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QN The Problem

 Challenge in emerging non-volatile memory
— Finite write endurance

— PCRAM cells wear out after 108 writes on average
* Actual advertised specification is only 104

— Process variation exacerbates the problem
e Some cells fail earlier than others

e Limitations of Prior solutions

— Tolerate only hard cell errors
e Can’t cover soft cell errors, errors on the periphery, wires, package, ...

— Require custom logic within NVRAM devices




Fine-grained Remapping with ECC and
Embedded-pointer

e Multi-tiered ECC with fast and slow paths

e Fine-grained remapping
— Re-use a “dead” 64B block for storing a remap pointer
— Architectural techniques to accelerate address remapping

 Detection/correction at the memory contiroller
— Allow simple NVRAM devices
— Tolerate hard/soft errors in the cell array, periphery, wire, ...

 Trade off performance at the end of life
with storage device cost and complexity
— Near-zero performance penalty initially
— Less than 2% penalty, even at 7 years
 Up to 26% longer lifetime
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QN Prior solutions

e Avoiding unnecessary writes

e Wear-leveling
— Widely used in FLASH memory

e Tolerating wear-out failures
— Built-in hard bit-error correcting mechanisms
— Coarse-grained remapping

— DRM: Dynamically Replicating Memory
— ECP: Error Correcting Pointer
— SAFER: Stuck-At-Failure Error Recovery
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QN Prior Work: Tolerating Wear-out Failures

Device

Error Correction Logic || Error detection logic
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Intolerable Failure @



QN Limitations of Prior Work

e Only HARD cell errors

— Can’t detect/correct SOFT errors
¢ Resistance drift in PCRAM

— Can’t detect/correct errors on periphery, wires, and packaging
— Supporting chipkill-correct?

* Error detection/correction logic within NVRAM devices
— Memory industry favors SIMPLE and CHEAP devices

— Error detection/correction in DRAM
e DRAM chips only store data
» Additional DRAM chips for storing redundant information
* Error detection/correction is done at the memory controller

— Better follow the same design sirategy in NVRAM systems
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QN Multi-tiered ECC

e EC-7ED BCH code

— 6-bit error correcting 7-bit error detecting
— 61 bits for 64B data (less than 12.5% overhead)

* Tolerate up to 4 bit wear-out failures and
2 bit soft errors

 Low-latency decoding for common case operations

— Quick-, Slow-, and Mem-ECC
* Extend two-tiered decoding of Hi-ECC [Wilkerson ISCA’10]

— Fast-path quick-ECC for most initial period




SN2 Mutti-tiered ECC (Cont'd)
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QN Dealing with Intolerable Failures

 Eventually, some blocks become faulty
— More than 4 wear-out failures per block

 Coarse-grained remapping (prior solutions)

— Leverage virtual-to-physical mapping
 Mapping unit: 4kB or larger

— A block with intolerable failure maps out the whole page

* Fine-grained remapping

— Disable only a faulty block
 Mapping unit: 64B
— Effectively handle both random and concentirated errors




%N Fine-grained Remapping (FR)

with Embedded-pointer

 Embed a 64-bit pointer within a faulty block
— There are still-functional bits in a faulty block
— Use 7-Modular Redundancy to tolerate the failures

e 1-bit D/P flag per 64B block

— ldentify a block is remapped or not

e Avoid chained remapping
— Embed always the FINAL pointer
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QN Read with FR

e Read with FR
— Read data and D/P flag

— If a data block is remapped
 Read the remapped block
* Increase read latency, waste bandwidth
* Penalty increases as NVRAM wear out

First Read Reschedule Second Read
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QN How to Mitigate This Penalty?

e Remap pointer cache
— Cache remap pointers
— Avoid reading remap pointer from NVRAM when cache hit

e Hash based index cache

— Pre-defined hash functions for remapping
e Compute, not cache, remap pointer

— H-idx: which hash function is used for remapping?
e 0: not remapped
* 1 or 2: remapped using one of the hash functions
e 3: hash collision
— All candidate locations are already used for other blocks
— Need to read the remap pointer
» 2 bits per 64B block




QN Hash-Based Index Cache
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QN Index Cache (Cont’'d)

e Fill/evict with TLB
— 100% read hit rate

e Read remap pointers only when
— Dirty write-back misses the index cache (rare)

— Hash collision (rare with good hash functions)

e OS should be aware of hash functions
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QN Memory System Organization with FREE-p
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WCapaci’ry vs. Lifetime
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QN Performance Evaluation

 In-order core with detailed NVRAM model
— PCRAM with DDR3-like channel interface

e Performance depends on NVRAM wear-out status
— Fault injection based on failure simulation
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QN After 7.3 Years
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QN After 7.3 Years

Performance overhead
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QN After 7.3 Years
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QN After 7.3 Years
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QN Performance Impact (Cont’d)

e After 8 years
— Index Cache: 3.5~6.7% penalty

o After 8.8 years

— Simple caching doesn’t work any more
e > 30% penalty

— Index Cache: 10.7~13% penalty
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QN Conclusions

e FREE-p combines FR and multi-tiered ECC

— Protect against both Hard AND Soft errors

— 11.5% longer lifetime over ECP6

— Less than 2% performance degradation, even at 7 years

— 12.5% storage overhead (same as current DRAM protection)

e Everything is implemented at the memory controller

— End-to-end protection
 Hard and soft errors in the cell array
* Errors on the periphery, wires, packaging, ...

— System designers determine protection level
e Can be extended to chipkill-correct

— Simple and cheap (commodity) NVRAM devices
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