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N The Problem

• Challenge in emerging non-volatile memory

– Finite write endurance

– PCRAM cells wear out after 108 writes on average
• Actual advertised specification is only 106

– Process variation exacerbates the problem
• Some cells fail earlier than others

• Limitations of Prior solutions

– Tolerate only hard cell errors

• Can’t cover soft cell errors, errors on the periphery, wires, package, ...

– Require custom logic within NVRAM devices
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N Fine-grained Remapping with ECC and 
Embedded-pointer

• Multi-tiered ECC with fast and slow paths

• Fine-grained remapping 

– Re-use a “dead” 64B  block for storing a remap pointer

– Architectural techniques to accelerate address remapping

• Detection/correction at the memory controller

– Allow simple NVRAM devices

– Tolerate hard/soft errors in the cell array, periphery, wire, …

• Trade off performance at the end of life 
with storage device cost and complexity

– Near-zero performance penalty initially

– Less than 2% penalty, even at 7 years

• Up to 26% longer lifetime
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Prior Solutions and Their Limitations



N Prior solutions

• Avoiding unnecessary writes

• Wear-leveling

– Widely used in FLASH memory

• Tolerating wear-out failures

– Built-in hard bit-error correcting mechanisms

– Coarse-grained remapping

– DRM: Dynamically Replicating Memory

– ECP: Error Correcting Pointer 

– SAFER: Stuck-At-Failure Error Recovery 
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N Limitations of Prior Work

• Only HARD cell errors

– Can’t detect/correct SOFT errors 

• Resistance drift in PCRAM

– Can’t detect/correct errors on periphery, wires, and packaging

– Supporting chipkill-correct?

• Error detection/correction logic within NVRAM devices

– Memory industry favors SIMPLE and CHEAP devices

– Error detection/correction in DRAM

• DRAM chips only store data

• Additional DRAM chips for storing redundant information

• Error detection/correction is done at the memory controller

– Better follow the same design strategy in NVRAM systems
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N Multi-tiered ECC

• 6EC-7ED BCH code

– 6-bit error correcting 7-bit error detecting

– 61 bits for 64B data (less than 12.5% overhead)

• Tolerate up to 4 bit wear-out failures and 
2 bit soft errors

• Low-latency decoding for common case operations 

– Quick-, Slow-, and Mem-ECC

• Extend two-tiered decoding of Hi-ECC [Wilkerson ISCA’10] 

– Fast-path quick-ECC for most initial period
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N Multi-tiered ECC (Cont’d)

10

Quick-ECC

Correct up to 2-bit errors

Slow-ECC

Correct up to 4-bit errors

Data

Mem-ECC

Correct up to 6-bit errors
Identify hard errors 

through verify-after-write

If more than 
2-bit errors

If more than 
4-bit errors

If 4-bit hard errors, 
raise an exception

2 memory cycles

4 memory cycles

183 memory cycles



N Dealing with Intolerable Failures

• Eventually, some blocks become faulty

– More than 4 wear-out failures per block

• Coarse-grained remapping (prior solutions)

– Leverage virtual-to-physical mapping

• Mapping unit: 4kB or larger

– A block with intolerable failure maps out the whole page

• Fine-grained remapping 

– Disable only a faulty block

• Mapping unit: 64B

– Effectively handle both random and concentrated errors
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N Fine-grained Remapping (FR) 
with Embedded-pointer

• Embed a 64-bit pointer within a faulty block

– There are still-functional bits in a faulty block

– Use 7-Modular Redundancy to tolerate the failures

• 1-bit D/P flag per 64B block

– Identify a block is remapped or not

• Avoid chained remapping

– Embed always the FINAL pointer
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N Read with FR

• Read with FR

– Read data and D/P flag

– If a data block is remapped

• Read the remapped block

• Increase read latency, waste bandwidth

• Penalty increases as NVRAM wear out
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N How to Mitigate This Penalty?

• Remap pointer cache

– Cache remap pointers

– Avoid  reading remap pointer from NVRAM when cache hit

• Hash based index cache

– Pre-defined hash functions for remapping

• Compute, not cache, remap pointer

– H-idx: which hash function is used for remapping?

• 0: not remapped

• 1 or 2: remapped using one of the hash functions

• 3: hash collision 

– All candidate locations are already used for other blocks

– Need to read the remap pointer

• 2 bits per 64B block
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N Hash-Based Index Cache
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N Index Cache (Cont’d)

• Fill/evict with TLB

– 100% read hit rate

• Read remap pointers only when

– Dirty write-back misses the index cache (rare)

– Hash collision (rare with good hash functions)

• OS should be aware of hash functions
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N Memory System Organization with FREE-p
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N Capacity vs. Lifetime
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N Performance Evaluation

• In-order core with detailed NVRAM model

– PCRAM with DDR3-like channel interface

• Performance depends on NVRAM wear-out status

– Fault injection based on failure simulation
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N After 7.3 Years
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N After 7.3 Years
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N After 7.3 Years
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N After 7.3 Years
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N Performance Impact (Cont’d)

• After 8 years 

– Index Cache: 3.5~6.7% penalty

• After 8.8 years 

– Simple caching doesn’t work any more

• > 30% penalty

– Index Cache: 10.7~13% penalty
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N Conclusions

• FREE-p combines FR and multi-tiered ECC

– Protect against both Hard AND Soft errors

– 11.5% longer lifetime over ECP6

– Less than 2% performance degradation, even at 7 years

– 12.5% storage overhead (same as current DRAM protection)

• Everything is implemented at the memory controller

– End-to-end protection

• Hard and soft errors in the cell array 

• Errors on the periphery, wires, packaging, …

– System designers determine protection level

• Can be extended to chipkill-correct

– Simple and cheap (commodity) NVRAM devices
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