-
sentative memory-intensive CPU instructions from each mix.
All simulations are conducted while accurately capturing
physical memory addresses allocated by Linux 3.19.0-32-
generic. Physical addresses depend on the fragmentation
level of physical memory. We therefore use a tool [34] to
control the level of fragmentation. Fragmentation is quanti-
fied by the free memory fragmentation index (FMFI) [41].
We experiment with both 50% and 10% fragmentation
levels.

VIII. EVALUATION RESULTS

General performance. Fig. 12 shows the weighted
speedup [43] achieved by different ERUCA configurations
over baseline DDR4 with 16 banks and 4 bank groups. We
use 4 planes for this experiment and evaluate plane-count
sensitivity later. We also compare with an idealized DDR4
that has 32 banks and enough buses to avoid bank grouping
and to a configuration with 32 banks with bank groups and
their associated timing constraints (bg32). Note that neither
of these configurations is practical because doubling the
number of full banks adds 11% more die area according to
the Rambus power model [35]. All configurations improve
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Fig. 12: Normalized weighted speedup over DDR4.

performance and their impact is greater when memory
pressure is larger (the mixes are ordered left to right by
decreasing memory access intensity). ERUCA based on 4-
plane VSB without any proposed techniques to avoid plane
conflicts improves the overall speedup by 10%.

DDB improves performance by an additional 2%. This is
surprisingly low given that DDB works as an ideal data bus
at the 1333MHz DRAM channel frequency. We find that
the DRAM address mapping of Skylake (Fig. 9) success-
fully distributes accesses to different bank groups such that
baseline performance is not degraded much by bank groups.
We later show that DDB is much more beneficial when bus
frequency is higher.

EWLR and RAP provide a substantial improvement of
15% mean weighted speedup over baseline. When both
EWLR and RAP are used, the incremental benefit of EWLR
on top of RAP is small because of the low address locality
in the higher-order address bits, which EWLR targets. For
all the mixes, 4-plane VSB with, EWLR, RAP, and DDB
provides almost similar performance to DDR4 with a full
32 banks, despite requiring less than 0.3% DRAM area
compared to 11% for full banks. Although 4-plane VSB with
EWLR and RAP does not perfectly resolve plane conflicts,
with the efficient bus parallelism by DDB, it has similar
parallelism of naively scaled DDR4 and comes within 2%
of the performance of an idealized design. The memory
transactions of mix3 and mix4 have high row address
locality across many address bits accentuating the benefits of
EWLR and RAP. Although not included in Fig. 12, the four
memory non-intensive benchmark mixes have 1-6% speedup
with 4P VSB over baseline, which approaches the speedup
of the ideal case with relatively low plane conflicts.

Paired-bank-based ERUCA with EWLR+RAP loses 2%
performance (GMEAN) compared to baseline DDR4.
Adding DDB reduces the loss to 1%. Paired-bank ERUCA
enables a 1.1% DRAM area savings (cf. 1% profit margin),
demonstrating the power of our novel ERUCA mechanisms.
Plane-count sensitivity. Fig. 13a compares the weighted
speedup of VSB with DDB as we vary the plane count and
plane conflict avoidance scheme. This sensitivity evaluation
is conducted with both 10% and 50% physical memory
fragmentation to observe the potential impact of lower
memory address spatial locality.

Increasing the plane count improves the performance
with all EWRL and RAP combinations. As expected, the
relative benefits diminish as plane count increases. With 16
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Fig. 13: Conflict-avoidance and plane count sensitivity.

planes, all configurations except for the naive VSB have
similar speedup, which is within 0.5% of the performance
of an idealized DRAM with 32 full banks and no bank
groups. Naive VSB with 16 planes has lower performance
because it suffers from plane conflicts that are removed
most-effectively by EWLR. This is also expected as RAP
targets an optimal distribution across a small number of
planes and EWLR is designed to take advantage of address
locality even when plane count is high; indeed with just
2 planes, RAP provide greater benefit than EWLR. VSB
with both EWLR and RAP is less sensitive plane count, and
exhibits just a 4% performance variation between 2 and 16
planes.

We find that when both techniques are used together, most
of the penalty of plane conflicts is avoided with only two
planes, coming within 4% of ideal performance. This is an
important result because the area overhead with 2 planes is
27% smaller, and row repair is twice more effective than
with 4 planes.

When memory fragmentation is higher, increasing bank
parallelism has a stronger impact on performance. This is
because the baseline DDR4 with 16 banks exhibits lower
row locality, and hence, more bank conflicts when memory
is highly fragmented. The impact of memory fragmentation
is more noticeable for VSB with RAP only. RAP applies
different DRAM address mappings to the high-order row
address bits to avoid plane conflicts under the assumption
that row locality in higher-order bits of the address is larger.
Locality is lower when memory is highly fragmented, which
decreases the effectiveness of RAP. Plane conflicts involved
with RAP are more frequent with fewer planes because
RAP has only two candidates to remap, and diminish as
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Fig. 15: Performance comparison to prior work. Weighted
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remapping flexibility increases with additional planes.
Fig. 13b compares the fraction of precharge commands

issued as a result of plane conflicts. This metric shows the
degree of plane conflicts in all pairs of sub-banks. The results
are highly correlated with the speedup trends. As with the
performance trends (Fig. 12), the combination of EWLR
and RAP is effective at reducing dependence on high plane
counts.
Sensitivity to memory channel frequency. Fig. 14 com-
pares the speedup achieved by DDB as channel frequency
increases. We also scale up the CPU clock frequency pro-
portionally to maintain the memory access intensity across
experiments. Because DRAM internal frequency is fixed
(200MHz [8]), the disparity in frequencies increases for
higher channel frequencies. As a result, the channel delay
caused by bus conflicts increases with growing channel
clock frequency as well. The speedup of the two config-
urations using bank grouping saturates due to the growing
timing delay (tCCD L) because accesses are no perfectly
interleaved across bank groups. On the other hand, VSB
with DDB shows a similar performance growth trend to
that of an idealized DRAM. VSB with DDB exhibits 5%
higher speedup compared to VSB without DDB at 2.4GHz
channel frequency, for example. Note that DDB has to
use command window parameters from 2Ghz due to DDB
resource conflicts. This shows that DDB supports scalable
data bus parallelism and does not hinder the performance
gained by a faster channel.
Comparison to prior work. Fig. 15 compares ERUCA to
prior DRAM sub-banking schemes. The performance gain
of Half DRAM is limited to 8% as it suffers from conflicts
on the shared row address latches. With ERUCA and the
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similar (yet cheaper) 4-plane VSB +DDB, performance
improvement doubles to 15% over baseline. Both MASA4
and MASA8 with 4 and 8 sub-array groups respectively,
outperform VSB+DDB and ideal32 at medium memory
intensity because they offer a larger number of effective
banks. However, with high memory intensity, the perfor-
mance benefit of MASA is restricted by the shared GBL
wires between sub-array groups. This sharing requires an
additional latency (tSA) [2] to interleave accesses to different
sub-array groups.

Combining VSB(EWLR+RAP)+DDB and MASA pro-
vides significant performance synergy with a larger number
of effective banks, row-locality utilization, and chip-level
data bus parallelism. Our evaluation shows that MASA8 with
VSB and VSB+DDB have 7% and 10% performance gains
compared to MASA8 only, and 26% and 29% gain compared
to baseline DDR4.
Latency and power analysis. Fig. 16 a compares the average
read queueing latency of the different memory configura-
tions. ERUCA with VSB (EWLR+RAP+DDB, 4 planes)
significantly reduces all statistical read queueing latency
parameters and all but one parameter essentially match those
of the ideal case. Importantly, average latency decreases
by 15% from DDR4 and is within 1% of ideal. The third
quartile latency is higher than ideal because ERUCA suffers
from rare plane conflicts that delay DRAM accesses within
the memory scheduling queue. This explains the small
difference in performance between ERUCA and ideal.

Fig. 16 b shows the average energy reduction compared
to standard DDR4. Background energy is saved mainly by
improving overall performance and execution time. ERUCA
reduces activation energy by 6% compared to the baseline
by making more effective banks available and increasing the
opportunity to exploit DRAM page locality. In addition, ev-
ery EWLR hit saves the energy associated with precharging
a row. Again, the difference between ERUCA and ideal is
minimal—under 1% of expected energy consumption.

IX. CONCLUSION

In this paper, we show how delicate manipulation of
DRAM access mechanisms and DRAM internal structures
leads to significant performance improvements of ∼ 15%
with less than a 0.3% DRAM area overhead. These benefits
are the result of maximizing available parallelism within a
DRAM chip, both in terms of enabling efficient sub-banking



and increasing internal global-chip interconnect bandwidth.
While prior work targeted similar benefits [2], [3], [4], [14],
[6], ERUCA is the first to recognize the inter-sub-bank
relation and its impact on parallelism efficiency. EWLR
takes advantage of the partitioning of signaling into a main
wordline and local select signals to increase sub-banking
flexibility at low cost. The RAP hashing scheme better
utilizes sub-banks and avoids unnecessary resource conflicts.

Another important insight in our work is that with more
effective banks and with growing disparity between core and
bus clock rates, additional internal global-chip bandwidth is
necessary. We design a light-weight modification to the ex-
isting bank-group bus that practically doubles its bandwidth
and leads to performance gains. Again, we believe we are
the first to make this observation and exploit it.

We show how ERUCA provides nearly-free performance
gains by exploiting underutilized resources of Combo
DRAM when configured for x4 interfaces and by carefully
avoiding overheads of prior sub-banking schemes. At the
same time, we demonstrate that the ERUCA techniques
are effective for those other sub-banking schemes as well.
In addition to Combo DRAM, we show that ERUCA can
be applied to other DRAM designs to save cost while
maintaining performance.
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