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Abstract 
 
Many current programmable architectures designed to exploit 
data parallelism require computation to be structured to 
operate on sequentially accessed vectors or streams of data. 
Applications with less regular data access patterns perform 
sub-optimally on such architectures. This paper presents a 
register file for streams (SRF) that allows arbitrary, indexed 
accesses. Compared to sequential SRF access, indexed access 
captures more temporal locality, reduces data replication in 
the SRF, and provides efficient support for certain types of 
complex access patterns. Our simulations show that indexed 
SRF access provides speedups of 1.03x to 4.1x and memory 
bandwidth reductions of up to 95% over sequential SRF 
access for a set of benchmarks representative of data-parallel 
applications with irregular accesses. Indexed SRF access also 
provides greater speedups than caches for a number of 
application classes despite significantly lower hardware costs. 
The area overhead of our indexed SRF implementation is 
11%-22% over a sequentially accessed SRF, which 
corresponds to a modest 1.5%-3% increase in the total die 
area of a typical stream processor. + 

1. Introduction 

Circuit technology scaling has enabled chips with 10s to 
100s of millions of transistors. In the domain of general-
purpose microprocessors, translating this raw potential into 
efficiently utilized compute resources has been a challenge 
as an increasing portion of chip resources is spent on 
discovering instruction-level parallelism (ILP) and 
reducing average memory access latency via cache 
hierarchies. However, by exploiting data parallelism 
available in some application domains (e.g. graphics), 
some application-specific designs have achieved very high 
compute rates. Data parallelism allows these designs to 
avoid dynamic ILP extraction and tolerate long memory 
latencies. Each operation is applied to many data elements 
over a number of cycles, exposing parallelism and 
eliminating the need for expensive cache hierarchies. This 
form of parallelism is exhibited by many increasingly 
important classes of applications such as multimedia, 
graphics, cryptography, and scientific simulations. 
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There has been significant interest in exploiting data 
parallelism in programmable processors as well. Many 
general-purpose architectures have added support for 
parallel processing of sub-word data types [1, 2, 3, 4]. 
Vector processing [5], which has traditionally been used in 
high-performance computers with expensive, high 
bandwidth memory systems, has been applied to 
microprocessors [6, 7, 8, 9]. Additionally, stream 
processors exploit data and instruction-level parallelism to 
achieve high performance for media, signal processing, 
graphics, and scientific applications [10, 11, 12].  

While sub-word parallelism is a limited extension of 
general-purpose architectures, vector and stream processors 
provide extensive support for exploiting data parallelism. 
They also provide storage hierarchies designed to tolerate 
long memory latencies and supply the high operand 
bandwidth necessary to perform a large number of 
operations in parallel. A key part of these storage 
hierarchies is the vector or stream register file (VRF or 
SRF) – a software-managed on-chip storage structure for 
sequences of data words or records. These register files 
capture data reuse between operations and provide latency 
tolerance by allowing large transfers to and from memory 
to be overlapped with computation on data already in the 
V/SRF. Current implementations of both these register file 
types, however, restrict accesses to vectors and streams to 
be sequential (or some small number of predetermined 
access patterns). 

Several sub-classes of data-parallel application domains 
such as 2D and 3D signal processing, cryptography, and 
scientific computing exhibit data reuse patterns that are not 
amenable to repeated accesses to long vectors or streams in 
a single order. The sequential access restriction of V/SRFs 
presents an artificial impediment to extending vector or 
stream programming models to these applications that are 
otherwise promising candidates.  

This paper explores the use of non-sequential, explicitly 
indexed access in stream register files1 in order to enable 
efficient execution of new classes of applications on stream 
processors. The key performance benefits of indexed SRF 
access come from three main sources: 

Capture more temporal locality: Allowing arbitrarily 
ordered accesses to data in the SRF permits a wider range 
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of data reuse to be captured compared to sequential access, 
improving performance of memory-bound applications. 

Reduced data replication: Repeated access to the same 
data within a stream requires that data to be replicated in a 
sequentially accessed SRF. Indexed access allows repeated 
reference to a single copy of the data, reducing capacity 
pressure in the SRF. For some applications with large data 
sets that need to be partitioned in order for the working set 
to fit in the SRF, this results in a smaller number of larger 
partitions, reducing associated overheads. 

Efficient support for conditional and complex accesses: 
SRF address computation provides a powerful technique 
for expressing conditional and complex access patterns at a 
fine granularity. In addition, memory accesses can be 
ordered to optimize DRAM throughput and perform 
complex permutations via SRF indexing. 

Indexed SRF access also yields significant memory 
bandwidth savings over a sequentially accessed SRF – an 
important benefit as processing power continues to outpace 
DRAM bandwidth improvements. Our simulations show 
that indexed SRF access reduces memory bandwidth 
demands by up to 95% and provides speedups of 1.03x to 
4.1x over a sequentially accessed SRF for a sampling of 
benchmarks with irregular access patterns. In addition, we 
show that by leveraging the banked nature of large 
SRAMs, indexed SRF access can be supported with only 
11%-22% increase in SRF area. This increase translates to 
less than 3% increase in the total die area of a typical 
stream processor based on measurements reported in [13].  

The remainder of this paper explores indexed SRF 
access in more detail. Section 2 provides an overview of 
stream processing. Section 3 develops a taxonomy of 
temporal locality in stream programs based on access order 
and qualitatively discusses how indexed SRF access helps 
capture more of the available data reuse. Section 3 also 
describes several common application constructs that 
benefit from indexed SRF access. Section 4 describes a 
low-overhead implementation of indexing support in SRFs. 
Section 5 presents and discusses results of benchmark 
simulations and parameter sensitivity studies. Section 6 
discusses related work, and section 7 concludes. 

2. Stream Programming 

The stream programming model expresses an 
application as a collection of streams (i.e. sequences of 
data records) passing through a series of computational 
kernels. For example, Figure 1 shows how a Fast Fourier 
Transform (FFT) computation passes streams of samples 
through a series of kernels, each of which performs the 
butterfly computation for one stage of the FFT. This stream 
representation allows the programmer to express both 
parallelism and multiple levels of locality [10].   

In stream processors, kernel locality is exploited by 
passing a kernel’s intermediate values directly from one 

ALU to a local register file associated with another ALU 
without writing them to the SRF. In the FFT example, all 
the intermediate values generated by the multiplies and 
adds of a single stage of the butterfly computation are 
passed directly between ALUs without generating any SRF 
traffic.  Only the inputs and outputs of a butterfly 
computation are read from or written to the SRF.   

 
Figure 1: Streaming computation of FFT 

At a higher level, producer-consumer locality is 
exploited by forwarding the stream produced by one kernel 
to the next kernel via the SRF without reading or writing 
the stream to memory.  In the FFT computation, the stream 
of intermediate results produced by one stage of the FFT is 
stored in the SRF and then fed as two input streams to the 
kernel that performs the next stage.  Applications are strip-
mined [14] to ensure that all of the intermediate streams fit 
in the SRF so that loads and stores to memory needed to 
spill streams are minimized. 

The stream model expresses data parallelism by 
specifying operations on many records of a stream at once. 
In the FFT example, a kernel can be applied to all of the 
elements of its input streams in parallel.  Many stream and 
vector processors exploit this type of data parallelism by 
operating multiple clusters (or vector pipes) of ALUs in 
parallel on different stream elements. In a stream processor, 
ILP is exploited by performing multiple operations in 
parallel on each stream element within a cluster under 
microcode control [10]. Each cluster is associated with a 
bank of the SRF as shown in Figure 2, providing high 
bandwidth access to the data in that bank. We will refer to 
the combination of an ALU cluster and its associated SRF 
bank as a lane of the stream processor. 
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Figure 2: Block diagram of N-lane stream processor 

Vector and stream processors hide latency by 
performing memory operations in parallel with compute 
kernels. Streams are loaded into the SRF while kernels read 
earlier streams from the SRF and generate outputs to the 
SRF while still earlier results are stored back to memory.  
A single instruction loads or stores an entire stream, and 
therefore, a handful of instructions are sufficient to launch 
enough accesses to cover very long memory latencies.  



  

To handle irregular data structures, stream memory 
operations may be indexed.  Indexed loads or gather 
operations collect data from arbitrary locations in memory 
into a sequential stream.  Similarly, indexed stores or 
scatter operations store the elements of a sequential stream 
to arbitrary memory locations.  In a stream or vector 
processor without an indexed SRF, gather and scatter 
operations are often used to reorder data through memory.  

3. Indexed SRF Access 

In this section we broadly classify the types of stream 
locality and identify some common application constructs 
that benefit from indexed SRF access. 

3.1. Stream Locality 

Temporal locality available in applications at the stream 
level can be broadly categorized based on the ordering of 
repeated accesses as follows: 

In-order stream locality: Multiple accesses to a stream 
in the same order by one or more kernels. 

Reordered stream locality: Multiple accesses to a stream 
in different order(s) by one or more kernels. 

Intra-stream locality: Repeated access to subsets of data 
within a stream during a single kernel’s execution.  

Strictly sequentially accessed SRFs only exploit in-
order stream locality. Indexed SRF access enables 
reordered reuse to be captured by allowing streams to be 
read out in the desired new order directly from the SRF, 
and intra-stream reuse to be captured by repeatedly 
referring to a single copy of the data.  

3.2. Application Constructs 

Indexed SRF access enables efficient support for several 
constructs common in applications that are amenable to 
stream programming but perform poorly with sequential 
SRF accesses. A few of these are summarized below. 

Multi-dimensional array accesses: Accesses along 
different dimensions of a multi-dimensional array can be 
supported efficiently by capturing reordered stream locality 
in the SRF. Many signal processing applications with two- 
or higher-dimensional data sets require such operations. 
For example, consider the simplified 2D FFT shown in 
Figure 3. The first invocation of the 1D FFT kernel 
generates an intermediate result array in row-major order. 
The second kernel invocation needs to apply the algorithm 
along the columns, requiring a reordering of the array. This 
requires writing the entire array to memory and re-reading 
it in column-major order if only sequential SRF accesses 
are allowed. However, indexed SRF access allows the 
column-major access to take place directly from the SRF. 

Neighbor accesses in multi-dimensional arrays: 
Accessing data neighboring a given element in a multi-
dimensional data structure using sequential accesses 

requires adjacent values in all dimensions to be contiguous 
within the stream. A simple 2D example of such a case is 
shown in Figure 4, where a 3x3 filter kernel is applied to 
the row shown in gray. Applying the filter to subsequent 
rows requires reordering the data set. Avoiding this 
overhead without SRF indexing requires complex state 
management in the filter kernel with the use of local 
scratchpad memories.2 Indexed SRF access makes it trivial 
to perform the neighbor accesses by capturing the 
reordered reuse. Operations such as these are common in 
some classes of scientific simulations with regular grid 
structures and in various filters and solvers. 
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(a) Sequential SRF requires reordering through memory 
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(b) Indexed SRF allows reordered access in SRF 

Figure 3: Data reordering for 2D FFT 
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Figure 4: Neighbor accesses in 2D array 

Neighbor accesses in irregular graphs: Accessing 
neighbors of nodes in irregular graph structures using 
sequential streams result in nodes that neighbor multiple 
other nodes being replicated as shown in Figure 5. 
Exploiting this intra-stream locality using indexed SRF 
access reduces memory traffic and the space occupied in 
the SRF. Application classes with such accesses include 
scientific applications with irregular structures and some 
graph traversal algorithms.  

                                                 
2 Small 2D neighborhood accesses such as this simple example can be 
implemented more efficiently by treating each row as a separate stream. 
However, that technique does not scale to higher dimensions or larger 
neighborhoods due to the limited number of streams supported in 
hardware, and therefore is not considered here. 
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(b) Indexed SRF allows repeated access to a single copy 

Figure 5: Neighbor accesses in irregular graph 

Table lookups: Data-dependant table lookups are used in 
a variety of applications for algorithmic reasons as well as 
for storing pre-computed values as an optimization. With a 
sequential-only SRF, these accesses require indexed gather 
operations from memory as described in section 2, which 
are inefficient if the amount of computation performed per 
lookup is small. With indexed SRF access, lookups can be 
performed in the SRF if the table or a useful partition of it 
can fit in the SRF. An alternate method of supporting table 
lookups is to incorporate a scratchpad memory in addition 
to the SRF. While architectures such as [10] incorporate a 
small scratchpad memory, increasing its size to be a 
significant fraction of the SRF, particularly with 
comparable bandwidth, introduces high overheads while 
benefiting only a limited set of applications. 

Conditional accesses: Conditional control flow is an 
expensive operation in stream and vector processors and is 
often translated into conditional data accesses in order to 
improve efficiency [15, 16]. Conditional stream accesses 
without SRF indexing require communication among lanes 
as data statically mapped to SRF banks must be accessed 
sequentially and distributed among clusters based on 
dynamically evaluated conditions. In some cases, however, 
conditional computation of SRF indices provides an 
alternative for expressing conditionals without the 
overhead of cross-lane communication, as in the sort 
benchmark described in section 5.2.  

4. Implementation 

A key advantage of a sequentially accessed SRF is the 
ability to provide high bandwidth using single-ported 
memories by accessing wide blocks of data at a time since 

the access order is known to be sequential. The following 
subsections describe the implementation of a conventional 
SRF and a technique for supporting indexed access while 
retaining high bandwidth and energy efficiency for 
sequential accesses. 

4.1. Conventional SRF SRAM 

The SRAM array of a conventional SRF is optimized 
for sequential block accesses. In an N-lane stream 
processor, each SRF access reads or writes N x m logically 
contiguous words where m is the number of words 
accessed in each lane. While this conceptually forms a 
single wide memory array stretching across all lanes, such 
large SRAMs are typically  implemented as several smaller 
arrays due to access time and energy considerations [17]. 
An efficient implementation of a conventional 128KB SRF 
with word size = 32b, N = 8, and m = 4 is shown in  Figure 
6. Each bank of the SRF is implemented as a separate 
16KB SRAM. Since all banks of the SRF access the same 
row at once, a single row decoder is shared for area 
efficiency. Internally, each bank is composed of s = 4 sub-
arrays of 4KB each and a hierarchical bitline structure.  
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 Figure 6: 128KB sequential SRF SRAM (N=8, m=4, s=4) 

4.2. Indexed SRF SRAM 

Each lane may access a different row of the SRAM in 
an indexed SRF, requiring a dedicated row decoder for 
each bank. We will refer to such an SRF configuration as 
ISRF1, indicating that each lane may perform one indexed 
access per cycle. However, indexed accesses are often 
performed at word granularity, and limiting each lane to a 
single access per cycle reduces the bandwidth for indexed 
accesses by a factor of m compared to sequential streams. 
The existing sub-array structure within each bank can be 
used to increase the bandwidth of indexed accesses by 
performing an independent one-word access in each sub-
array. This provides a peak bandwidth of s words per cycle 
per lane if no two accesses are to the same sub-array.  

Figure 7 shows the modifications necessary to support 
indexed access, including a detailed view of a single SRF 
bank that supports up to 4 independent, 1-word accesses in 
parallel. We will refer to this configuration as ISRF4. The 



  

key modifications are an independent row decoder and an 
additional 8:1 column multiplexer at each sub-array. 
Outputs of the 8:1 multiplexers are interleaved among the 
global bitlines such that accesses from multiple sub-arrays 
do not cause conflicts on the bitlines. Sequential 4-word 
accesses are still provided from a single sub-array 
bypassing the 8:1 multiplexer, thereby retaining the energy 
efficiency of sequential SRF accesses. This structure allows 
an SRF bank to perform either a single 4-word access for 
sequential streams, or up to 4 one-word accesses for 
indexed streams using only single-ported SRAMs and one 
set of global bitlines.  

Figure 7: 128KB indexed SRF SRAM (N=8, m=4, s=4) 

4.3. Conventional SRF Access Mechanism 

Although the SRF is single-ported, applications require 
access to multiple streams simultaneously. Therefore, the 
SRF port is time-multiplexed over several streams, and 
stream buffers are used to match the access characteristics 
of the SRF to that of the computational kernels as shown in 
Figure 8(a). On each SRF access, N x m words are 
transferred to/from the SRF from/to a single stream buffer. 
The compute clusters, on the other hand, access the stream 
buffers N words at a time (one word per cluster), but may 
access multiple stream buffers at once. A separate set of 

stream buffers are used to mediate transfers between the 
SRF and the memory system.  

Address generation for the SRF is performed by 
counters that keep track of the next block to be accessed for 
each stream. Arbitration among streams for access to the 
SRF port is dynamic and decoupled from kernel execution. 

4.4. Indexed SRF Access Mechanism 

For indexed access, each cluster generates a sequence of 
addresses for each indexed stream. Each of these address 
sequences has a dedicated address FIFO as shown in Figure 
8(b). Each address FIFO is associated with a stream buffer 
that holds the data for the indexed accesses and provides 
the same interface to the compute clusters as sequential 
streams. In our implementation, the address FIFOs hold 
record addresses generated using the ALUs in the compute 
clusters, reducing the need for specialized address 
generation hardware. Counters at the head of the FIFOs 
break up each record access into a sequence of single-word 
indexed accesses, significantly reducing the address 
generation overhead imposed on the compute clusters.  

Arbitration for the SRF port is implemented as a two-
stage process. During the first stage, global arbitration 
selects a sequential stream or all indexed streams. If 
indexed streams are chosen, the second stage, performed 
locally in each lane, determines which indexed accesses 
take place. The second stage is performed speculatively in 
parallel with the first in order to reduce SRF access latency.  

Figure 9 shows an example sequence of indexed reads 
involving two indexed access streams. For simplicity, only 
a single lane and the two streams used in the example are 
shown. Figure 9(a) shows that in cycle i, the cluster issues 
one access each to the two streams by placing addresses in 
the address FIFOs. During local arbitration, both accesses 
A0 and A1 are determined to be to the same sub-array and 
are serialized. The delayed A1 access is performed in cycle 
i+1 along with other new or pending non-conflicting 
accesses as shown in Figure 9(b). The cluster stalls when it 
tries to read the data for the accesses issued in cycle i as the 
data for access A1 is not available yet due to the conflict 
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Figure 8: SRF access mechanisms (N=8, m=4, s=4) 



  

with A0. Figure 9(c) shows the cluster data access 
succeeding after the data for both streams is available. 
Indexed SRF access is shown as a single cycle operation in 
this example for brevity. In reality, it is a pipelined multi-
cycle operation.  
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Figure 9: Indexed SRF access example  

4.5. Cross-Lane Indexed Accesses 

The mechanism described in section 4.4 limits indexed 
access from a cluster to the SRF bank in its lane. This level 
of indexing, coupled with statically scheduled inter-cluster 
transfers, is sufficient to support data reordering patterns 
that can be analyzed at compile-time. However, it is 
inefficient for data-dependant access patterns since any 
static schedule must allocate communication resources 
assuming worst-case conflicts. Cross-lane indexed access 
allows any cluster to access any SRF bank with dynamic 
conflict resolution. However, this requires communicating 
indices and data among lanes. The existing inter-cluster 
network is modified to accommodate the data transfers for 
cross-lane SRF access and a dedicated network is added for 
index communication as shown in Figure 8(c). In our 
implementation, both these networks are fully connected 
crossbars similar to the inter-cluster network of the Imagine 
processor [10]. Explicit inter-cluster communications 
receive higher priority when resolving conflicts with cross-
lane SRF accesses since those operations are statically 
scheduled and assume a fixed latency to completion.  

4.6. Overheads 

Area overheads for the SRF designs with indexed access 
were estimated using a modified version of the Cacti 3.0 
[18] models and custom floorplans. ISRF1 and ISRF4 
configurations incur 11% and 18% area overheads over a 
sequential-only SRF of equal capacity. Much of the extra 
overhead of ISRF4 over ISRF1 is in the additional address 
busses and per-sub-array predecoders. Area overhead of 
cross-lane indexing is 22% over a sequential SRF, with 
much of the incremental overhead over ISRF4 associated 
with the address network. The above overheads are as a 
fraction of SRF area only and represent 1.5% to 3% of 
overall die area based on the Imagine processor statistics 
reported in [13].   

SRF energy consumption for sequential stream accesses 
is comparable for both the indexed and sequential-only 
designs. Indexed single-word accesses in our design 
consume approximately 4x the energy per word in the 
SRAM array compared to sequential stream accesses due to 
increased column multiplexing. However, the estimated 
energy consumed by an indexed SRF access at 
approximately 0.1nJ in a 0.13µm technology is still an 
order of magnitude lower than the ~5 nJ required for an 
off-chip DRAM access. 

4.7. Programmer Interface 

We have added indexed SRF support to the KernelC 
language and compiler developed for the Imagine stream 
processor [19]. KernelC is a subset of C with added stream 
and communication semantics. Figure 10 shows a simple 
kernel that performs a table lookup via SRF indexing. 
Indices into streams are specified using syntax similar to C 
array notation as shown in line 8. Table 1 lists the types of 
indexed SRF streams supported. Currently we do not 
support cross-lane indexed write streams. 
 

 
 
 
 
 
 
 
 

Figure 10: Indexed SRF access code example 

Access type Stream type Access syntax 
In-lane read idxl_istream<type> strm[idx] >> a; 

In-lane write idxl_ostream<type> strm[idx] << a; 

Cross-lane read idx_istream<type> strm[idx] >> a; 

Table 1: Indexed SRF access and stream types 

Tolerating the non-deterministic latency of SRF reads, 
which varies due to arbitration for the SRF port and 
array/bank conflicts, is a key concern in indexed access. As 
seen in the example of Figure 9, attempting to read the data 
before the access completes leads to processor stalls. In 
order to minimize the probability of stalls, each access is 
split into separate address issue and data read operations 
during compilation and are scheduled several cycles apart. 

5. Evaluation 

We compare the performance of a collection of 
application and synthetic benchmarks on four machine 
configurations in order to evaluate the impact of indexed 
SRF access. Table 2 summarizes the different machine 
configurations, and Table 3 lists their key parameters.  
 

1 kernel lookup( 
2     istream<int> in,      // sequential in stream 
3     idxl_istream<int> LUT,// indexed in stream 
4     ostream<int> out) {   // seq. out stream 
5   int a, b, c; 
6   while(!eos(in)) { 
7     in >> a;       // sequential stream access 
8     LUT[a] >> b;   // indexed stream access 
9     c = foo(a, b); 
10     out << c; 
11   } 
12 } 



  

Config. Description 
Base Sequential SRF backed by off-chip DRAM, similar to 

the description in section 2. 
ISRF1 Indexed SRF with one word per cycle per lane in-lane 

indexed bandwidth (no sub-banking) & cross-lane 
indexing. Backed by off-chip DRAM.  

ISRF4 Indexed SRF with up to 4 words per cycle per lane in-
lane indexed bandwidth (4 sub-arrays per lane) & cross-
lane indexing. Backed by off-chip DRAM. 

Cache Sequential SRF backed by on-chip cache and off-chip 
DRAM. 

Table 2: Machine configuration summary 

Parameter Base ISRF1 ISRF4 Cache 
Lanes 8 
System clock 1 GHz 
Peak compute 32 GFLOPs 
Peak DRAM bandwidth 9.14 GB/s 
SRF capacity 128 KB 
Peak sequential SRF bandwidth 32 words/cycle (128 GB/s) 
Sequential SRF latency 3 cycles  
Stream buffer size (per lane per stream) 8 words 
Address FIFO size (per lane per stream) n/a 8 8 n/a 
Peak in-lane indexed SRF bandwidth 
(words/cycle/cluster) 

n/a 1 4 n/a 

Peak cross-lane indexed SRF bandwidth 
(words/cycle/cluster) 

n/a 1 1 n/a 

In-lane indexed SRF latency (cycles) n/a 4 4 n/a 
Cross-lane indexed SRF latency (cycles) n/a 6 6 n/a 
Cache size (KB) n/a n/a n/a 128 
Cache associativity n/a n/a n/a 4 
Cache banks n/a n/a n/a 4 
Peak cache bandwidth (GB/s) n/a n/a n/a 16 
Cache line size (words) n/a n/a n/a 2 
Cache replacement policy n/a n/a n/a LRU 

Table 3: Machine parameters (SRF access latencies 
assume no arbitration failures or bank conflicts) 

Base, ISRF1, and ISRF4 configurations are similar to 
the designs described in this paper so far. Cache 
configuration is similar to the cache memories that have 
been incorporated into several vector architectures as an 
alternative technique for capturing temporal locality [20, 
21], and is provided for comparison purposes. Note that the 
cache stores redundant copies of data in the SRF and incurs 
a 100%-150% area overhead over a sequentially accessed 
SRF. Cache parameters such as the short line size are based 
on previously published vector cache studies [22, 23]. 
Caching is only performed for streams with potential for 
temporal locality in order to minimize cache pollution. All 
machine configurations assume 4 fully pipelined functional 
units which support integer and floating-point add and 
multiply ops, and a single unpipelined divider unit per lane. 
SRF and cache access is assumed to be fully pipelined. 

5.1. Simulation Methodology 

All benchmark simulations were performed using a 
cycle accurate simulator. Benchmark kernels were written 

in KernelC and scheduled using an automated scheduler 
based on [19]. Ideally, indexed SRF reads would be 
scheduled such that addresses are issued as early as 
possible and data read as late as possible (subject to critical 
path and buffering constraints) in order to minimize stalls 
due to bank and array conflicts. However, our scheduler 
currently does not support variable latency operations, and 
therefore all benchmarks were scheduled with a fixed 
address and data separation of 6 cycles for in-lane accesses 
and 20 cycles for cross-lane accesses. The sensitivity of 
performance to address and data separation and other 
parameters is explored in section 5.4. 

5.2. Application Benchmarks 

To evaluate the performance impact of indexed SRF 
access, we simulated a set of application benchmarks and a 
synthetic benchmark representative of data parallel 
applications with irregular access patterns. The synthetic 
benchmark was parameterized to rapidly explore a wide 
range of the application space, which would otherwise 
require many more applications to be implemented. Note 
that indexed SRF access does not benefit all applications – 
particularly those that only require sequential streams. 
However, as stream programming extends to application 
classes with complex data access patterns, such as 
scientific computing and sophisticated signal and media 
processing algorithms, we believe that this technique will 
benefit a significant portion of stream applications. The 
benchmarks are described below. 

2D FFT: A 2-dimensional FFT on a 64x64 array. The 
entire array fits in the SRF. Both the base and indexed SRF 
implementations perform each of the 1D FFTs along the 
first dimension across all lanes. The base version then 
performs a 90º rotation of the data array through memory 
and applies the same computation along the second 
dimension. In the indexed SRF version, each cluster 
performs the second dimension FFT for the data in its local 
bank of the SRF using in-lane indexed accesses. 

Rijndael: A block encryption algorithm that was 
recently adopted as the Advanced Encryption Standard 
[24]. While the algorithm can be implemented in many 
ways, we consider an optimized implementation that relies 
on large numbers of lookups into pre-computed tables [25]. 
In the base case, the table lookups generate memory 
accesses while the indexed case performs the lookups in 
the SRF. In order to facilitate high lookup bandwidth, the 
tables are replicated in each lane, enabling in-lane indexed 
SRF access. Both versions implement the cipher block 
chaining (CBC) mode of the algorithm [26], with each 
cluster encrypting an independent data stream. Such an 
implementation is suitable for encrypting network traffic or 
other applications with many independent data streams.  

Sort: Merge sort of 4096 values. Each iteration of the 
algorithm requires conditional merging of two input 



  

streams, which in a sequential SRF requires the use of 
conditional streams [16], resulting in cross-lane 
communication on every iteration. With SRF indexing, the 
conditional inputs are formulated as conditional address 
computations, and no cross-lane communication is 
necessary until all data in each lane is internally sorted. 

Filter: Application of a 5x5 convolution filter to a 
256x256 2D image. The base implementation temporarily 
stores neighborhood data in scratchpad memories to avoid 
replication in the SRF while the indexed SRF version 
simply reads the neighborhood data directly from the SRF. 

Irregular Graph Simulation (IG): Synthetic benchmark 
that simulates neighbor interactions in a static irregular 
graph. For each node in the graph, all of its neighbors are 
accessed, and the node value is updated based on the 
neighbors’ values. The graph is assumed to be much larger 
than the available SRF space, requiring the data set to be 
partitioned into several strips. No data is replicated across 
lanes, and therefore, all indexed SRF accesses are cross-
lane. Amount of computation per neighbor access, average 
graph degree, and strip length are parameterized to explore 
the application space. Table 4 summarizes the parameter 
values for a cross section of the data sets explored. The 
three letter suffix at the end of the data set names are as 
follows: the first letter indicates a “Sparse” or “Dense” 
graph – an indication of the average number of neighbors 
per node; the second letter specifies whether the data set is 
Compute or Memory limited on the base architecture; and 
the third letter indicates Short or Long strip size. The strip 
sizes for the base and indexed SRF implementations of 
each data set were set to occupy approximately the same 
storage space in the SRF. 

Avg. strip size Data set FP ops per 
neighbor 

Avg. graph 
degree Base SRF Indexed SRF 

IG_SML 16 4 1163 2316 
IG_SCL 51 4 1163 2316 
IG_DMS 16 16 265 528 
IG_DCS 51 16 265 528 

Table 4: Parameters for IG benchmark datasets (strip size 
is the number of neighbor records processed per kernel 
invocation) 

5.3. Results and Discussion 

All results presented in this section assume the 
benchmarks are executed multiple times in software 
pipelined loops. This assumption is representative of most 
applications of interest since they are typically applied 
repeatedly to long input streams such as sequences of 
images or multiple strips of large, partitioned data sets. 

Figure 11 shows off-chip memory bandwidth 
requirements of the benchmarks for ISRF and Cache 
configurations, normalized to the Base case (note that 
ISRF1 and ISRF4 have identical memory bandwidth 
requirements). Indexed SRF access provides significant 

bandwidth savings for all benchmarks except Sort and 
Filter. 2D FFT benefits by eliminating a data set reordering 
through memory, and Rijndael benefits by eliminating 
large numbers of table lookups from memory as the tables 
fit in the SRF. Reductions in the IG benchmarks for ISRF 
are due to eliminating intra-strip node and neighbor record 
replication, partially offset by the overhead of indices 
(pointers) into the condensed neighbor data array. Sort and 
Filter do not gain any bandwidth reduction as all available 
locality is captured by the base configuration as well. 
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Figure 11: Off-chip memory traffic normalized to Base 

Cache also completely captures the FFT 2D data 
reordering and Rijndael table lookups, achieving 
bandwidth reductions similar to ISRF for those 
benchmarks. Cache outperforms ISRF in terms of locality 
capture for the irregular (IG) benchmarks as it is also able 
to capture inter-strip reuse when partial overlaps exist 
between partitions of the data set.  

Figure 12 shows the breakdown of execution time of the 
benchmarks. Our current implementation limits each 
indexed stream to issuing a single indexed SRF access per 
cycle for simplicity. Therefore, ISRF1 and ISRF4 differ 
only for benchmarks with more than one indexed stream. In 
our benchmark set, only Rijndael and Filter require 
multiple indexed streams, and therefore, data for ISRF1 is 
shown only for those benchmarks.  

In Figure 12, the Kernel loop body component 
corresponds to the time spent executing the main loops of 
the kernels where much of the useful computation is 
performed. Memory stall corresponds to time spent waiting 
for memory or cache accesses to complete. SRF stall is 
time spent stalling for SRF accesses to complete. Kernel 
overheads include time spent executing kernel code before 
and after the main loop body, including software pipeline 
fills/drains and the impact of load imbalances among lanes. 

As Figure 12 shows, ISRF4 provides speedups over the 
Base configuration for all benchmarks. FFT 2D and 
Rijndael on the Base machine are constrained by memory 
bandwidth, and reducing memory traffic via indexed SRF 
access provides speedups of 2.24x and 4.11x respectively. 

Improvements in the Sort benchmark on ISRF4 are a 
result of efficient support for conditional SRF access 
reducing kernel loop execution time. The speedup of the 
Filter benchmark is due to efficient access of neighbor 
values directly from the SRF, also reducing kernel loop 
execution time.  
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Figure 12: Execution times normalized to Base (ISRF1 
shown only where it differs from ISRF4) 

The IG benchmarks span a wide range of application 
characteristics. IG_SML and IG_DMS have low compute 
density and are constrained by memory bandwidth. 
Capturing intra-strip locality in these data sets in the SRF 
improves performance of both. Another factor contributing 
to improved performance on ISRF4 is the increased strip 
sizes that can be accommodated in the SRF as a result of 
eliminating replication, which amortizes kernel start and 
end overheads over larger batches of useful computation. 
The two dominant components of these overheads for this 
benchmark are software pipeline overhead and load 
imbalance between lanes. While we do implement dynamic 
load balancing using the technique presented in [16], some 
imbalance still exists at the end of each strip as all lanes 
remain occupied until the last lane has competed 
processing its final input. These overheads represent a 
significant portion of the run time for IG_DMS and 
IG_DCS which have shorter strip sizes. Other overheads 
such as application initialization operations are minimal in 
this benchmark but may be significant in real applications, 
which would further benefit ISRF4. 

IG_SCL represents a scenario where SRF indexing 
provides little performance benefit since it is compute 
limited and has long strips even on the Base configuration. 

ISRF4 also outperforms the Cache configuration for all 
benchmarks. The data set reordering of FFT 2D is fully 
captured in the cache, but unlike ISRF4, an explicit 
reordering operation must still be performed on the data in 
the SRF. Therefore, the software pipelined loop in the 
Cache configuration is longer than in ISRF4, limiting the 
performance benefit from the cache as the iteration interval 
is bounded by the number of data sets that fit in the SRF 
simultaneously. For Rijndael and IG_SML, the cache 
captures at least as much locality as ISRF4 but does not 
have adequate bandwidth to eliminate all memory stalls. 
The cache does not provide the conditional and complex 
SRF accesses enabled by ISRF4 that benefit Sort and 
Filter, and consequently, does not provide any speedup for 
these benchmarks. The cache also does not eliminate data 

replication in the SRF, and therefore, does not provide the 
strip size increases that improve the performance of 
IG_DMS and IG_DCS on ISRF4.  
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Figure 13: Sustained SRF bandwidth demands 

Finally, none of the benchmarks suffer significantly 
from a lack of indexed SRF bandwidth on ISRF4. On the 
other hand, Rijndael and Filter spend 42% and 18% of the 
execution time on SRF stalls on ISRF1, demonstrating the 
benefit of high indexed SRF bandwidth for benchmarks 
with large amounts of indexed accesses. Figure 13 shows 
the sustained SRF bandwidth demands in the main loops of 
the benchmarks (both Sort1 and Sort2 kernels are used by 
the Sort benchmark). While the sustained bandwidths are 
relatively low, the access patterns are bursty, and 
decoupled early address issue and stream buffers play a 
critical role in minimizing SRF stalls. 

5.4. Parameter Studies 

This section evaluates the sensitivity of the design to 
several hardware and software parameters. Any parameters 
not explicitly specified or varied in these studies are set to 
the same values as the ISRF4 configuration described 
earlier in section 5. 

As discussed in section 4.7, issuing SRF addresses for 
read operations early enough in order for the read to 
complete before the data is needed is critical for reducing 
SRF stalls. However, increasing the separation between 
address and data can extend the static schedule length of 
kernels leading to a loss of performance. Figure 14 shows 
the variation of static schedule lengths of the inner loops of 
benchmark kernels as address and data separation 
increases. This separation is varied from 2 to 10 cycles for 
in-lane indexing and from 2 to 24 cycles for cross-lane 
indexing. IGraph1 is used in IG_SML and IG_DMS 
benchmarks, and IGraph2 is used in IG_DCS and IG_SCL.  
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Figure 14: Static schedule length variation of loop bodies 



  

Rijndael, Sort1, and Sort2 kernels have loop-carried 
dependencies that affect index computation, which causes 
schedule length to increase rapidly with address and data 
separation. FFT 2D, Filter, and the IGraph kernels, in 
contrast, are able to use software pipelining to tolerate very 
long separations with no increase in static schedule length. 
The minor fluctuations in schedule lengths are due to 
randomized algorithms used in the scheduler. 

Figure 15 shows the variation in execution time of 
kernels as address and data separation increases for the in-
lane indexed kernels. Performance initially improves for all 
benchmarks with increasing separation as SRF stalls 
reduce, and then degrades as schedule length increases 
dominate. In the case of FFT 2D, which shows no schedule 
length increase, performance degradation occurs as a result 
of increased overheads due to deeper software pipelining. 
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Figure 15: Execution time of in-lane indexed kernels 

Figure 16 shows the execution time variation for the 
cross-lane indexed kernels. These kernels are able to 
tolerate long address and data separations due to their high 
compute density and lack of loop-carried dependencies. 
The irregularity in the curve for IGraph1 at 20 cycles 
corresponds to an increase in the software pipeline length. 
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Figure 16: Execution time of cross-lane indexed kernels 

Figure 17 shows the variation in sustained in-lane 
indexed SRF throughput as a function of the number of 
sub-arrays within a SRF bank and the size of the address 
FIFOs. These results were obtained using a micro-
benchmark that issues 4 random reads per cycle per cluster 
on every cycle. Throughput increases with FIFO size as 
more addresses are issued before stalling on conflicts, and 
with the number of banks as the probability of conflicts 
declines. However, utilization of available bandwidth 
decreases as the number of sub-arrays increases due to 
head-of-line blocking (i.e. conflicting accesses stalling 
subsequent requests). While throughput can be improved 
by adding an additional FIFO per sub-bank, we do not 

implement this for design simplicity as current bandwidth 
is sufficient for application requirements. These 
experiments were conducted with an 8 cycle separation 
between address issue and data consumption, and therefore 
FIFO sizes beyond 8 are not meaningful. Reducing the 
separation to 4 and 2 cycles reduced throughput by 
approximately 16% and 50% on average. Arbitration 
among streams for SRF access was performed using a 
simple round-robin scheme. Complex arbiters that 
prioritize streams likely to cause stalls were found to 
provide less than 10% improvement in throughput.  
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Figure 17: In-lane indexed throughput variation with 
number of SRF sub-arrays and address FIFO size 

Figure 18 shows cross-lane indexed access throughput 
as a function of the peak number of cross-lane accesses 
permitted in a bank of the SRF each cycle and the 
percentage of cycles in the static kernel schedule that 
contain inter-cluster communications unrelated to cross-
lane SRF access. The results in Figure 18 were obtained by 
issuing 1 random cross-cluster read and 3 sequential stream 
accesses per cycle per cluster. Increasing the number of 
network ports per SRF bank from 1 to 2 provides a 
significant improvement in throughput, while increasing 
this number beyond 2 provides only marginal 
improvements. Adding an additional network port on the 
SRF side alone in the linear lane arrangement of Figure 
8(c) does not require an increase of the bisection bandwidth 
and is thus relatively cheap to implement. However, this is 
not the case for more complex layouts like the 2D grid of 
lanes proposed in [27]. Consequently, the results presented 
in section 5 were obtained using only 1 network port per 
SRF bank. 

0.30

0.35

0.40

0.45

0.50

0.55

0% 10% 20% 30% 40% 50% 60% 70% 80%

Cluster communication occupancy (static scedule %)

T
h

ro
u

g
h

p
u

t 
(w

o
rd

s/
cy

cl
e/

la
n

e) 1 acc/lane

2 acc/lane

4 acc/lane

 
Figure 18: Cross-lane indexed throughput variation with 
number of SRF accesses per cycle and inter-cluster traffic 



  

Figure 18 also shows that the reduction in cross-lane 
SRF throughput is 20% or less for a wide range of inter-
cluster communication traffic loads. This shows that in the 
presence of both in-lane and cross-lane SRF traffic, the 
dominant factor in reducing cross-lane access throughput is 
contention for SRF access rather than inter-cluster traffic. 
Therefore, multiplexing both types of inter-lane traffic over 
a single network instead of two dedicated networks is the 
preferred design option, particularly given the high area 
cost of the networks. 

6. Related Work 

The work in this paper extends the stream register file 
architecture introduced by the Imagine stream processor 
[10] and is generally applicable to vector processors as 
well. Both vector and stream register files rely on wide 
sequential accesses to supply data to a number of parallel 
compute clusters.  

Asanovic [23] discusses VRF implementation options 
but does not consider explicitly indexed access. Many 
vector machines support masked accesses [15], which are a 
small subset of the patterns enabled by indexed access. 
Some designs, such as [7, 28], provide support for a small 
number of specialized vector permutations, usually targeted 
at specific applications. The CM-5 [29] vector unit 
provided a subset of the enhancements proposed in this 
paper. It supported in-lane strided access to the VRF and at 
most one vector operand per instruction could be accessed 
in arbitrary order (in-lane) using indirect addressing. 
MultiTitan [30] used a scalar register file to store vectors, 
enabling arbitrary access, but did not allow dynamic index 
computation and is limited to small register file sizes due to 
the multi-port requirements of scalar registers. Corbal et. 
al. [31] explore a 2-level VRF for enhancing multi-
dimensional accesses but do not address the issues of data 
reordering and general permutations. 

Architectures like Imagine and Cray-2 [32] have 
implemented indexable SRAMs decoupled from the 
V/SRF. However, these typically provide much lower 
bandwidth than the SRF or VRF and lead to fragmentation 
of total available storage compared to a unified structure. In 
addition overheads are incurred in transferring data 
between the indexed memory and the V/SRF. A number of 
vector architectures incorporate caches between the VRF 
and off-chip memory [20, 21], similar to the Cache 
configuration which we compare to our proposed design in 
section 5. In addition, [23] also presents a few specialized 
cache organizations for vector processing. 

On-chip caches are also common in general purpose 
CPUs. Data prefetching techniques attempt to achieve the 
same goals as stream and vector programming by staging 
data into the cache before it is needed [33]. However, 
caches do not provide software control over data 
replacement and are susceptible to conflict misses if the 

prefetches are not timed perfectly. DSPs provide software 
managed flat SRAM arrays or caches or both [34, 35]. 
While these memories can be indexed, they typically 
provide lower bandwidth than V/SRFs. 

A few recent configurable architectures such as Smart 
Memories [36] and TRIPS [37] also support forms of 
stream computation. These architectures implement stream 
storage using configurable memory mats, and while they 
do support indexed access, are less efficient for sequential 
stream accesses than dedicated SRF implementations. 

7. Conclusions and Future Work 

Extending the stream programming model to 
applications with complex data access patterns is hindered 
by the strictly sequential access semantics of stream/vector 
register files. Non-sequential access to data in the V/SRF 
requires reordering through lower bandwidth levels of the 
memory system, potentially requiring off-chip accesses. 
This has a negative impact on the performance of many 
applications that require such reorderings and makes 
inefficient use of memory system bandwidth.  

We propose a SRF architecture that allows the use of 
explicit indices to access streams in non-sequential orders, 
providing the ability to capture a wider range of temporal 
locality available in applications, reduce data replication in 
the SRF, and efficiently support fine-grained conditionals 
and complex access patterns. We showed that several 
common application constructs such as table lookups, 
multi-dimensional array accesses, neighborhood accesses 
in regular and irregular graphs, and conditionals benefit 
from indexed SRF access. These constructs enable new 
classes of applications to be executed efficiently on stream 
processors. Our simulations of benchmarks from target 
application classes showed performance improvements of 
1.03x to 4.1x and memory bandwidth reductions of up to 
95% over a sequentially accessed SRF. In addition, since 
indexed SRF access provides several performance benefits 
beyond added locality capture, it is able to outperform 
cache-based implementations for certain classes of 
applications while avoiding the much higher area 
overheads of caches. 

Our proposed design leverages current SRAM 
implementation techniques to support indexed access with 
11%-22% area overhead over a sequentially accessed SRF, 
which translates to a modest 1.5%-3% increase in overall 
die area of a typical stream processor. In addition, there is 
no adverse impact in terms performance and power for 
applications that do not require indexed SRF accesses. As 
stream programming extends to a wider range of 
applications and technology scaling makes off-chip 
bandwidth increasingly expensive, we believe indexed SRF 
access will become increasingly important. 

Much of the future work related to SRF indexing lies in 
exporting its capabilities to the application programmer. 



  

We believe that in addition to the low-level API described 
in section 4.7, exporting application constructs that benefit 
from SRF indexing via high-level APIs within the context 
of sequential streaming is also an attractive approach. This 
allows the programmer interface to maintain the abstraction 
of linear streams while enabling the compilation tools to 
automatically identify opportunities for SRF indexing. 
From an architectural perspective, we are exploring support 
for data structures that require both reads and writes 
simultaneously in the SRF. Unlike streams, which are read 
only or write only for the duration of a kernel’s execution, 
read-write data structures allow even more flexibility for 
application-specific tasks as well as system-level uses such 
as spilling local registers to the SRF. We also intend to 
evaluate the impact of sparse interconnects for the address 
and data networks used for cross-lane accesses. 
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