

Stream Register Files with Indexed Access

Nuwan Jayasena, Mattan Erez, Jung Ho Ahn, and William J. Dally
Computer Systems Laboratory, Stanford University, Stanford, CA 94305, USA

{jayasena,mattan.erez,gajh,billd}@stanford.edu

Abstract

Many current programmable architectures designed to exploit
data parallelism require computation to be structured to
operate on sequentially accessed vectors or streams of data.
Applications with less regular data access patterns perform
sub-optimally on such architectures. This paper presents a
register file for streams (SRF) that allows arbitrary, indexed
accesses. Compared to sequential SRF access, indexed access
captures more temporal locality, reduces data replication in
the SRF, and provides efficient support for certain types of
complex access patterns. Our simulations show that indexed
SRF access provides speedups of 1.03x to 4.1x and memory
bandwidth reductions of up to 95% over sequential SRF
access for a set of benchmarks representative of data-parallel
applications with irregular accesses. Indexed SRF access also
provides greater speedups than caches for a number of
application classes despite significantly lower hardware costs.
The area overhead of our indexed SRF implementation is
11%-22% over a sequentially accessed SRF, which
corresponds to a modest 1.5%-3% increase in the total die
area of a typical stream processor. +

1. Introduction

Circuit technology scaling has enabled chips with 10s to
100s of millions of transistors. In the domain of general-
purpose microprocessors, translating this raw potential into
efficiently utilized compute resources has been a challenge
as an increasing portion of chip resources is spent on
discovering instruction-level parallelism (ILP) and
reducing average memory access latency via cache
hierarchies. However, by exploiting data parallelism
available in some application domains (e.g. graphics),
some application-specific designs have achieved very high
compute rates. Data parallelism allows these designs to
avoid dynamic ILP extraction and tolerate long memory
latencies. Each operation is applied to many data elements
over a number of cycles, exposing parallelism and
eliminating the need for expensive cache hierarchies. This
form of parallelism is exhibited by many increasingly
important classes of applications such as multimedia,
graphics, cryptography, and scientific simulations.

This work was supported in part by Stanford Graduate Fellowships,
Department of Energy under the ASCI Alliances program, and DARPA
contracts MDA904-98-C-A933 and NBCH3039003.

There has been significant interest in exploiting data
parallelism in programmable processors as well. Many
general-purpose architectures have added support for
parallel processing of sub-word data types [1, 2, 3, 4].
Vector processing [5], which has traditionally been used in
high-performance computers with expensive, high
bandwidth memory systems, has been applied to
microprocessors [6, 7, 8, 9]. Additionally, stream
processors exploit data and instruction-level parallelism to
achieve high performance for media, signal processing,
graphics, and scientific applications [10, 11, 12].

While sub-word parallelism is a limited extension of
general-purpose architectures, vector and stream processors
provide extensive support for exploiting data parallelism.
They also provide storage hierarchies designed to tolerate
long memory latencies and supply the high operand
bandwidth necessary to perform a large number of
operations in parallel. A key part of these storage
hierarchies is the vector or stream register file (VRF or
SRF) – a software-managed on-chip storage structure for
sequences of data words or records. These register files
capture data reuse between operations and provide latency
tolerance by allowing large transfers to and from memory
to be overlapped with computation on data already in the
V/SRF. Current implementations of both these register file
types, however, restrict accesses to vectors and streams to
be sequential (or some small number of predetermined
access patterns).

Several sub-classes of data-parallel application domains
such as 2D and 3D signal processing, cryptography, and
scientific computing exhibit data reuse patterns that are not
amenable to repeated accesses to long vectors or streams in
a single order. The sequential access restriction of V/SRFs
presents an artificial impediment to extending vector or
stream programming models to these applications that are
otherwise promising candidates.

This paper explores the use of non-sequential, explicitly
indexed access in stream register files1 in order to enable
efficient execution of new classes of applications on stream
processors. The key performance benefits of indexed SRF
access come from three main sources:

Capture more temporal locality: Allowing arbitrarily
ordered accesses to data in the SRF permits a wider range

1 We will focus on stream register files, but the indexing technique
presented is applicable to vector register files as well.

of data reuse to be captured compared to sequential access,
improving performance of memory-bound applications.

Reduced data replication: Repeated access to the same
data within a stream requires that data to be replicated in a
sequentially accessed SRF. Indexed access allows repeated
reference to a single copy of the data, reducing capacity
pressure in the SRF. For some applications with large data
sets that need to be partitioned in order for the working set
to fit in the SRF, this results in a smaller number of larger
partitions, reducing associated overheads.

Efficient support for conditional and complex accesses:
SRF address computation provides a powerful technique
for expressing conditional and complex access patterns at a
fine granularity. In addition, memory accesses can be
ordered to optimize DRAM throughput and perform
complex permutations via SRF indexing.

Indexed SRF access also yields significant memory
bandwidth savings over a sequentially accessed SRF – an
important benefit as processing power continues to outpace
DRAM bandwidth improvements. Our simulations show
that indexed SRF access reduces memory bandwidth
demands by up to 95% and provides speedups of 1.03x to
4.1x over a sequentially accessed SRF for a sampling of
benchmarks with irregular access patterns. In addition, we
show that by leveraging the banked nature of large
SRAMs, indexed SRF access can be supported with only
11%-22% increase in SRF area. This increase translates to
less than 3% increase in the total die area of a typical
stream processor based on measurements reported in [13].

The remainder of this paper explores indexed SRF
access in more detail. Section 2 provides an overview of
stream processing. Section 3 develops a taxonomy of
temporal locality in stream programs based on access order
and qualitatively discusses how indexed SRF access helps
capture more of the available data reuse. Section 3 also
describes several common application constructs that
benefit from indexed SRF access. Section 4 describes a
low-overhead implementation of indexing support in SRFs.
Section 5 presents and discusses results of benchmark
simulations and parameter sensitivity studies. Section 6
discusses related work, and section 7 concludes.

2. Stream Programming

The stream programming model expresses an
application as a collection of streams (i.e. sequences of
data records) passing through a series of computational
kernels. For example, Figure 1 shows how a Fast Fourier
Transform (FFT) computation passes streams of samples
through a series of kernels, each of which performs the
butterfly computation for one stage of the FFT. This stream
representation allows the programmer to express both
parallelism and multiple levels of locality [10].

In stream processors, kernel locality is exploited by
passing a kernel’s intermediate values directly from one

ALU to a local register file associated with another ALU
without writing them to the SRF. In the FFT example, all
the intermediate values generated by the multiplies and
adds of a single stage of the butterfly computation are
passed directly between ALUs without generating any SRF
traffic. Only the inputs and outputs of a butterfly
computation are read from or written to the SRF.

Figure 1: Streaming computation of FFT

At a higher level, producer-consumer locality is
exploited by forwarding the stream produced by one kernel
to the next kernel via the SRF without reading or writing
the stream to memory. In the FFT computation, the stream
of intermediate results produced by one stage of the FFT is
stored in the SRF and then fed as two input streams to the
kernel that performs the next stage. Applications are strip-
mined [14] to ensure that all of the intermediate streams fit
in the SRF so that loads and stores to memory needed to
spill streams are minimized.

The stream model expresses data parallelism by
specifying operations on many records of a stream at once.
In the FFT example, a kernel can be applied to all of the
elements of its input streams in parallel. Many stream and
vector processors exploit this type of data parallelism by
operating multiple clusters (or vector pipes) of ALUs in
parallel on different stream elements. In a stream processor,
ILP is exploited by performing multiple operations in
parallel on each stream element within a cluster under
microcode control [10]. Each cluster is associated with a
bank of the SRF as shown in Figure 2, providing high
bandwidth access to the data in that bank. We will refer to
the combination of an ALU cluster and its associated SRF
bank as a lane of the stream processor.

Compute
Cluster 0

SRF
Bank 0

Compute
Cluster N

SRF
Bank N

Inter-cluster network

Lane 0

Figure 2: Block diagram of N-lane stream processor

Vector and stream processors hide latency by
performing memory operations in parallel with compute
kernels. Streams are loaded into the SRF while kernels read
earlier streams from the SRF and generate outputs to the
SRF while still earlier results are stored back to memory.
A single instruction loads or stores an entire stream, and
therefore, a handful of instructions are sufficient to launch
enough accesses to cover very long memory latencies.

To handle irregular data structures, stream memory
operations may be indexed. Indexed loads or gather
operations collect data from arbitrary locations in memory
into a sequential stream. Similarly, indexed stores or
scatter operations store the elements of a sequential stream
to arbitrary memory locations. In a stream or vector
processor without an indexed SRF, gather and scatter
operations are often used to reorder data through memory.

3. Indexed SRF Access

In this section we broadly classify the types of stream
locality and identify some common application constructs
that benefit from indexed SRF access.

3.1. Stream Locality

Temporal locality available in applications at the stream
level can be broadly categorized based on the ordering of
repeated accesses as follows:

In-order stream locality: Multiple accesses to a stream
in the same order by one or more kernels.

Reordered stream locality: Multiple accesses to a stream
in different order(s) by one or more kernels.

Intra-stream locality: Repeated access to subsets of data
within a stream during a single kernel’s execution.

Strictly sequentially accessed SRFs only exploit in-
order stream locality. Indexed SRF access enables
reordered reuse to be captured by allowing streams to be
read out in the desired new order directly from the SRF,
and intra-stream reuse to be captured by repeatedly
referring to a single copy of the data.

3.2. Application Constructs

Indexed SRF access enables efficient support for several
constructs common in applications that are amenable to
stream programming but perform poorly with sequential
SRF accesses. A few of these are summarized below.

Multi-dimensional array accesses: Accesses along
different dimensions of a multi-dimensional array can be
supported efficiently by capturing reordered stream locality
in the SRF. Many signal processing applications with two-
or higher-dimensional data sets require such operations.
For example, consider the simplified 2D FFT shown in
Figure 3. The first invocation of the 1D FFT kernel
generates an intermediate result array in row-major order.
The second kernel invocation needs to apply the algorithm
along the columns, requiring a reordering of the array. This
requires writing the entire array to memory and re-reading
it in column-major order if only sequential SRF accesses
are allowed. However, indexed SRF access allows the
column-major access to take place directly from the SRF.

Neighbor accesses in multi-dimensional arrays:
Accessing data neighboring a given element in a multi-
dimensional data structure using sequential accesses

requires adjacent values in all dimensions to be contiguous
within the stream. A simple 2D example of such a case is
shown in Figure 4, where a 3x3 filter kernel is applied to
the row shown in gray. Applying the filter to subsequent
rows requires reordering the data set. Avoiding this
overhead without SRF indexing requires complex state
management in the filter kernel with the use of local
scratchpad memories.2 Indexed SRF access makes it trivial
to perform the neighbor accesses by capturing the
reordered reuse. Operations such as these are common in
some classes of scientific simulations with regular grid
structures and in various filters and solvers.

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

a13 a12 a11 a10 a03 a02 a01 a00 a33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

b13 b12 b11 b10 b03 b02 b01 b00 b33

b31 b21 b11 b01 b30 b20 b10 b00 b33

c31 c21 c11 c01 c30 c20 c10 c00 c33

1-D FFT

1-D FFT

Memory SRF Clusters

(a) Sequential SRF requires reordering through memory

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

a13 a12 a11 a10 a03 a02 a01 a00 a33

b13 b12 b11 b10 b03 b02 b01 b00 b33

c31 c21 c11 c01 c30 c20 c10 c00 c33

1-D FFT

1-D FFT

Memory SRF Clusters

(b) Indexed SRF allows reordered access in SRF

Figure 3: Data reordering for 2D FFT

 Memory SRF Clusters

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

Filter

a12 a02 a21 a11 a01 a20 a10 a00 a23

b13 b12 b11 b10

Figure 4: Neighbor accesses in 2D array

Neighbor accesses in irregular graphs: Accessing
neighbors of nodes in irregular graph structures using
sequential streams result in nodes that neighbor multiple
other nodes being replicated as shown in Figure 5.
Exploiting this intra-stream locality using indexed SRF
access reduces memory traffic and the space occupied in
the SRF. Application classes with such accesses include
scientific applications with irregular structures and some
graph traversal algorithms.

2 Small 2D neighborhood accesses such as this simple example can be
implemented more efficiently by treating each row as a separate stream.
However, that technique does not scale to higher dimensions or larger
neighborhoods due to the limited number of streams supported in
hardware, and therefore is not considered here.

C B A D

A D B C

C’ B’ A’ D’

A B D B

A

B D

C Compute

A’

B’ D’

C’

Memory SRF Clusters

(a) Sequential SRF requires repeatedly accessed records

to be replicated

C

B

A

D

C’

B’

A’
 D’

A

B

D

C
 Compute

A’

B’

D’

C’

Memory

SRF

Clusters

C

B

A

D

(b) Indexed SRF allows repeated access to a single copy

Figure 5: Neighbor accesses in irregular graph

Table lookups: Data-dependant table lookups are used in
a variety of applications for algorithmic reasons as well as
for storing pre-computed values as an optimization. With a
sequential-only SRF, these accesses require indexed gather
operations from memory as described in section 2, which
are inefficient if the amount of computation performed per
lookup is small. With indexed SRF access, lookups can be
performed in the SRF if the table or a useful partition of it
can fit in the SRF. An alternate method of supporting table
lookups is to incorporate a scratchpad memory in addition
to the SRF. While architectures such as [10] incorporate a
small scratchpad memory, increasing its size to be a
significant fraction of the SRF, particularly with
comparable bandwidth, introduces high overheads while
benefiting only a limited set of applications.

Conditional accesses: Conditional control flow is an
expensive operation in stream and vector processors and is
often translated into conditional data accesses in order to
improve efficiency [15, 16]. Conditional stream accesses
without SRF indexing require communication among lanes
as data statically mapped to SRF banks must be accessed
sequentially and distributed among clusters based on
dynamically evaluated conditions. In some cases, however,
conditional computation of SRF indices provides an
alternative for expressing conditionals without the
overhead of cross-lane communication, as in the sort
benchmark described in section 5.2.

4. Implementation

A key advantage of a sequentially accessed SRF is the
ability to provide high bandwidth using single-ported
memories by accessing wide blocks of data at a time since

the access order is known to be sequential. The following
subsections describe the implementation of a conventional
SRF and a technique for supporting indexed access while
retaining high bandwidth and energy efficiency for
sequential accesses.

4.1. Conventional SRF SRAM

The SRAM array of a conventional SRF is optimized
for sequential block accesses. In an N-lane stream
processor, each SRF access reads or writes N x m logically
contiguous words where m is the number of words
accessed in each lane. While this conceptually forms a
single wide memory array stretching across all lanes, such
large SRAMs are typically implemented as several smaller
arrays due to access time and energy considerations [17].
An efficient implementation of a conventional 128KB SRF
with word size = 32b, N = 8, and m = 4 is shown in Figure
6. Each bank of the SRF is implemented as a separate
16KB SRAM. Since all banks of the SRF access the same
row at once, a single row decoder is shared for area
efficiency. Internally, each bank is composed of s = 4 sub-
arrays of 4KB each and a hierarchical bitline structure.

R
ow

 D
ec

o
de

Bank 3

Bank 0

Global
wordline

Bank 7

Bank 4

Sub array 1

Sub array 2

Sub array 3

Lo
ca

l W
L

D
riv

er
s

Sub array 0

256
128

 Figure 6: 128KB sequential SRF SRAM (N=8, m=4, s=4)

4.2. Indexed SRF SRAM

Each lane may access a different row of the SRAM in
an indexed SRF, requiring a dedicated row decoder for
each bank. We will refer to such an SRF configuration as
ISRF1, indicating that each lane may perform one indexed
access per cycle. However, indexed accesses are often
performed at word granularity, and limiting each lane to a
single access per cycle reduces the bandwidth for indexed
accesses by a factor of m compared to sequential streams.
The existing sub-array structure within each bank can be
used to increase the bandwidth of indexed accesses by
performing an independent one-word access in each sub-
array. This provides a peak bandwidth of s words per cycle
per lane if no two accesses are to the same sub-array.

Figure 7 shows the modifications necessary to support
indexed access, including a detailed view of a single SRF
bank that supports up to 4 independent, 1-word accesses in
parallel. We will refer to this configuration as ISRF4. The

key modifications are an independent row decoder and an
additional 8:1 column multiplexer at each sub-array.
Outputs of the 8:1 multiplexers are interleaved among the
global bitlines such that accesses from multiple sub-arrays
do not cause conflicts on the bitlines. Sequential 4-word
accesses are still provided from a single sub-array
bypassing the 8:1 multiplexer, thereby retaining the energy
efficiency of sequential SRF accesses. This structure allows
an SRF bank to perform either a single 4-word access for
sequential streams, or up to 4 one-word accesses for
indexed streams using only single-ported SRAMs and one
set of global bitlines.

Figure 7: 128KB indexed SRF SRAM (N=8, m=4, s=4)

4.3. Conventional SRF Access Mechanism

Although the SRF is single-ported, applications require
access to multiple streams simultaneously. Therefore, the
SRF port is time-multiplexed over several streams, and
stream buffers are used to match the access characteristics
of the SRF to that of the computational kernels as shown in
Figure 8(a). On each SRF access, N x m words are
transferred to/from the SRF from/to a single stream buffer.
The compute clusters, on the other hand, access the stream
buffers N words at a time (one word per cluster), but may
access multiple stream buffers at once. A separate set of

stream buffers are used to mediate transfers between the
SRF and the memory system.

Address generation for the SRF is performed by
counters that keep track of the next block to be accessed for
each stream. Arbitration among streams for access to the
SRF port is dynamic and decoupled from kernel execution.

4.4. Indexed SRF Access Mechanism

For indexed access, each cluster generates a sequence of
addresses for each indexed stream. Each of these address
sequences has a dedicated address FIFO as shown in Figure
8(b). Each address FIFO is associated with a stream buffer
that holds the data for the indexed accesses and provides
the same interface to the compute clusters as sequential
streams. In our implementation, the address FIFOs hold
record addresses generated using the ALUs in the compute
clusters, reducing the need for specialized address
generation hardware. Counters at the head of the FIFOs
break up each record access into a sequence of single-word
indexed accesses, significantly reducing the address
generation overhead imposed on the compute clusters.

Arbitration for the SRF port is implemented as a two-
stage process. During the first stage, global arbitration
selects a sequential stream or all indexed streams. If
indexed streams are chosen, the second stage, performed
locally in each lane, determines which indexed accesses
take place. The second stage is performed speculatively in
parallel with the first in order to reduce SRF access latency.

Figure 9 shows an example sequence of indexed reads
involving two indexed access streams. For simplicity, only
a single lane and the two streams used in the example are
shown. Figure 9(a) shows that in cycle i, the cluster issues
one access each to the two streams by placing addresses in
the address FIFOs. During local arbitration, both accesses
A0 and A1 are determined to be to the same sub-array and
are serialized. The delayed A1 access is performed in cycle
i+1 along with other new or pending non-conflicting
accesses as shown in Figure 9(b). The cluster stalls when it
tries to read the data for the accesses issued in cycle i as the
data for access A1 is not available yet due to the conflict

Sub array 1

Sub array 0

256
128

Sub array 2

Sub array 3

P
re

-d
ec

o
de

&

 r
ow

 d
ec

od
e

P
re

-d
ec

o
de

&

 r
ow

 d
ec

od
e

P
re

-d
ec

od
e

&
 r

ow
 d

ec
od

e
P

re
-d

ec
od

e
&

 r
ow

 d
ec

od
e

8:1 mux

R
ow

 D
ec

od
e

Bank 3

Bank 4

R
ow

 D
ec

o
de

R
ow

 D
ec

o
de

R
ow

 D
ec

o
de

Bank 0

Bank 7

Stream
buffers

 32b

128b

Compute
Cluster 0

SRF
Bank 0

32b

128b

Compute
Cluster 7

SRF
Bank 7

Inter-cluster network

Stream
buffers

Address
FIFOs

Inter-cluster network

Compute
Cluster n

SRF
Bank n

32b

4x32b

Compute
Cluster 0

SRF
Bank 0

Stream
buffers

Address
FIFOs

Inter-cluster network

Compute
Cluster 7

SRF
Bank 7

32b

Compute
Cluster 0

SRF
Bank 0

SRF address network

(a) Sequential SRF access (b) Indexed SRF access (c) Cross-lane indexed SRF access

Figure 8: SRF access mechanisms (N=8, m=4, s=4)

with A0. Figure 9(c) shows the cluster data access
succeeding after the data for both streams is available.
Indexed SRF access is shown as a single cycle operation in
this example for brevity. In reality, it is a pipelined multi-
cycle operation.

SRF
Bank

A0

A1

A0

A0 A1

Cluster

A1
D0

SRF
Bank

A3

A1

Cluster

A2

D0

A2 A3

A2

SRF
Bank

A3
D1

D0 D1

D0

D2

A3

D1

Cluster

D2

Addr
FIFO

Stream
Buf

(a) cycle i (b) cycle (i+1) (c) cycle (i+2)

Figure 9: Indexed SRF access example

4.5. Cross-Lane Indexed Accesses

The mechanism described in section 4.4 limits indexed
access from a cluster to the SRF bank in its lane. This level
of indexing, coupled with statically scheduled inter-cluster
transfers, is sufficient to support data reordering patterns
that can be analyzed at compile-time. However, it is
inefficient for data-dependant access patterns since any
static schedule must allocate communication resources
assuming worst-case conflicts. Cross-lane indexed access
allows any cluster to access any SRF bank with dynamic
conflict resolution. However, this requires communicating
indices and data among lanes. The existing inter-cluster
network is modified to accommodate the data transfers for
cross-lane SRF access and a dedicated network is added for
index communication as shown in Figure 8(c). In our
implementation, both these networks are fully connected
crossbars similar to the inter-cluster network of the Imagine
processor [10]. Explicit inter-cluster communications
receive higher priority when resolving conflicts with cross-
lane SRF accesses since those operations are statically
scheduled and assume a fixed latency to completion.

4.6. Overheads

Area overheads for the SRF designs with indexed access
were estimated using a modified version of the Cacti 3.0
[18] models and custom floorplans. ISRF1 and ISRF4
configurations incur 11% and 18% area overheads over a
sequential-only SRF of equal capacity. Much of the extra
overhead of ISRF4 over ISRF1 is in the additional address
busses and per-sub-array predecoders. Area overhead of
cross-lane indexing is 22% over a sequential SRF, with
much of the incremental overhead over ISRF4 associated
with the address network. The above overheads are as a
fraction of SRF area only and represent 1.5% to 3% of
overall die area based on the Imagine processor statistics
reported in [13].

SRF energy consumption for sequential stream accesses
is comparable for both the indexed and sequential-only
designs. Indexed single-word accesses in our design
consume approximately 4x the energy per word in the
SRAM array compared to sequential stream accesses due to
increased column multiplexing. However, the estimated
energy consumed by an indexed SRF access at
approximately 0.1nJ in a 0.13µm technology is still an
order of magnitude lower than the ~5 nJ required for an
off-chip DRAM access.

4.7. Programmer Interface

We have added indexed SRF support to the KernelC
language and compiler developed for the Imagine stream
processor [19]. KernelC is a subset of C with added stream
and communication semantics. Figure 10 shows a simple
kernel that performs a table lookup via SRF indexing.
Indices into streams are specified using syntax similar to C
array notation as shown in line 8. Table 1 lists the types of
indexed SRF streams supported. Currently we do not
support cross-lane indexed write streams.

Figure 10: Indexed SRF access code example

Access type Stream type Access syntax
In-lane read idxl_istream<type> strm[idx] >> a;

In-lane write idxl_ostream<type> strm[idx] << a;

Cross-lane read idx_istream<type> strm[idx] >> a;

Table 1: Indexed SRF access and stream types

Tolerating the non-deterministic latency of SRF reads,
which varies due to arbitration for the SRF port and
array/bank conflicts, is a key concern in indexed access. As
seen in the example of Figure 9, attempting to read the data
before the access completes leads to processor stalls. In
order to minimize the probability of stalls, each access is
split into separate address issue and data read operations
during compilation and are scheduled several cycles apart.

5. Evaluation

We compare the performance of a collection of
application and synthetic benchmarks on four machine
configurations in order to evaluate the impact of indexed
SRF access. Table 2 summarizes the different machine
configurations, and Table 3 lists their key parameters.

1 kernel lookup(
2 istream<int> in, // sequential in stream
3 idxl_istream<int> LUT,// indexed in stream
4 ostream<int> out) { // seq. out stream
5 int a, b, c;
6 while(!eos(in)) {
7 in >> a; // sequential stream access
8 LUT[a] >> b; // indexed stream access
9 c = foo(a, b);
10 out << c;
11 }
12 }

Config. Description
Base Sequential SRF backed by off-chip DRAM, similar to

the description in section 2.
ISRF1 Indexed SRF with one word per cycle per lane in-lane

indexed bandwidth (no sub-banking) & cross-lane
indexing. Backed by off-chip DRAM.

ISRF4 Indexed SRF with up to 4 words per cycle per lane in-
lane indexed bandwidth (4 sub-arrays per lane) & cross-
lane indexing. Backed by off-chip DRAM.

Cache Sequential SRF backed by on-chip cache and off-chip
DRAM.

Table 2: Machine configuration summary

Parameter Base ISRF1 ISRF4 Cache
Lanes 8
System clock 1 GHz
Peak compute 32 GFLOPs
Peak DRAM bandwidth 9.14 GB/s
SRF capacity 128 KB
Peak sequential SRF bandwidth 32 words/cycle (128 GB/s)
Sequential SRF latency 3 cycles
Stream buffer size (per lane per stream) 8 words
Address FIFO size (per lane per stream) n/a 8 8 n/a
Peak in-lane indexed SRF bandwidth
(words/cycle/cluster)

n/a 1 4 n/a

Peak cross-lane indexed SRF bandwidth
(words/cycle/cluster)

n/a 1 1 n/a

In-lane indexed SRF latency (cycles) n/a 4 4 n/a
Cross-lane indexed SRF latency (cycles) n/a 6 6 n/a
Cache size (KB) n/a n/a n/a 128
Cache associativity n/a n/a n/a 4
Cache banks n/a n/a n/a 4
Peak cache bandwidth (GB/s) n/a n/a n/a 16
Cache line size (words) n/a n/a n/a 2
Cache replacement policy n/a n/a n/a LRU

Table 3: Machine parameters (SRF access latencies
assume no arbitration failures or bank conflicts)

Base, ISRF1, and ISRF4 configurations are similar to
the designs described in this paper so far. Cache
configuration is similar to the cache memories that have
been incorporated into several vector architectures as an
alternative technique for capturing temporal locality [20,
21], and is provided for comparison purposes. Note that the
cache stores redundant copies of data in the SRF and incurs
a 100%-150% area overhead over a sequentially accessed
SRF. Cache parameters such as the short line size are based
on previously published vector cache studies [22, 23].
Caching is only performed for streams with potential for
temporal locality in order to minimize cache pollution. All
machine configurations assume 4 fully pipelined functional
units which support integer and floating-point add and
multiply ops, and a single unpipelined divider unit per lane.
SRF and cache access is assumed to be fully pipelined.

5.1. Simulation Methodology

All benchmark simulations were performed using a
cycle accurate simulator. Benchmark kernels were written

in KernelC and scheduled using an automated scheduler
based on [19]. Ideally, indexed SRF reads would be
scheduled such that addresses are issued as early as
possible and data read as late as possible (subject to critical
path and buffering constraints) in order to minimize stalls
due to bank and array conflicts. However, our scheduler
currently does not support variable latency operations, and
therefore all benchmarks were scheduled with a fixed
address and data separation of 6 cycles for in-lane accesses
and 20 cycles for cross-lane accesses. The sensitivity of
performance to address and data separation and other
parameters is explored in section 5.4.

5.2. Application Benchmarks

To evaluate the performance impact of indexed SRF
access, we simulated a set of application benchmarks and a
synthetic benchmark representative of data parallel
applications with irregular access patterns. The synthetic
benchmark was parameterized to rapidly explore a wide
range of the application space, which would otherwise
require many more applications to be implemented. Note
that indexed SRF access does not benefit all applications –
particularly those that only require sequential streams.
However, as stream programming extends to application
classes with complex data access patterns, such as
scientific computing and sophisticated signal and media
processing algorithms, we believe that this technique will
benefit a significant portion of stream applications. The
benchmarks are described below.

2D FFT: A 2-dimensional FFT on a 64x64 array. The
entire array fits in the SRF. Both the base and indexed SRF
implementations perform each of the 1D FFTs along the
first dimension across all lanes. The base version then
performs a 90º rotation of the data array through memory
and applies the same computation along the second
dimension. In the indexed SRF version, each cluster
performs the second dimension FFT for the data in its local
bank of the SRF using in-lane indexed accesses.

Rijndael: A block encryption algorithm that was
recently adopted as the Advanced Encryption Standard
[24]. While the algorithm can be implemented in many
ways, we consider an optimized implementation that relies
on large numbers of lookups into pre-computed tables [25].
In the base case, the table lookups generate memory
accesses while the indexed case performs the lookups in
the SRF. In order to facilitate high lookup bandwidth, the
tables are replicated in each lane, enabling in-lane indexed
SRF access. Both versions implement the cipher block
chaining (CBC) mode of the algorithm [26], with each
cluster encrypting an independent data stream. Such an
implementation is suitable for encrypting network traffic or
other applications with many independent data streams.

Sort: Merge sort of 4096 values. Each iteration of the
algorithm requires conditional merging of two input

streams, which in a sequential SRF requires the use of
conditional streams [16], resulting in cross-lane
communication on every iteration. With SRF indexing, the
conditional inputs are formulated as conditional address
computations, and no cross-lane communication is
necessary until all data in each lane is internally sorted.

Filter: Application of a 5x5 convolution filter to a
256x256 2D image. The base implementation temporarily
stores neighborhood data in scratchpad memories to avoid
replication in the SRF while the indexed SRF version
simply reads the neighborhood data directly from the SRF.

Irregular Graph Simulation (IG): Synthetic benchmark
that simulates neighbor interactions in a static irregular
graph. For each node in the graph, all of its neighbors are
accessed, and the node value is updated based on the
neighbors’ values. The graph is assumed to be much larger
than the available SRF space, requiring the data set to be
partitioned into several strips. No data is replicated across
lanes, and therefore, all indexed SRF accesses are cross-
lane. Amount of computation per neighbor access, average
graph degree, and strip length are parameterized to explore
the application space. Table 4 summarizes the parameter
values for a cross section of the data sets explored. The
three letter suffix at the end of the data set names are as
follows: the first letter indicates a “Sparse” or “Dense”
graph – an indication of the average number of neighbors
per node; the second letter specifies whether the data set is
Compute or Memory limited on the base architecture; and
the third letter indicates Short or Long strip size. The strip
sizes for the base and indexed SRF implementations of
each data set were set to occupy approximately the same
storage space in the SRF.

Avg. strip size Data set FP ops per
neighbor

Avg. graph
degree Base SRF Indexed SRF

IG_SML 16 4 1163 2316
IG_SCL 51 4 1163 2316
IG_DMS 16 16 265 528
IG_DCS 51 16 265 528

Table 4: Parameters for IG benchmark datasets (strip size
is the number of neighbor records processed per kernel
invocation)

5.3. Results and Discussion

All results presented in this section assume the
benchmarks are executed multiple times in software
pipelined loops. This assumption is representative of most
applications of interest since they are typically applied
repeatedly to long input streams such as sequences of
images or multiple strips of large, partitioned data sets.

Figure 11 shows off-chip memory bandwidth
requirements of the benchmarks for ISRF and Cache
configurations, normalized to the Base case (note that
ISRF1 and ISRF4 have identical memory bandwidth
requirements). Indexed SRF access provides significant

bandwidth savings for all benchmarks except Sort and
Filter. 2D FFT benefits by eliminating a data set reordering
through memory, and Rijndael benefits by eliminating
large numbers of table lookups from memory as the tables
fit in the SRF. Reductions in the IG benchmarks for ISRF
are due to eliminating intra-strip node and neighbor record
replication, partially offset by the overhead of indices
(pointers) into the condensed neighbor data array. Sort and
Filter do not gain any bandwidth reduction as all available
locality is captured by the base configuration as well.

0

0.2

0.4

0.6

0.8

1

FFT 2D Rijndael Sort Filter IG_SML IG_DMS IG_DCS IG_SCL

N
o

rm
al

iz
ed

m

em
o

ry
 t

ra
ff

ic

ISRF

Cache

Figure 11: Off-chip memory traffic normalized to Base

Cache also completely captures the FFT 2D data
reordering and Rijndael table lookups, achieving
bandwidth reductions similar to ISRF for those
benchmarks. Cache outperforms ISRF in terms of locality
capture for the irregular (IG) benchmarks as it is also able
to capture inter-strip reuse when partial overlaps exist
between partitions of the data set.

Figure 12 shows the breakdown of execution time of the
benchmarks. Our current implementation limits each
indexed stream to issuing a single indexed SRF access per
cycle for simplicity. Therefore, ISRF1 and ISRF4 differ
only for benchmarks with more than one indexed stream. In
our benchmark set, only Rijndael and Filter require
multiple indexed streams, and therefore, data for ISRF1 is
shown only for those benchmarks.

In Figure 12, the Kernel loop body component
corresponds to the time spent executing the main loops of
the kernels where much of the useful computation is
performed. Memory stall corresponds to time spent waiting
for memory or cache accesses to complete. SRF stall is
time spent stalling for SRF accesses to complete. Kernel
overheads include time spent executing kernel code before
and after the main loop body, including software pipeline
fills/drains and the impact of load imbalances among lanes.

As Figure 12 shows, ISRF4 provides speedups over the
Base configuration for all benchmarks. FFT 2D and
Rijndael on the Base machine are constrained by memory
bandwidth, and reducing memory traffic via indexed SRF
access provides speedups of 2.24x and 4.11x respectively.

Improvements in the Sort benchmark on ISRF4 are a
result of efficient support for conditional SRF access
reducing kernel loop execution time. The speedup of the
Filter benchmark is due to efficient access of neighbor
values directly from the SRF, also reducing kernel loop
execution time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B

as
e

IS
R

F
4

C
ac

he

B
as

e
IS

R
F

1
IS

R
F

4
C

ac
he

B
as

e
IS

R
F

4
C

ac
he

B
as

e
IS

R
F

1
IS

R
F

4
C

ac
he

B
as

e
IS

R
F

4
C

ac
he

B
as

e
IS

R
F

4
C

ac
he

B
as

e
IS

R
F

4
C

ac
he

B
as

e
IS

R
F

4
C

ac
he

FFT 2D Rijndael Sort Filter IG_SML IG_DMS IG_DCS IG_SCL

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Kernel loop body Memory stall SRF stall Kernel overheads
Figure 12: Execution times normalized to Base (ISRF1
shown only where it differs from ISRF4)

The IG benchmarks span a wide range of application
characteristics. IG_SML and IG_DMS have low compute
density and are constrained by memory bandwidth.
Capturing intra-strip locality in these data sets in the SRF
improves performance of both. Another factor contributing
to improved performance on ISRF4 is the increased strip
sizes that can be accommodated in the SRF as a result of
eliminating replication, which amortizes kernel start and
end overheads over larger batches of useful computation.
The two dominant components of these overheads for this
benchmark are software pipeline overhead and load
imbalance between lanes. While we do implement dynamic
load balancing using the technique presented in [16], some
imbalance still exists at the end of each strip as all lanes
remain occupied until the last lane has competed
processing its final input. These overheads represent a
significant portion of the run time for IG_DMS and
IG_DCS which have shorter strip sizes. Other overheads
such as application initialization operations are minimal in
this benchmark but may be significant in real applications,
which would further benefit ISRF4.

IG_SCL represents a scenario where SRF indexing
provides little performance benefit since it is compute
limited and has long strips even on the Base configuration.

ISRF4 also outperforms the Cache configuration for all
benchmarks. The data set reordering of FFT 2D is fully
captured in the cache, but unlike ISRF4, an explicit
reordering operation must still be performed on the data in
the SRF. Therefore, the software pipelined loop in the
Cache configuration is longer than in ISRF4, limiting the
performance benefit from the cache as the iteration interval
is bounded by the number of data sets that fit in the SRF
simultaneously. For Rijndael and IG_SML, the cache
captures at least as much locality as ISRF4 but does not
have adequate bandwidth to eliminate all memory stalls.
The cache does not provide the conditional and complex
SRF accesses enabled by ISRF4 that benefit Sort and
Filter, and consequently, does not provide any speedup for
these benchmarks. The cache also does not eliminate data

replication in the SRF, and therefore, does not provide the
strip size increases that improve the performance of
IG_DMS and IG_DCS on ISRF4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FFT 2D Rijndael Sort1 Sort2 Filter IG_SML IG_SCL IG_DMS IG_DCS

S
R

F
 B

W
 (

w
o

rd
s/

cy
cl

e/
cl

u
st

er
)

Sequential

Cross-lane indexed

In-lane indexed

Figure 13: Sustained SRF bandwidth demands

Finally, none of the benchmarks suffer significantly
from a lack of indexed SRF bandwidth on ISRF4. On the
other hand, Rijndael and Filter spend 42% and 18% of the
execution time on SRF stalls on ISRF1, demonstrating the
benefit of high indexed SRF bandwidth for benchmarks
with large amounts of indexed accesses. Figure 13 shows
the sustained SRF bandwidth demands in the main loops of
the benchmarks (both Sort1 and Sort2 kernels are used by
the Sort benchmark). While the sustained bandwidths are
relatively low, the access patterns are bursty, and
decoupled early address issue and stream buffers play a
critical role in minimizing SRF stalls.

5.4. Parameter Studies

This section evaluates the sensitivity of the design to
several hardware and software parameters. Any parameters
not explicitly specified or varied in these studies are set to
the same values as the ISRF4 configuration described
earlier in section 5.

As discussed in section 4.7, issuing SRF addresses for
read operations early enough in order for the read to
complete before the data is needed is critical for reducing
SRF stalls. However, increasing the separation between
address and data can extend the static schedule length of
kernels leading to a loss of performance. Figure 14 shows
the variation of static schedule lengths of the inner loops of
benchmark kernels as address and data separation
increases. This separation is varied from 2 to 10 cycles for
in-lane indexing and from 2 to 24 cycles for cross-lane
indexing. IGraph1 is used in IG_SML and IG_DMS
benchmarks, and IGraph2 is used in IG_DCS and IG_SCL.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 4 8 12 16 20 24
Index and data separation (cycles)

L
oo

p
 le

g
th

FFT2D

Rijndael

Sort1

Sort2

Filter

IGraph1

IGraph2

Figure 14: Static schedule length variation of loop bodies

Rijndael, Sort1, and Sort2 kernels have loop-carried
dependencies that affect index computation, which causes
schedule length to increase rapidly with address and data
separation. FFT 2D, Filter, and the IGraph kernels, in
contrast, are able to use software pipelining to tolerate very
long separations with no increase in static schedule length.
The minor fluctuations in schedule lengths are due to
randomized algorithms used in the scheduler.

Figure 15 shows the variation in execution time of
kernels as address and data separation increases for the in-
lane indexed kernels. Performance initially improves for all
benchmarks with increasing separation as SRF stalls
reduce, and then degrades as schedule length increases
dominate. In the case of FFT 2D, which shows no schedule
length increase, performance degradation occurs as a result
of increased overheads due to deeper software pipelining.

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10 12
Index and data separation (cycles)

A
ve

ra
g

e
ke

rn
el

ex

ec
u

ti
o

n
 ti

m
e

FFT2D

Rijndael

Filter

Sort1

Sort2

Figure 15: Execution time of in-lane indexed kernels

Figure 16 shows the execution time variation for the
cross-lane indexed kernels. These kernels are able to
tolerate long address and data separations due to their high
compute density and lack of loop-carried dependencies.
The irregularity in the curve for IGraph1 at 20 cycles
corresponds to an increase in the software pipeline length.

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

4 8 12 16 20 24 28
Index and data separation (cycles)

A
ve

ra
g

e
ke

rn
el

ex

ec
u

ti
o

n
 t

im
e

IGraph1

IGraph2

Figure 16: Execution time of cross-lane indexed kernels

Figure 17 shows the variation in sustained in-lane
indexed SRF throughput as a function of the number of
sub-arrays within a SRF bank and the size of the address
FIFOs. These results were obtained using a micro-
benchmark that issues 4 random reads per cycle per cluster
on every cycle. Throughput increases with FIFO size as
more addresses are issued before stalling on conflicts, and
with the number of banks as the probability of conflicts
declines. However, utilization of available bandwidth
decreases as the number of sub-arrays increases due to
head-of-line blocking (i.e. conflicting accesses stalling
subsequent requests). While throughput can be improved
by adding an additional FIFO per sub-bank, we do not

implement this for design simplicity as current bandwidth
is sufficient for application requirements. These
experiments were conducted with an 8 cycle separation
between address issue and data consumption, and therefore
FIFO sizes beyond 8 are not meaningful. Reducing the
separation to 4 and 2 cycles reduced throughput by
approximately 16% and 50% on average. Arbitration
among streams for SRF access was performed using a
simple round-robin scheme. Complex arbiters that
prioritize streams likely to cause stalls were found to
provide less than 10% improvement in throughput.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 2 4 6 8 10

FIFO size

T
h
ro

u
g
h
p
u
t
(w

o
rd

s/
cy

cl
e/

la
n
e)

1 sub array/bank 2 sub arrays/bank

4 sub arrays/bank 8 sub arrays/bank

Figure 17: In-lane indexed throughput variation with
number of SRF sub-arrays and address FIFO size

Figure 18 shows cross-lane indexed access throughput
as a function of the peak number of cross-lane accesses
permitted in a bank of the SRF each cycle and the
percentage of cycles in the static kernel schedule that
contain inter-cluster communications unrelated to cross-
lane SRF access. The results in Figure 18 were obtained by
issuing 1 random cross-cluster read and 3 sequential stream
accesses per cycle per cluster. Increasing the number of
network ports per SRF bank from 1 to 2 provides a
significant improvement in throughput, while increasing
this number beyond 2 provides only marginal
improvements. Adding an additional network port on the
SRF side alone in the linear lane arrangement of Figure
8(c) does not require an increase of the bisection bandwidth
and is thus relatively cheap to implement. However, this is
not the case for more complex layouts like the 2D grid of
lanes proposed in [27]. Consequently, the results presented
in section 5 were obtained using only 1 network port per
SRF bank.

0.30

0.35

0.40

0.45

0.50

0.55

0% 10% 20% 30% 40% 50% 60% 70% 80%

Cluster communication occupancy (static scedule %)

T
h

ro
u

g
h

p
u

t
(w

o
rd

s/
cy

cl
e/

la
n

e) 1 acc/lane

2 acc/lane

4 acc/lane

Figure 18: Cross-lane indexed throughput variation with
number of SRF accesses per cycle and inter-cluster traffic

Figure 18 also shows that the reduction in cross-lane
SRF throughput is 20% or less for a wide range of inter-
cluster communication traffic loads. This shows that in the
presence of both in-lane and cross-lane SRF traffic, the
dominant factor in reducing cross-lane access throughput is
contention for SRF access rather than inter-cluster traffic.
Therefore, multiplexing both types of inter-lane traffic over
a single network instead of two dedicated networks is the
preferred design option, particularly given the high area
cost of the networks.

6. Related Work

The work in this paper extends the stream register file
architecture introduced by the Imagine stream processor
[10] and is generally applicable to vector processors as
well. Both vector and stream register files rely on wide
sequential accesses to supply data to a number of parallel
compute clusters.

Asanovic [23] discusses VRF implementation options
but does not consider explicitly indexed access. Many
vector machines support masked accesses [15], which are a
small subset of the patterns enabled by indexed access.
Some designs, such as [7, 28], provide support for a small
number of specialized vector permutations, usually targeted
at specific applications. The CM-5 [29] vector unit
provided a subset of the enhancements proposed in this
paper. It supported in-lane strided access to the VRF and at
most one vector operand per instruction could be accessed
in arbitrary order (in-lane) using indirect addressing.
MultiTitan [30] used a scalar register file to store vectors,
enabling arbitrary access, but did not allow dynamic index
computation and is limited to small register file sizes due to
the multi-port requirements of scalar registers. Corbal et.
al. [31] explore a 2-level VRF for enhancing multi-
dimensional accesses but do not address the issues of data
reordering and general permutations.

Architectures like Imagine and Cray-2 [32] have
implemented indexable SRAMs decoupled from the
V/SRF. However, these typically provide much lower
bandwidth than the SRF or VRF and lead to fragmentation
of total available storage compared to a unified structure. In
addition overheads are incurred in transferring data
between the indexed memory and the V/SRF. A number of
vector architectures incorporate caches between the VRF
and off-chip memory [20, 21], similar to the Cache
configuration which we compare to our proposed design in
section 5. In addition, [23] also presents a few specialized
cache organizations for vector processing.

On-chip caches are also common in general purpose
CPUs. Data prefetching techniques attempt to achieve the
same goals as stream and vector programming by staging
data into the cache before it is needed [33]. However,
caches do not provide software control over data
replacement and are susceptible to conflict misses if the

prefetches are not timed perfectly. DSPs provide software
managed flat SRAM arrays or caches or both [34, 35].
While these memories can be indexed, they typically
provide lower bandwidth than V/SRFs.

A few recent configurable architectures such as Smart
Memories [36] and TRIPS [37] also support forms of
stream computation. These architectures implement stream
storage using configurable memory mats, and while they
do support indexed access, are less efficient for sequential
stream accesses than dedicated SRF implementations.

7. Conclusions and Future Work

Extending the stream programming model to
applications with complex data access patterns is hindered
by the strictly sequential access semantics of stream/vector
register files. Non-sequential access to data in the V/SRF
requires reordering through lower bandwidth levels of the
memory system, potentially requiring off-chip accesses.
This has a negative impact on the performance of many
applications that require such reorderings and makes
inefficient use of memory system bandwidth.

We propose a SRF architecture that allows the use of
explicit indices to access streams in non-sequential orders,
providing the ability to capture a wider range of temporal
locality available in applications, reduce data replication in
the SRF, and efficiently support fine-grained conditionals
and complex access patterns. We showed that several
common application constructs such as table lookups,
multi-dimensional array accesses, neighborhood accesses
in regular and irregular graphs, and conditionals benefit
from indexed SRF access. These constructs enable new
classes of applications to be executed efficiently on stream
processors. Our simulations of benchmarks from target
application classes showed performance improvements of
1.03x to 4.1x and memory bandwidth reductions of up to
95% over a sequentially accessed SRF. In addition, since
indexed SRF access provides several performance benefits
beyond added locality capture, it is able to outperform
cache-based implementations for certain classes of
applications while avoiding the much higher area
overheads of caches.

Our proposed design leverages current SRAM
implementation techniques to support indexed access with
11%-22% area overhead over a sequentially accessed SRF,
which translates to a modest 1.5%-3% increase in overall
die area of a typical stream processor. In addition, there is
no adverse impact in terms performance and power for
applications that do not require indexed SRF accesses. As
stream programming extends to a wider range of
applications and technology scaling makes off-chip
bandwidth increasingly expensive, we believe indexed SRF
access will become increasingly important.

Much of the future work related to SRF indexing lies in
exporting its capabilities to the application programmer.

We believe that in addition to the low-level API described
in section 4.7, exporting application constructs that benefit
from SRF indexing via high-level APIs within the context
of sequential streaming is also an attractive approach. This
allows the programmer interface to maintain the abstraction
of linear streams while enabling the compilation tools to
automatically identify opportunities for SRF indexing.
From an architectural perspective, we are exploring support
for data structures that require both reads and writes
simultaneously in the SRF. Unlike streams, which are read
only or write only for the duration of a kernel’s execution,
read-write data structures allow even more flexibility for
application-specific tasks as well as system-level uses such
as spilling local registers to the SRF. We also intend to
evaluate the impact of sparse interconnects for the address
and data networks used for cross-lane accesses.

8. Acknowledgements

The authors thank the Merrimac and Imagine groups for
their expertise and software tools support. We also thank
the reviewers for their valuable feedback.

9. References

[1] A. Peleg and U. Weiser. MMX Technology Extension to the Intel
Architecture. In IEEE Micro, pp. 42-50, Aug. 1996.

[2] M. Tremblay, J.M. O'Connor, V. Narayanan, and L. He. VIS Speeds
New Media Processing. In IEEE Micro, pp. 10-29, Aug. 1996

[3] K. Diefendorff, P.K. Dubey, R. Hochsprung, and H. Scales. AltiVec
Extension to PowerPC Accelerates Media Processing. In IEEE
Micro, pp. 85-95, Mar. 2000.

[4] R.B. Lee. Subword Parallelism with MAX-2. In IEEE Micro, pp. 51-
59, Aug. 1996.

[5] R.M. Russell. The Cray-1 Computer System. In Comm. of the ACM
21, 1, pp. 63-72, Jan. 1978.

[6] J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck, D. Johnson, and
N. Morgan. Spert II: A Vector Microprocessor System. In IEEE
Computer, pp. 79-86, Mar. 1996.

[7] C. Kozyrakis. Scalable Vector Media-processors for Embedded
Systems. Ph.D. Thesis, Univ. of California at Berkeley, May 2002.

[8] A. Kunimatsu, N. Ide, el. al. Vector Unit Architecture for Emotion
Synthesis. In IEEE Micro, pp. 40-47, Mar. 2000.

[9] R. Espasa, F. Ardanaz et. al. Tarantula: A Vector Extension to the
Alpha Architecture. In Proc. of the 29th Intl. Symposium on
Computer Architecture, pp. 281-292, May. 2002.

[10] S. Rixner, W.J. Dally, U.J. Kapasi, B. Khailany, A. Lopez-Lagunas,
P. Mattson, and J.D. Owens. A Bandwidth-Efficient Architecture for
Media Processing. In Proc. of the 31st Annual Intl. Symposium on
Microarchitecture, pp. 3-13, Nov. 1998.

[11] J.D. Owens, W.J. Dally, U.J. Kapasi, S. Rixner, P. Mattson, and B.
Mowery. Polygon Rendering on a Stream Architecture. In Proc. of
the 2000 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pp. 23-32, Aug. 2000.

[12] W.J. Dally, P. Hanrahan et. al. Merrimac: Supercomputing with
Streams. To appear in Supercomputing ’03, Nov. 2003.

[13] B. Khailany, W.J. Dally, A. Chang, U.J. Kapasi, J. Namkoong, and
B. Towles. VLSI Design and Verification of the Imagine Processor.
In Proc. of the IEEE Intl. Conference on Computer Design, pp. 289-
296, Sep. 2002.

[14] D.B. Loveman. Program Improvement by Source-to-Source
Transformation. In Jour. of the ACM 24, 1, pp. 121-145, Jan. 1977.

[15] J.E. Smith, G. Faanes, and R. Sugumar. Vector Instruction Set
Support for Conditional Operations. In Proc. of the 27th Annual
Symposium on Computer Architecture, pp. 260-269, Jun. 2000.

[16] U.J. Kapasi, W.J. Dally, S. Rixner, P. Mattson, J.D. Owens, and B.
Khailany. Efficient Conditional Operations for Data-parallel
Architectures. In Proc. of the 33rd Annual Intl. Symposium on
Microarchitecture, pp. 159-170, Dec. 2000.

[17] B. Amrutur and M. Horowitz. Speed and Power Scaling of SRAMs.
In Journal of Solid-State Circuits, pp. 175-185, Feb. 2000.

[18] P. Shivakumar and N.P. Jouppi. CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model. WRL Research Rpt., Aug. 2001.

[19] P. Mattson. A Programming System for the Imagine Media
Processor. Ph.D. Thesis, Stanford University, Mar. 2002.

[20] D. Bhandarkar and R. Bunner. VAX Vector Architecture. In Proc. of
the 17th Annual Symposium on Computer Architecture, pp. 128-138,
May 1990.

[21] M. Brandt, J. Brooks, M. Cahir, T. Hewitt, E. Lopez-Pineda, and D.
Sandness. The Benchmarker’s Guide for CRAY SV1 Systems. Cray
Inc., Jul. 2000.

[22] L.I. Kontothanassis, R.A. Sugumar, G.J. Faanes, J.E. Smith, and
M.L. Scott. Cache Performance in Vector Supercomputers. In Proc.
of Supercomputing’94, pp. 255-264, Nov. 1994.

[23] K. Asanovic. Vector Microprocessors. Ph.D. thesis, University of
California at Berkeley, May 1998.

[24] J. Daemen and V. Rijmen. AES Proposal: Rijndael,1999.
[25] V. Fischer and M. Drutarovsky. Two Methods of Rijndael

Implementation in Reconfigurable Hardware. In Proc. of the Third
Intl. Workshop on Cryptographic Hardware and Embedded Systems,
pp. 77-92, May 2001.

[26] W. Stallings. Cryptography and Network Security, 2nd ed. Prentice
Hall, 1998.

[27] B. Khailany, W.J. Dally, S. Rixner, U.J. Kapasi, J.D. Owens, and B.
Towles. Exploring the VLSI Scalability of Stream Processors. In
Proc. of the Ninth Symposium on High Performance Computer
Architecture, pp. 153-164, Feb. 2003.

[28] A. Pajuelo, A. Gonzalez, and M. Valero. Speculative Dynamic
Vectorization. In Proc. of the 29th Annual Intl. Symposium on
Computer Architecture, pp. 271-280, May 2002.

[29] The Connection Machine CM-5 Technical Summary. Thinking
Machines Corp., Nov. 1992.

[30] N.P. Jouppi, J. Bertoni, and D.W. Wall. A Unified Vector/Scalar
Floating-Point Architecture. WRL Research Report, July 1989.

[31] J. Corbal, R. Espasa, and M. Valero. Three-Dimensional Memory
Vectorization for High Bandwidth Media Memory Systems. In Proc.
of the 35th Annual Intl. Symposium on Microarchitecture, pp. 149-
160, Nov. 2002.

[32] M.L. Simmons and H.J. Wasserman. Performance Comparison of
the Cray-2 and Cray X-MP/416. In Proc. of Supercomputing ’88, pp.
288-295, Nov. 1988.

[33] T.C. Mowry, M.S. Lam, and A. Gupta. Design and Evaluation of a
Compiler Algorithm for Prefetching. In Proc. of the Fifth Intl.
Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 62-73, Oct. 1992.

[34] S. Agarwala, P. Koeppen, et. al. A 600MHz VLIW DSP. In Digest
of Technical Papers, IEEE Solid State Circuits Conference 2002, pp.
38-39, Feb. 2002.

[35] TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals.
Texas Instruments Inc., Mar. 2001.

[36] K. Mai, T. Paaske, N. Jayasena, R. Ho, W.J. Dally, and M.
Horowitz. Smart Memories: A Modular Reconfigurable
Architecture. In Proc. of the 27th Annual Intl. Symposium on
Computer Architecture, pp. 161–171, Jun. 2000.

[37] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.C.
Burger, S.W. Keckler, and C.R. Moore. Exploiting ILP, TLP and
DLP with the Polymorphous TRIPS Architecture, In Proc. of the
30th Annual Intl. Symposium on Computer Architecture, pp. 422-
433, Jun. 2003.

