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Abstract

Many important applications exhibit large amounts of
data parallelism, and modern computer systems are de-
signed to take advantage of it. While much of the com-
putation in the multimedia and scientific application do-
mains is data parallel, certain operations require costly
serialization that increase the run time. Examples in-
clude superposition type updates in scientific computing
and histogram computations in media processing. We in-
troduce scatter-add, which is the data-parallel form of
the well-known scalar fetch-and-op, specifically tuned for
SIMD/vector/stream style memory systems. The scatter-add
mechanism scatters a set of data values to a set of mem-
ory addresses and adds each data value to each refer-
enced memory location instead of overwriting it. This
novel architecture extension allows us to efficiently sup-
port data-parallel atomic update computations found in
parallel programming languages such as HPF, and ap-
plies both to single-processor and multi-processor SIMD
data-parallel systems. We detail the micro-architecture of a
scatter-add implementation on a stream architecture, which
requires less than2% increase in die area yet shows per-
formance speedups ranging from1.45 to over 11 on a
set of applications that require a scatter-add computa-
tion.

1. Introduction
The relative importance of multimedia and scientific

computing applications continues to increase. These appli-
cation domains exhibit large amounts of parallelism, and
specifically data parallelism. As a result many modern com-
puter systems are designed to exploit data level parallelism
to achieve high performance. These data parallel architec-
tures (DPAs) execute similar or identical operations con-
currently on multiple data elements, allowing them to sus-
tain high execution rates while tolerating long memory la-
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Figure 1: Parallel histogram computation leads to mem-
ory collision, when multiple elements of the dataset up-
date the same histogram bin.

tencies. In this paper we will concentrate on thesingle in-
struction multiple data(SIMD) class of DPAs, exemplified
by vector [9, 6], and stream processors [21, 10, 37].

While much of the computation of a typical multimedia
or scientific application is indeed data parallel, some sec-
tions of the code require serialization which significantly
limits overall performance. One commonly used algorithm
that exemplifies this is ahistogramor binning operation.
Given a dataset, a histogram is simply the count of how
many elements of the dataset map to each bin as shown in
the pseudo-code below1.

for i=1..n
histogram[data[i]] += 1;

Histograms are commonly used in signal and image
processing applications to performequalizationandactive
thresholdingfor example. The inherent problem with par-
allelizing the histogram computation ismemory collisions
where multiple computations performed on the dataset must
update the same element of the result in memory (Fig-
ure 1). One conventional way of dealing with this problem
is to introduce expensive synchronization. Before a hard-
ware processing element (PE) updates a location in mem-

1 In the example we refer to the case where the dataset is integer and
corresponds directly to the histogram bins. In the general case, an ar-
bitrary mapping function can be defined from the values in thedataset
onto the integer bins.



ory which holds a histogram bin it acquires a lock on the lo-
cation. This ensures that no other PE will interfere with the
update and that the result is correct. Once the lock is ac-
quired, the PE updates the value by first reading it and then
writing back the result. Finally the lock must be released so
that future updates can occur:

for i=1..n {
j = data[i];
lock(histogram[j]);
histogram[j] += 1;
unlock(histogram[j]);

}

This straightforward approach is complicated by the
SIMD nature of the architectures under discussion that re-
quire very fine-grained synchronization, as no useful work
is performed until all PEs have acquired and released their
lock. To overcome this limitation, parallel software con-
structs, such as segmented scan[8], have been developed.
However, the hardwarescatter-addmechanism presented
in this paper provides up to an order of magnitude higher
performance in the case of a histogram operation and a
76% speedup on a molecular-dynamics application over
a software-only approach. Moreover, these performance
gains are achieved with a minimal increase in the chip area
– only 2% of a 10mm×10mm chip in 90nm technology
based on a standard-cell design. Scatter-add is a special type
of memory operation that performs a data-parallel atomic
read-modify-write entirely within the memory system, and
is defined in the pseudo-code below. The first version of the
operation atomically adds each value of an input data array
to the memory location it accesses, while the second ver-
sion performs a constant increment each time a memory lo-
cation is accessed:
scatterAdd(<T> a[m], int b[n], <T> c[n]) {

forall i = 1..n
ATOMIC{a[b[i]] = (a[b[i]] + c[i])};

}

scatterAdd(<T> a[m], int b[n], <T> c) {
forall i = 1..n

ATOMIC{a[b[i]] = (a[b[i]] + c)};
}

wherea is anarray (contiguous memory locations) of
lengthm and an integral or floating-point type;b is an inte-
gral array of lengthn whose elements are in the range[1..m]
and defines the mapping of each element ofc ontoa (an in-
dex array);c is an array of lengthn and the same type asa
or a scalar of the same type. Many, and potentially all, the
updates can be issued concurrently and the hardware guar-
antees the atomicity of each update. The scatter-add is es-
sentially a hardware implementation of thearray combin-
ing scatteroperation defined in High Performance Fortran
(HPF) [17].

Applying the scatter-add to computing a histogram
in a data-parallel way is straightforward, wherea is

the histogram value,b is the mapping of each data el-
ement – simply the data itself, andc is simply 1:

scatterAdd(histogram, data, 1);

Relying on the memory system to atomically perform the
addition, the histogram is computed without requiring mul-
tiple round-trips to memory for each bin update and without
the need for explicit and costly synchronization of the con-
ventional implementation. Also, the processor’s main ex-
ecution unit can continue running the program, while the
sums are being updated in memory using the dedicated
scatter-add functional units. While these observations are
true for a conventional scalar fetch-and-add, our innova-
tive data parallel scatter-add extends these benefits to vec-
tor, stream, and other SIMD processors. This new approach
is enabled by the ever-increasing chip gate count, which al-
lows us to add floating point computation capabilities to the
on-chip memory system at little cost.

Histogram is a simple illustrative example, but the
scatter-add operation can also be used to efficiently ex-
press other operators as well. One such important op-
erator is the superposition operator which arises natu-
rally in many physical scientific applications. As explained
in [33], due to the inherent linearity in the physical ob-
jects simulated and due to the linearization and sim-
plification of nonlinear problems, superposition is a
prevalent operation in scientific codes. Examples in-
clude particle-in-cell methods to solve for plasma behavior
within the self-consistent electromagnetic field [42], mole-
cular dynamics to simulate the movement of interacting
molecules [11], finite element methods [7] and linear alge-
bra problems [36].

The contributions of this paper include a design of an in-
novative hardware mechanism – scatter-add – that ef-
ficiently and effectively supports commonly used soft-
ware constructs such as binning and superposition on
data-parallel SIMD architectures; evaluating and contrast-
ing the data-parallel performance of previous software only
techniques with hardware scatter-add; showing the fea-
sibility of scatter-add by detailing its micro-architecture,
estimating its small die area requirements, and analyz-
ing sensitivity to key system parameters and multi-node
scalability.

The remainder of this paper is organized as follows: we
discuss related work in Section 2, detail the scatter-add ar-
chitecture in Section 3, present our evaluation results in Sec-
tion 4, and conclude in Section 5.

2. Related Work

Previous work related to scatter-add falls into two main
categories: software only techniques, and hardware mecha-
nisms related mostly to control code and not for computa-
tion. In this paper we concentrate on data-parallel (SIMD,
vector, or stream) architectures and do not discuss SPMD or
MIMD techniques.



2.1. Software Methods
Implementing scatter-add without hardware support on a

data parallel architecture requires the software to handleall
of the address collisions. Three common ways in which this
can be done aresorting, privatization, and coloring. The
first option is to sort the data by its target address and then
compute the sum for each address before writing it to mem-
ory. Many algorithms exist for data-parallel sort such as
bitonic-sort and merge-sort, and the per-address sums can
be computed in parallel using asegmented scan[8]. Both
the segmented scan and the sort can be performed inO(n)
time complexity. While sorting is anO(n log n) operation
in general, we only use the sort to avoid memory collisions,
and process the scatter-add data in constant-sized batches. It
is also important to note that the complexity constant for the
sort is relatively large on a DPA. The second software op-
tion for scatter-add implementation isprivatization[14]. In
this scheme, the data is iterated over multiple times where
each iteration computes the sum for a particular target ad-
dress. Since the addresses are treated individually and the
sums stored in registers, or other named state, memory col-
lisions are avoided. This technique is useful when the range
of target addresses is small, and its complexity isO(mn),
wherem is the size of the target address range. The final
software technique relies oncoloring of the dataset, such
that in each color only contains non-colliding elements [5].
Then each iteration updates the sums in memory for a sin-
gle color and the total run-time complexity isO(n). The
problem is in finding a partition of the dataset that satisfies
the coloring constraint, which often has to be done off-line,
and the fact that in the worst case a large number of neces-
sary colors will yield a serial schedule of memory updates.

Software algorithms have also been developed for
scatter-add implementation in the context of coarse-grained
multi-processor systems and HPF’s array combining scat-
ter primitive [2]. One such obvious technique is to equally
partition the data across multiple processors, and per-
form a global reduction once the local computations are
complete.

2.2. Hardware Methods
The NYU Ultracomputer [15] suggested a hard-

ware fetch-and-add mechanism for atomically updating
a memory location based on multiple concurrent re-
quests from different processors. An integer-only adder was
placed in each network switch which also served as a gate-
way to the distributed shared memory. While fetch-and-add
could be used to perform general integer operations [4],
its main purpose was to provide an efficient mecha-
nism for implementing various synchronization primi-
tives. For this reason it has been implemented in a variety
of ways and is a standard hardware primitive in large scale
multi-processor systems [22, 38, 26, 18, 43]. Our hard-
ware scatter-add is a data-parallel, or vector, version of the
simple fetch-and-add, which supports floating-point op-
erations and is specifically designed for performing data

computation and handling the fine grained synchroniza-
tion required by advanced SIMD memory systems.

Several designs for aggregate and combining networks
have also been suggested. The suggested implementation
for the NYU Ultracomputer fetch-and-add mechanism in-
cluded a combining operation at each network switch, and
not just at the target network interface. The CM-5 control
network could perform reductions and scans on integral data
from the different processors in the system, and not based
on memory location [27]. Hoarse and Dietz suggest a more
general version the above designs [19].

The alpha-blending mechanism [30] of application spe-
cific graphic processors can be thought of as a limited form
of scatter-add. However, this is not a standard interpretation
and even as graphic processors are implementing program-
mable features [39, 1], alpha-blending is not exposed to the
programmer.

Finally, processor-in-memory architectures provide
functional units within the DRAM chips and can poten-
tially be used for scatter-add. However, the designs sug-
gested so far do not provide the right granularity of
functional units and control for an efficient scatter-add im-
plementation, nor are they capable of floating-point op-
erations. Active Pages [31] and FlexRAM [20] are
coarse-grained and only provide functional units per
DRAM page or more, andC • RAM [13] places a func-
tional unit at each sense-amp. Our hardware scatter-add
mechanism presented in Section 3 places the func-
tional units at the on-chip cache or DRAM interfaces,
providing a high-performance mechanism at a small hard-
ware cost while using commodity DRAM.

3. Scatter-Add Architecture

In this section we present data-parallel architectures in
greater detail, describe the integration of the scatter-add
unit with a typical vector/stream processor and its micro-
architecture, and explain the benefits and implications of the
scatter-add operation.

3.1. Data Parallel Architectures
SIMD data parallel architectures exploit the abundance

of data-level parallelism available in many important appli-
cation classes. They offer significant cost/performance ad-
vantages over traditional systems which take advantage of
instruction-level parallelism, but rely more on the program-
mer and software system.

The canonical SIMD DPA is composed of a set of
processing elements (PEs), each with a local high band-
width and low-latency data store, and a global memory
space. The PEs in modern DPA systems are usually clus-
tered into nodes (Figure 2), such that each node con-
tains several PEs placed on a single chip, a part of the
global memory, and an interface into the system-wide in-
terconnection network for sharing data and implement-
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Figure 2: Clustered (SIMD) Data Parallel Architecture

ing the global memory2. A cache is typically placed on
the chip along with the PEs to act as a bandwidth ampli-
fier and alleviate the restrictions due to off-chip signal-
ing. Examples of classic DPAs are the fully SIMD ILLIAC
IV [3] and the vector Cray-1 [35]. While these architec-
tures (and vector processors in particular) have continuedto
evolve and play an important role in high performance com-
puting [9, 6], the recent surge in interest in multi-media
and scientific simulations has brought DPAs to the desk-
top. Most general-purpose processors now contain SIMD
extensions [32, 28, 29, 40], and newstreamingproces-
sors [21, 10, 16] andprogrammable graphicsproces-
sors [39, 1] are starting to make an impact as well. There
has also been interest in targeting vector processors for me-
dia application [25, 12].

In order to use the hardware resources of the DPA effec-
tively, the computation is broken down into three phases:

1. In thegatherphase data is collected from various loca-
tions in global memory, partitioned across the PEs, and
each part is packed into a PEs local data store. This is
done by a complex DMA operation or a vector-load.

2. During thecomputephase all PEs concurrently operate
on their share of the data and computation, consuming
data and writing results from and into the local data
store. Since data is provided by the low-latency and
high-bandwidth local store, very high execution rates
can be achieved.

3. Final results are written back into global memory in
thescatterphase. The memory system again utilizes a
DMA or vector-operation to perform the parallel mem-
ory write.

Parallelism is utilized not just for executing concurrent
instructions across the PEs, but also to pipeline instruction
execution on a single PE in order to amortize high-latency
operations. In particular, the fact that memory operations
are also expressed in parallel manner allows the memory
system to pipeline these multi-word accesses. By pipelining
these memory streams maximal bandwidth can be achieved
from DRAM [34], and the long unpredictable latencies can
be tolerated.

2 In most systems of this type, strict SIMD is only enforced within a sin-
gle processor.

3.2. Scatter-add Micro-architecture
As described earlier, the scatter-add operation is a par-

allel atomic read-modify-write operation. Another way of
thinking of this operation is as an extension to the memory
scatter operation where each value being written is summed
with the value already in memory, instead of replacing it.

Scatter-Add
Unit

Memory
Interface

Off-chip DRAM

Address Generator Unit

Figure 3: Scatter-add unit in the memory interface

The key technological factor allowing us to provide the
scatter-add functionality in hardware is the rapid rate of
VLSI device scaling. While a 64-bit floating-point func-
tional unit consumed a large fraction of a chip in the
past [24], corresponding area for such a unit in today’s
90nm technology requires only0.3mm2. As a result we can
dedicate several floating-point/integer adders to the mem-
ory system and allow it to perform an atomic read-modify-
write, enabling the hardware scatter-add. A natural location
for the scatter-add unit is at the memory interface of the
DPA processor chip since all memory requests pass through
this point (Figure 3). This configuration allows an easy im-
plementation of atomic operations since the access to each
part of global memory is limited to on-chip memory con-
troller of that node (Figure 2). A further advantage of plac-
ing the scatter-add unit in front of the memory controller is
that it can combine scatter-add requests and reduce memory
traffic as will be explained shortly. Another possible config-
uration is to associate a scatter-add unit with each cache-
bank of the on-chip cache (if it exists) as depicted in Fig-
ure 4a. The reasoning is similar to the one presented above
as the on-chip cache also processes every memory request.

The Scatter-add unit itself consists of a simple con-
troller with multiplexing wires, the functional unit that per-
forms the integer and floating-point additions, and acom-
bining storethat is used to ensure atomicity as explained
below (Figure 4b). The combining store is analogous to
the miss status handling register(MSHR) andwrite com-
bining bufferof memory data caches, and serves two pur-
poses. First, it acts as an MSHR and buffers scatter-add re-
quests until the original value is fetched from memory. Sec-
ond, it buffers scatter-add requests while an addition, which
takes multiple cycles, is performed. The physical imple-
mentation of the scatter-add unit is simple and our estimates
for the area required are0.2mm2, and8 scatter-add units
require only2% of a 10mm×10mm chip in 90nm tech-
nology based on a standard-cell design. The overheads of
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Figure 4: Scatter-add unit in a stream cache bank (a)
along with the internal micro architecture (b). Solid lines
represent data movement, and dotted lines address
paths. The numbers correspond to the explanation in
the text.

the additional wire tracks necessary for delivering scatter-
add requests within the memory system are negligible. Our
area analysis is based on the ALU implementation of Imag-
ine [23] designed in a standard-cell methodology and tar-
geting a latency of4 1ns cycles. We also include the area
required for the combining store and control logic.

We will explain how atomicity and high through-
put are achieved by walking through the histogram
example in detail. Programming the histogram applica-
tion on a scatter-add enabled DPA involves a gather on the
data to be processed, followed by computation of the map-
ping and a scatter-add into the bins:

gather(data_part, data);

forall i = 1..data_part_len
bin_part[i] = map(data_part[i]);

scatterAdd(bins, bin_part, 1);

We will concentrate on the histogram computation per-
formed by the scatter-add unit as depicted in Figure 4,
where the number annotations will be referred to in the
order of operations performed, solid lines represent data

movement, and dotted lines represent address paths. The
process is also showed using a flow-diagram in Figure 5.
The memory-system address generator of the DPA pro-
duces a vector (referred to as a stream in some architectures)
of memory addresses corresponding to the histogram bins,
along with a vector of values to be summed (simply a vec-
tor of 1s in the case of histogram). If an individual memory
request that arrives at the input of the scatter-add unit (1)
is a regular memory-write, it bypasses the scatter-add and
proceeds directly to the cache and DRAM interface (2,3).
Scatter-add requests must be performed atomically, and to
guarantee this the scatter-add unit uses the combining store
structure. Any scatter-add request is placed in a free entry
of the combining store, if no such entry exists, the scatter-
add operation stalls until an entry is freed. At the same
time, the request address is compared to the addresses al-
ready buffered in the unit using acontent addressed memory
(CAM) (a). If the address does not match any active addition
operations a request for the current memory value of this bin
is sent to the memory system (b, 2, 3). If an entry matching
the address is found in the combining store no new mem-
ory accesses are issued. When a current value returns from
memory (4,5) it is summed with the combining store entry
of a matching address (again using a CAM search) (c). Once
the sum is computed by the integer/floating point functional
unit an acknowledgment signal is sent to the address gen-
erator unit (6), and the combining store is checked once
more for the address belonging to the computed sum (d)3.
If a match is found, the newly computed sum acts as a re-
turned memory value and repeats step c. If there are no more
pending additions to this value, it is written out to mem-
ory (7). We are assuming that the acknowledgment signal is
sent once the request is handled within the scatter-add unit.
Since atomicity is achieved by the combining register, no
further synchronization need take place. Using the combin-
ing register we are able to pipeline the addition operations
achieving high computational throughput.

Multi-node Scatter-add
The procedure described above illustrates the use and de-
tails of the scatter-add operation within a single node of a
DPA. When multiple nodes perform a scatter-add concur-
rently, the atomicity of each individual addition is guar-
anteed by the fact that a node can only directly access its
own part of the global memory. The network interface di-
rects memory requests to pass through the remote scatter-
add unit where they are merged with local requests4. For
multi-node configurations with local data-caches an opti-
mization of this mechanism is to perform the scatter-add in
two logical phases:

• A local phase in which a node performs a scatter-add

3 Only a single CAM operation is necessary if a simple ordering mech-
anism is implemented in the combining store

4 The combining store will send an acknowledgment to the requesting
node once an addition is complete
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Figure 5: Flow diagram of a scatter-add request

on local and remote data within it’s cache. If a remote
memory value has to be brought into the cache, it is
simply allocated with a value of0 instead of being read
from the remote node.

• In theglobal phase the global scatter-add is computed
by performing asum-backof the cached values. A
sum-back is similar to a cache write-back except that
the remote write-request appears as a scatter-add on
the node owning the memory address.

The global sum is continuously updated as lines are evicted
from the different caches (via sum-back), and to ensure the
correct final result a flush-with-sum-back is performed as a
synchronization step once all nodes complete.

3.3. Scatter-add Usage and Implications
The main use of scatter-add is to allow the program-

mer the freedom to choose algorithms that were previously
prohibitively expensive due to sorting, privatization com-
plexity, and the additional synchronization steps required.
Shifting computation to the scatter-add unit from the main
DPA execution core allows the core to proceed with run-
ning the application, while the scatter-add hardware per-
forms the summing operations. Also, the combining abil-
ity of the combining store may reduce the memory traffic
required to perform the computation. The performance im-
plications are analyzed in detail in Section 4.

A subtle implication of using a hardware scatter-add has
to do with the ordering of operations. While the user coded
the application using a specific order of data elements, the
hardware reorders the actual sum computation due to the

pipelining of the addition operations and the unpredictable
memory latencies when fetching the original value. It is im-
portant to note that while the ordering of computation does
not reflect program order, it is consistent in the hardware
and repeatable for each run of the program5. The user must
be aware of the potential ramifications of this reordering
when dealing with floating-point rounding errors and mem-
ory exceptions.

The scatter-add architecture is versatile and with sim-
ple extensions can be used to perform more complex op-
erations. We will not describe these in detail, but will men-
tion them below. A simple extension is to expand the set of
operations handled by the scatter-add functional unit to in-
clude other commutative and associative operations such as
min/max and multiplication. A more interesting modifica-
tion is to allow a return path for the original data before
the addition is performed and implement a parallel fetch-
add operation similar to the scalar Fetch&Op primitive[15].
This data-parallel version can be used to perform parallel
queue allocation on SIMD vector and stream systems.

4. Evaluation
To evaluate the hardware scatter-add mechanism we

measure the performance of several applications on a sim-
ulated SIMD streaming system, with and without hardware
scatter-add. We also modify the machine configuration pa-
rameters of the baseline system to test the sensitivity of
scatter-add performance to the parameters of the scatter-add
unit. Finally, we show that scatter-add is valuable in a multi-
node environment as well.

4.1. Test Applications
The three applications we use were chosen because they

require a scatter-add operation. Codes that do not have a
scatter-add will run unaffected on an architecture with a
hardware scatter-add capability. The inputs used for the ap-
plications below are representative of real datasets, and the
dataset sizes were chosen to keep simulation time reason-
able on our cycle accurate simulator.

Histogram – The histogram application was presented
in the introduction. The input is a set of random integers
chosen uniformly from a certain range which we vary in the
experiments. The output is an array of bins, where each bin
holds the count of the number of elements from the dataset
that mapped into it. The number of bins in our experiments
matches the input range. Scatter-add is used to produce the
histogram as explained in Section 1.

Sparse Matrix-Vector Multiply – The sparse matrix-
vector multiply is a key computation in many scientific ap-
plications. We implement both acompressed sparse row
(CSR) and anelement by element[36] (EBE) algorithm.
The two algorithms provide different trade-offs between

5 This is not the case when dealing with multi-node scatter-add, but the
lack of repeatability in multi-node memory accesses is a common fea-
ture of high performance computer systems.



amount of computation and memory accesses required,
where EBE performs more operations at reduced memory
demand. The dataset was extracted from cubic element dis-
cretization with 20 degrees of freedom usingC0 continuous
Lagrange finite elements of a1916 tetrahedra finite-element
model. The matrix size is9, 978× 9, 978 and it contains an
average of44.26 non-zeros per row. In CSR all matrix el-
ements are stored in a dense array, and additional informa-
tion is kept on the position of each element in a row and
where each row begins. The CSR algorithm is gather based
and does not use the scatter-add functionality. EBE utilizes
the inherent structure in the sparse matrix due to the finite-
element model, and is able to reduce the number of mem-
ory accesses required by increasing the amount of compu-
tation and performing a scatter-add to compute the final
multiplication result. Essentially in the EBE algorithm in-
stead of performing the multiplication on one large sparse-
matrix, the calculation is performed by computing many
small dense matrix multiplications where each dense ma-
trix corresponds to an element.

Molecular Dynamics – We use the non-bonded force
calculation kernel of GROMACS [41]. This kernel calcu-
lates the interaction forces of water, and our simulation was
performed on a sample of903 water molecules for a sin-
gle time-step. Experiments on the full GROMACS imple-
mentation on a Pentium 4 show that roughly60–75% of the
entire execution is spent running this kernel.

We implemented two versions of each application, one
that uses the hardware scatter-add, and a second that per-
forms a sort followed by a segmented scan. It is important
to note that it is not necessary to sort the entire stream that
is to be scatter-added, and that the scatter-add can be per-
formed in batches. This reduces the run-time significantly,
and on our simulated architecture a batch size of256 el-
ements achieved the highest performance. Longer batches
suffer from theO(n log n) scaling of sort, while smaller
batches do not amortize the latency of starting a stream op-
erations and priming the memory pipeline. The sort was
implemented using a combination of a bitonic and merge
sorting phases. The histogram computation was also imple-
mented using the privatization method.

4.2. Experimental Setup
Single node simulations were performed using a

cycle-accurate simulator for a single node of the Mer-
rimac streaming supercomputer architecture [10]. Mer-
rimac is a stream processor with16 data-parallel exe-
cution clusters, where each cluster can perform up to4
floating point multiply-add operations per cycle. Merri-
mac executes stream programs which are composed of
computational kernels and streams of data. Data is trans-
ferred between memory and an on-chip software managed
store, the stream register file (SRF), in granularity of en-
tire streams which are typically hundreds to thousands of
words long. An address partitioned on-chip data cache
serves as a bandwidth amplifier for memory and also con-

Parameter
Number of stream cache banks 8
Number of scatter-add units per bank 1
Latency of scatter-add functional unit 4
Number of combining store entries 8
Number of DRAM interface channels 16
Number of address generators 2
Operating frequency 1 GHz
Peak DRAM bandwidth 38.4 GB/s
Stream cache bandwidth 64 GB/s
Number of clusters 16
Peak floating point operations per cycle 128
SRF bandwidth 512 GB/s
SRF size 1 MB
Stream cache size 1 MB

Table 1: Machine parameters

1

10

100

256 512 1024 2048 4096 8192
size of input array

ex
ec
uti
on
 tim

e (
μ
s)

scatter-add sort&segmented-scan
Figure 6: Performance of histogram computation for in-
puts of varying lengths and an input range of 2,048.

tains one scatter-add unit per cache bank. The exact de-
tails of the architecture are not described in this paper, and
Table 1 summarizes the parameters of the base configu-
ration. Our multi-node simulator was derived from this
single-node simulator as explained in Section 4.5.

4.3. Scatter-add Comparison
The experiments below compare the performance of the

hardware scatter-add to that of the software alternatives.We
will show that hardware scatter-add not only outperforms
our best software implementations, but that it also allows
the programmer to choose a more efficient algorithm for
the computation that would have been prohibitively expen-
sive without hardware support.

Figure 6 shows the performance of the histogram com-
putation using the hardware and software (sort followed
by segmented scan) implementations of scatter-add. Both
mechanisms show the expectedO(n) scaling, and the hard-
ware scatter-add consistently outperforms software by ra-
tios of3-to-1 and up to11-to-1.

While the software method using sort does not depend
much on the distribution of the data, the hardware scatter-
add depends on the range of indices. Figure 7 shows the ex-
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Figure 7: Performance of histogram computation for in-
puts of length 32,768 and varying index ranges.
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Figure 8: Performance of histogram computation with
privatization for inputs of constant lengths and varying
index ranges.

ecution time of hardware scatter-add and the sort&scan op-
erations for a fixed dataset size of32, 768 elements and in-
creasing index range sizes. The indices are uniformly dis-
tributed over the range. When the range of indices is small
hardware performance is reduced due to thehot bank ef-
fect. The small index range causes successive scatter-add re-
quests to map to the same cache bank, leaving some of the
scatter-add units idle. As the range of indices increases, ex-
ecution time starts to decreases as more of the units are kept
busy. But when the index range becomes too large to fit in
the cache, performance decreases significantly and reaches
a steady-state. The sort&scan method performance is also
lower for the large index ranges as a result of the larger num-
ber of memory references required to write out the final re-
sult.

Unlike sort, the runtime complexity of the privatiza-
tion algorithm depends on the number of histogram bins.
Figure 8 compares the performance of histogram using
the hardware scatter-add to the privatization computation
method, where the input data length is held constant at
1, 024 or 32, 768, and the range varies from128 to 8, 192.
As the range increases, so does the performance advan-
tage of the hardware scatter-add enabled algorithm, where
speedups greater than an order of magnitude are observed
for the large input ranges.
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Figure 9: Performance of sparse matrix-vector multipli-
cation.
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Figure 10: Performance of GROMACS.

Figure 9 shows the performance of the sparse matrix-
vector multiplication. It is clearly seen that the hardware
scatter-add enables the use of the EBE method, as without
it CSR outperforms EBE by a factor of2.2. With hardware
scatter-add, EBE can provide a45% speedup over CSR.

In Figure 10 we see how the hardware scatter-add in-
fluenced the algorithm chosen for GROMACS. The soft-
ware only implementation with a sort&scan performed very
poorly. As a result, the programmer chose to modify the al-
gorithm and avoid the scatter-add. This was done by dou-
bling the amount of computation, and not taking advantage
of the fact that the force exerted by one atom on a second
atom is equal in magnitude and opposite in direction to the
force exerted by the second atom on the first. Using this
technique a performance improvement of a factor of3.1 was
achieved. With the availability of a high-performance hard-
ware scatter-add, the algorithm without computation dupli-
cation showed better performance, and a speedup of76%
over our best software-only code. Athough we did not im-
plement the entire GROMACS application, this kernel alone
is responsible for60–75% of the execution time on a Pen-
tium 4. A similar speed-up on the Pentium 4 implementa-
tion would translate to a35% minimum performance gain
for the entire application.

4.4. Sensitivity Analysis
The next set of experiments evaluates the performance

sensitivity to the amount of buffering in the combining store
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(CS). In order to isolate and emphasize the sensitivity, we
modify the baseline machine model and provide a simpler
memory system. We run the experiments without a cache,
and implement memory as a uniform bandwidth and latency
structure. Throughput is modeled by a fixed cycle interval
between successive memory word accesses, and latency by
a fixed value which corresponds to the average expected
memory delay. On an actual system, DRAM throughput and
delays vary depending on the specific access patterns, but
with memory access scheduling [34] this variance is kept
small.

Figure 11 shows the dependence of the execution time
of the histogram application using hardware scatter-add on
the number of entries in the combining store, and on the la-
tencies of the functional unit memory. Each group in the
figure corresponds to a specific number of combining store
entries, ranging from2 to 64, and contains seven bars. The
four leftmost bars in each group are for increasing memory
latencies of8–256 cycles and a functional unit latency of4
cycles, and the three rightmost bars show the performance
for different functional unit latencies with a fixed memory
latency of16 cycles. Memory throughput is held constant
at 1 word every2 cycles. The execution time is for an in-
put set of512 elements ranging over65, 536 possible bins.
It can be clearly seen that even with only 16 entries in the
combining store performance does not depend on ALU la-
tency and is almost independent of memory latencies. With
64 entries, even the maximal memory latency can be toler-
ated without affecting performance.

The last sensitivity experiment gauges the scatter-add
sensitivity to memory throughput. In Figure 12 we plot the
histogram runtime vs. the combining store size and decreas-
ing memory throughput. Memory throughput decreases as
the number of cycles between successive memory accesses
increases. Each group of bars is for a different number of
combining store entries. Dark bars represent the perfor-
mance of a histogram where the index range is16, and
light bars the case where the index range is65, 536. Within
each group, the dark-light pairs are for a certain memory
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Figure 12: Histogram runtime sensitivity to combining
store size and varying memory throughput.

throughput number. Even when a combining store of64 en-
tries cannot overcome the performance limitations of very
low memory bandwidth. However, the effects of combin-
ing become apparent when the number of bins being scat-
tered to is small. In this case, many of the scatter-add re-
quests are captured within the combining store and do not
require reads and writes to memory.

4.5. Multi-Node Results
Finally, we take a look at the multi-node performance

of scatter-add with and without the optimizations described
in Section 3.2. The multi-node system is comprised of
2–8 nodes, where each node contains a stream proces-
sor with the same parameters as used for the previous
experiments, along with its cache and network interface
as described in Section 3.1. The network we model is
an input-queued crossbar with back-pressure. We ran ex-
periments limiting the maximum per-node bandwidth to
1word/cycle (low configuration in the results below), and
also8words/cycle (high configuration) that are enough to
satisfy scatter-add requests at full bandwidth. In addition to
varying the network bandwidth we also turn the combining
operation (Section refsec:multi-node) on and off. We con-
centrate on scatter-add alone and report the scalability num-
bers for only the scatter-add portion of the three test appli-
cations. For Histogram we ran two separate data-sets, each
with a total of64K scatter-add references:narrowwhich has
an index range of256, andwidewith a range of1M. GRO-
MACS uses the first590K references which span8, 192
unique indices, and SPAS uses the full set of38K references
over10, 240 indices of the EBE method (Section 4.1).

Figure 13 presents the scatter-add throughput (additions
per cycle) achieved for scaling of1–8 nodes, where each of
the four sets of lines corresponds to a different application.
The wide version of Histogram is limited by the memory
bandwidth in both the single node case and for any number
of nodes when using the high bandwidth network achiev-
ing perfect scaling. When the network bandwidth is low,
performance is limited by the network and the application
does not scale as well. The optimization of combining in the
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Figure 13: Multi-node scalability of scatter-add

caches does not increase performance due to the large range
of addresses accessed, which lead to an extremely low cache
hit rate. On the contrary, the added overhead of cache warm-
up, cache combining, and the final synchronization step ac-
tually reduce performance and limit scalability.

In thenarrowcase of Histogram, the results are quite dif-
ferent as the high locality makes both the combining within
the scatter-add unit itself and in the cache very effective.
As a result, no scaling is achieved in the case of the low-
bandwidth network, although with high bandwidth we see
excellent speedups of up to7.1 for 8 nodes. Employing the
multi-node optimization of local combining in the caches
followed by global combining as cache lines are evicted
provided a significant speedup as well. The reduction in net-
work traffic allowed even the low bandwidth configuration
to scale performance by5.7 for 8 nodes. Again, the over-
head of warming up the cache, flushing the cache, and syn-
chronization prevents optimal scaling.

The molecular dynamics application (GROMACS) ex-
hibits similar trends tonarrow, as the locality in the neigh-
bor lists is high. Scaling is not quite as good due to the
fact that the overall range of addresses is larger, and the ad-
dress distribution is not uniform. SPAS experiences simi-
lar problems but its scaling trend is closer to that ofwide.
The large index range of both these applications reduces
the effectiveness of cache combining due to increased over-
heads incurred on cache misses and line evictions. Increas-
ing the network bandwidth limits the effect of this overhead
and scaling is improved (GROMACS-high-combandSPAS-
high-combin Figure 13).

5. Conclusion

In this paper we introduced the hardware scatter-add op-
eration for data parallel SIMD architectures. Scatter-addal-
lows global accumulation operations to be executed effi-
ciently and in parallel, while ensuring the atomicity of each
addition and the correctness of the final result. This type of
operation is a primitive in High Performance Fortran, and
is common in many application domains such as histogram

computations in signal and image processing, and express-
ing superposition in scientific applications for calculating
interactions and performing algebraic computations.

We described the general scatter-add micro-architecture
and estimated its area overhead as only2% of a standard
size die in90nm technology. We also showed that the avail-
ability of this cheap hardware mechanism allows the pro-
grammer to choose algorithms that are prohibitively ex-
pensive to implement entirely in software. For example, in
the molecular-dynamics application, use of the hardware
scatter-add improved performance by76% over our best
data-parallel software version which was3.1 times faster
than the software implementation of the scatter-add oper-
ation. In addition when performing certain computations
such as computing a histogram, the hardware approach pro-
vides an order of magnitude better performance than soft-
ware alone.

This paper analyzed the performance implications of
a single-node SIMD data parallel processor. We also de-
scribed multi-node implementation and explored the scal-
ability of scatter-add as well using on-chip caching to op-
timize multi-node performance. In future work we plan en-
hancements that will allow efficient computation of scans
(parallel prefix operations) in hardware and implement sys-
tem wide synchronization primitives for SIMD architec-
tures. We are also considering an optimization to our multi-
node cached algorithm that will arrange the nodes in a logi-
cal hierarchy and allow the combining across node to occur
in logarithmic instead of linear complexity.
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