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Abstract—Memory errors have been a major source of system
failures and fault rates may rise even further as memory
continues to scale. This increasing fault rate, especially when
combined with advent of integrated on-package memories, may
exceed the capabilities of traditional fault tolerance mecha-
nisms or significantly increase their overhead. In this paper, we
present FreeFault as a hardware-only, transparent, and nearly-
free resilience mechanism that is implemented entirely within
a processor and can tolerate the majority of DRAM faults.
FreeFault repurposes portions of the last-level cache for storing
retired memory regions and augments a hardware memory
scrubber to monitor memory health and aid retirement decisions.
Because it relies on existing structures (cache associativity) for
retirement/remapping type repair, FreeFault has essentially no
hardware overhead. Because it requires a very modest portion
of the cache (as small as 8KB) to cover a large fraction of
DRAM faults, FreeFault has almost no impact on performance.
We explain how FreeFault adds an attractive layer in an overall
resilience scheme of highly-reliable and highly-available systems
by delaying, and even entirely avoiding, calling upon software to
make tradeoff decisions between memory capacity, performance,
and reliability.

I. INTRODUCTION

Memory reliability has been a major design constraint
for mission-critical and large-scale systems for many years.
Despite this history, two important trends highlight the need
for continued innovation in addressing this important problem.
The first trend is the increasing severity of memory faults
and error rates, with the rates of memory errors that affect
a large number of bits and permanent faults being on par
with the rates of single-bit errors and transient faults, respec-
tively [55, 56, 22, 53]. The second trend, which follows from
the first, is that once a permanent fault occurs, a decision needs
to be made about trading off cost, performance, and reliability.
The two main reasons a tradeoff is necessary are that: (1) a
permanent fault is likely to result in numerous erroneous
accesses, each requiring possibly high correction overhead; and
(2) once redundancy is used for correction, further errors may
go uncorrected leading to data loss, or worse, go undetected
and result in silent data corruption – stronger codes can tolerate
more errors, but have higher overhead.
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The straightforward solution to addressing this issue of
repeated costly corrections and reduced coverage is to replace
faulty memory devices, however, doing so is expensive, es-
pecially when the faulty memory device is integrated with
a processor [23]. An economical alternative is to retire and
possibly remap just the faulty memory regions. There are
three broad categories for retirement techniques (we refine
this classification and provide more detail in Section VI):
(1) retire memory and reduce available memory capacity (e.g.,
node-level, channel-level, or OS frame level), which is costly
in lost resources and difficult and complicated to implement
in some systems [12]; (2) retire a faulty chip in a memory
module and either change protection level or compensate
protection by coupling memory channels, which then impacts
performance and power [9, 18, 25, 28]; and (3) remap faulty
addresses to alternative memory locations, which currently
requires redundant memory and adds latency and complexity
for remapping hardware [58, 45, 44, 38].

In summary, previously-proposed retirement techniques are
able to better balance reliability and cost than naive solutions,
but are not ideal. These existing techniques either require so-
phisticated software support, impact capacity, reliability, and/or
performance, or introduce additional storage and hardware
structures.

We introduce FreeFault , which is a hardware-only mi-
croarchitecture that can retire memory at a very fine granu-
larity with no software support, without impacting reliability,
and with minimal impact on cost, performance, and energy
efficiency. Instead of adding hardware, FreeFault uses the
existing last-level cache (LLC) and binds a small amount
of retired memory to locked lines in the LLC. In this way,
we achieve near-free repair because we repurpose existing
microarchitecture mechanisms while introducing no additional
memory access latency for retired memory. Our evaluation
demonstrates that the vast majority of faults can be repaired
with only a small fraction of LLC capacity sacrificed for
remapping retired memory leading to negligible performance
impact. Hence, trading off existing SRAM for faulty DRAM
is an attractive additional mechanism in the memory resilience
toolkit; FreeFault complements other techniques with negligi-
ble hardware cost.

An important advantage of FreeFault is that it requires
no software intervention and can be dynamically applied to a
running system. To enable this truly hardware-only operation,
we propose and evaluate a hardware-only mechanism for
deciding when and which memory to retire. Given the low
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Fig. 1: A simplified DRAM system structure. 3D stacked memory [23, 19] is shown as an example, but currently popular DIMMs have an almost same structure while
replacing a stack with a memory module grouped multiple DRAM devices horizontally.

performance impact, no reliability impact, and hardware-only
fine-grained repair, we discuss how FreeFault fits within a
broader resilience and high-availability scheme and serves to
handle the vast majority of faults transparently and cheaply
before requiring higher-level mechanisms to intervene.

To restate the main contributions of FreeFault:

• FreeFault is able to transparently hide (without impacting
reliability or performance) the majority of expected mem-
ory faults in both integrated on-package and traditional
off-package memory (8 8-layer stacks per package and 8
8-chip DIMMs per socket). About 60% of sockets with
faults can be transparently repaired with no measurable
impact on performance.

• FreeFault is able to tradeoff minor performance degrada-
tion for increased repair coverage. Nearly 90% of on-
package faults and 85% of off-package faults can be
hidden entirely in the microarchitecture of a running
system with only a 1% average performance degradation
(8.2% maximum) observed in our experiments.

• FreeFault can be implemented with negligible changes
to the microarchitecture (depending on how coherence is
implemented) and be dynamically applied to a running
system. This is in contrast to alternatives that add hard-
ware, increase memory latency, and/or require significant
changes to system software and system operation.

• FreeFault may include a low-cost microarchitectural
mechanism for identifying and tracking retirement can-
didates with no software support. This structure also
leverages the LLC and adds no additional storage on the
processor; it may be assisted by a small amount (< 68KB)
of BIOS-managed FLASH memory.

• FreeFault complements other resilience scheme and re-
duces the reliance on frequent ECC corrections that
reduce performance, pushes out the need for making relia-
bility and capacity tradeoffs required when retiring mem-
ory devices or channels, and eliminates the requirements
for software modifications of frame-level retirement.

The rest of this paper is organized as follows: Section II
provides background on memory system organization and
ECC protection; Section III details the FreeFault architecture
and associated tradeoffs; Section IV describes our evaluation
methodology, including DRAM fault modeling; Section V
presents our evaluation results; Section VI discusses current
retirement schemes and other related work; and Section VII
concludes the paper.

II. BACKGROUND

A. DRAM Fundamentals

Figure 1 shows a simplified view of a typical DRAM
system organization [31] with an emphasis toward 3D stacked
memories [31, 23, 19]. The processor connects to memory via,
possibly multiple, channels, each of which is attached to a
dedicated memory controller. Each channel typically includes
independent control and data paths, with control information
consisting of select, command, address, and mask signals. Each
channel consists of multiple memory devices (DRAM chips or
dies), which are grouped within each channel into ranks. All
ranks share the control and data buses of the channel, such that
only single rank is selected for control and data transfer at any
given time. Different commands can be sent to the different
ranks by interleaving them in time. All devices within a rank
are controlled in unison with each device sending or receiving
data on its own dedicated data path within the rank.

Internally, each DRAM device contains multiple
independently-controlled banks. Banks share the device
pins and are controlled and access the data path in a time
interleaved manner. Physically, each bank is comprised of
shared peripheral circuits and an array of bits, which is
divided into a large number of subarrays (e.g., ∼ 1, 024
subarrays in a 2Gb DRAM device). Each subarray is a
collection of, typically, 512× 512 bits, which made rows and
columns respectively, with a set of wordline and bitline drivers
and sense amplifiers [6, 37]. The subarrays are needed to
constrain the capacity of the wires and thus improve efficiency
and latency. The address decoders within each bank occupy
significant area and are hierarchical; part of the address
decoding is done at the bank level with additional decoding
performed at the subarray level. To minimize internal routing,
each subarray is connected to an independent set of device
(chip) output data pins, and multiple of those pins are used for
each transfer – the device interface width, which is typically
4–128 bits wide. Within a bank, a column is the minimum
addressable granularity in each DRAM device and is equal
to the interface width multiplied by the DRAM burst length;
because the channel links run at a higher frequency than the
DRAM core, a single column specifies a sequence of transfers
across the interface. A row is a sequence of columns within
a bank.

Many different module designs and interfaces are possible,
including currently common dual in-line memory modules
(DIMMs) of DDR3 [32] or directly-soldered GDDR5 or
LPDDR2 devices [35, 33] and evolving designs, such as



WideIO, HMC, and HBM as shown in Figure 1 [34, 19, 23].
From the perspective of FreeFault, all of these designs are
equivalent because all inherently use the same device organi-
zation, and FreeFault manages memory vulnerability based on
the microarchitectural property, a LLC line size.

B. Memory Faults and Errors

A typical DRAM fault affects a particular structure within
DRAM and a single fault may therefore affect a potentially
large number of DRAM locations. Prior work has explored
the relation between faults and the memory locations they
affect, which may be sets of bits, rows, or columns within
a subarray or bank, sets of subarrays within a bank or device,
sets of banks within a device or rank, and so forth [55, 56, 36].
For the purposes of this paper, it is enough to understand
two aspects related to the structures affected by a fault. The
first aspect is that each fault impacts either one cacheline-
sized contiguous region of physical memory addresses, a small
number of such regions, or is likely to affect a significantly
large memory region. The second aspect is that some faults
lead to errors that can be corrected by the processor’s ECC
mechanisms (Section II-C) while others may be uncorrectable
or even escape detection. We discuss these two aspects further
in Section III-B.

A particular fault can also be classified based on whether
it persists across multiple accesses or not and the likelihood
of it being active on any given access; an active fault is a fault
that affects the operation of the faulty component, whereas an
inactive fault may exist but did not impact operation during
a specific access. Faults that do not persist are known as
soft faults (also referred to as transient faults); a soft fault
in DRAM is active exactly once and can be repaired with
ECC protection. Faults that persist and may be active at
any time after they occur are known as hard faults (also
referred to as persistent faults). Hard faults may be further
classified as hard-intermittent (also referred to as intermittent
faults) or hard-permanent (also referred to as just hard or
just permanent faults). Hard-intermittent faults are faults that
are always present (after they occur), but are not always
active, only impacting the operation of the faulty DRAM
some of the time. Hard-permanent faults, on the other hand,
impact the DRAM for the vast majority of accesses to a
faulty structure. There is little data and analysis of the relative
rates at which hard-intermittent and hard-permanent faults
occur and also of the rate at which hard-intermittent faults
are activated. The reason is that the large-scale field studies
required for this analysis are rarely conducted or published
and those that have been recently published used systems with
aggressive coarse-grained retirement policies, removing faults
from further measurement [55, 56].

The analysis of Sridharan and Liberty [55] shows that the
total rate of hard faults is roughly 50 FIT (soft faults are less
frequent and result in an error rate of roughly 20 FIT). Hence,
a new hard-intermittent or hard-permanent fault occurring in a
specific DRAM chip in DDR2 or DDR3 technology is roughly
once every 2, 500 years of operation of a single DRAM device.
While this rate sounds small, a large system may contain
millions of DRAM devices and a new fault may occur once
every 5 hours or so. Their analysis also indicates that the
activation rate of hard-intermittent faults varies over a wide
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range, with some faults likely to be activated only roughly
once per month whereas others may occur once per hour
or even more frequently. Note that even a low rate of one
activation per month is still many orders of magnitude greater
than the expected rate of a new fault occurring on the same
device with an existing hard-intermittent fault. Also note that
a hard-permanent error may lead to a very high error rate if
it affects a region or component of DRAM that is accessed
frequently [53].

C. Memory Protection and ECC

Resilience is of greater concern as technology scales and
system component-count grows. Unprotected memories are
one of the major sources of system failure and large-scale
systems therefore utilize strong ECC mechanisms such as Re-
dundant Bit-Steering, Chipkill-correct (IBM) [18, 25, 10, 24],
Extended ECC (Oracle) [46], Chipspare (HP) [20], and Single
Device Data Correction (SDDC) or Single/Double Device
Data Correction (SDDC/DDDC) (Intel/AMD) [28, 1]. How-
ever, accessing memory data that requires correction with
those strong ECCs incurs power and latency overhead [2, 40].
Furthermore, it is even harder to implement such ECC tech-
niques in recently-introduced wide I/O memories including 3D
stacked memories because of higher cost to add redundant
devices, wider interfaces, and new fault modes.

III. FREEFAULT MEMORY REPAIR

FreeFault follows the straightforward design and operation
of a retire/remap repair mechanism, but uniquely utilizes
microarchitectural features that already exist in current high-
end CPUs. Figure 2 illustrates how the main components of
FreeFault are organized and used to repair faulty memory
(DRAM) locations:1

(1) First, each memory access determines whether it should
use DRAM or has been retired and remapped to alternative
storage.

1For clarity we use the term DRAM to refer to memory that may require
repair, however FreeFault can be used with other memory types.
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Fig. 3: Performance vs. LLC size on real systems: two Nehalem processors, an Intel
Xeon E5520 [26] and an E5620 [27], which have 8MB and 12MB LLCs respectively.
Both processors have 4 cores, running at 2.26/2.4GHz of baseline frequency and
2.4/2.53GHz of boosted frequency for the E5520 and the E5620 respectively.
Considering E5620 runs in 5–6% higher frequency, performance impact from
reduced LLC capacity by 33% is very small. Workload notations follow Table IV
but with 4 concurrent benchmarks (one per core).

(2) Second, retired addresses query a remapping table to
locate their data for completing the memory requests from
the processor. Alternatively, addresses that are not retired
proceed to request data directly from DRAM. Note that in
the FreeFault design, these first two steps are combined as
part of a regular LLC lookup.

(3) Third, in addition to the regular error-handling flow of the
processor (e.g., correction with an ECC code), requests
from DRAM that report an error are registered with a
mechanism that identifies candidates for repair.

(4) Fourth, once a DRAM location is determined to have a
permanent fault, it is either retired and remapped to alter-
native storage or the fault is exposed to system software
for other types of more coarse-grained retirement or repair.

Figure 2 also shows how FreeFault realizes this flow with
a very low-cost microarchitecture. The alternative storage,
retirement check, and remapping are all performed within an
essentially unmodified LLC of a processor cache hierarchy
(III-A). A retired DRAM location is simply always an LLC hit
whereas an unretired DRAM location uses the cache normally
and may either hit in the cache or miss and access DRAM.
We propose to implement a hardware memory error tracker
(MeET) that can track memory errors and identify DRAM
regions that are candidates for replacement without relying on
system software (Section III-B). At the end of this section we
show that the hardware overheads of FreeFault are negligible
and evaluate FreeFault’s impact on performance and reliability
in later sections.

In this work, we argue that counter-intuitively, trading off
a fraction of the LLC for avoiding DRAM faults provides a
beneficial overall tradeoff. This is because FreeFault enhances
resilience with minimum cost by utilizing already available
SRAM (LLC) resources and microarchitecture components
instead of adding hardware. Because FreeFault helps lower
the strength of required ECC, it also provides an interesting
tradeoff between reduced LLC capacity and achievable perfor-
mance benefit. We do not claim that this solution is appropriate
in all scenarios and that reducing LLC capacity by a significant
amount always has a small impact on performance. However,
our experiments confirm results reported by others that large
LLCs are not utilized very efficiently and performance is
not very sensitive to small relative capacity reduction [4, 62]
(Figure 3).

More importantly, as discussed in Section V, we demon-
strate that the vast majority of processors that actually experi-
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Fig. 4: Fault coverage vs. the maximum number of ways locked in any set in the
cache. The number of ways locked varies across sets (and runs). The x axis represents
the number in the set with the most locked ways for achieving the repair coverage
reported on the y axis. The results are for the system described in Section IV with
1x FIT rate after 6 years of operation; with full repair of the 128GB on-package
DRAM, 73% of faults are repaired with no more than a single way locked in any
set. (FF: FreeFault)

ence faults only require a small number of LLC cache lines for
repair and the impact on performance with highly-associative
LLCs is quite small.

A. FreeFault Cache Hierarchy

FreeFault leverages the associative mechanisms of the
cache hierarchy, which already map DRAM addresses to alter-
native storage for performance, for the resilience mechanism of
retirement-based repair. When a DRAM region is identified for
retirement (Section III-B), FreeFault locks the cache lines as-
sociated with the retired physical addresses in the LLC. Caches
of high-end processors typically already support locking lines
within the cache hierarchy using cache-control instructions in
the ISA [29]. FreeFault can even potentially use these same
instructions, or simple variants of them, from within firmware
or microcode. The modifications needed for FreeFault are
associated with preventing the eviction of FreeFault-locked
lines, the handling of DMA operations, uncached accesses,
and other aspects of coherence, and maintaining the retirement
information across reboots. Note that FreeFault can be used
online without software support and no system-software or
application modifications are necessary.

Locked cache lines. A DRAM region that has been retired
with FreeFault must never be evicted from the cache hierarchy
(with the exception of shifting to another coarser-grained
resilience technique, which must involve software). Therefore,
care must be taken to: (1) not allow any software to unlock a
block that represents retired DRAM because FreeFault locking
impacts correctness and is not a performance optimization;
(2) not evict locked lines for coherence and DMA accesses
(discussed in the next subsections).

The first constraint of not allowing software eviction can
be easily achieved by adding a state to each cacheline tag that
indicates whether FreeFault or software locked the line. This
requires at most one additional bit in each tag and can also
be achieved with a small bloom filter that tracks cachelines
locked by FreeFault. We propose to use an even lower-cost
mechanism by designating a subset of cache ways to not allow
software locking/unlocking. The cache ways would not be
dedicated to retirement, which significantly decreases cache
capacity; rather the way would be dedicated to locking control
by FreeFault to satisfy the strong locking requirement. We
expect retired lines to be balanced well across sets because



only a fraction of the LLC is used by FreeFault (see Section V),
because independent fault locations are random, and because
XOR-based address hashing is usually used in the memory
system [63, 16] (Figure 4).

Coherence. Hardware cache coherence may need to be mod-
ified in a very small way. FreeFault requires a retired line to
always be in some cache, thus the primary objective is not
to allow eviction of FreeFault-locked cachelines. In a single
socket multi-processor in which all cores share a single LLC,
this is trivial. Multi-socket multiprocessors, however, require
a minor modification to the coherence protocol. Similarly to
previously proposed coherence protocols supporting locked
cachelines [49, 8, 17], FreeFault adds two coherence states,
which are Locked Invalid and Locked Valid. These additional
states are represented with the existing coherence state bits and
the additional lock flag bit.

When a processor (CPUA) has a Locked Valid cacheline
corresponding to faulty memory under its control (accessed
through its socket) receives an invalidation signal (or snoop
request) from another processor (CPUB), CPUA invalidates
the data but maintains the locked flag, thus putting the cache-
line in the Locked invalid state (instead of the conventional
Invalid state). The replacement policy is then modified to not
evict locked lines even when they are invalid. Data can now be
supplied by the cache of CPUB or CPUA recaptures the data
into its cache on a writeback from CPUB . Thus, the retired
memory address is always serviced within the cache hierarchy.

DMA and Uncached Accesses. DMA read and write re-
quests must be satisfied by the locked line in the cache
rather than memory. Because DMA engines also use the data
bus/interconnect to exchange data between different modules,
the LLC monitors the data bus/interconnect and provides the
data if it has the up-to-date or locked data (either by snooping
at the cache or the directory slice). This is similar to the
cacheline invalidation for external memory update mechanism
presented by Rahman et al. [49]. Depending on the processor
implementation, this may in fact already be how DMA requests
are handled. Even if DMAs are handled through invalidation,
the modification to this snooping mechanism are straightfor-
ward.

In some systems, it is possible to make uncached accesses
that bypass the cache hierarchy. While uncached accesses
may have multiple uses, they are fundamentally similar to
DMA accesses in that they originate from clients on the
bus/interconnection network. Hence, uncached accesses can be
handled using the same mechanisms and protocols as described
above for DMA accesses.

Maintaining Retirement Information. Ideally, the informa-
tion on which memory regions require locking will be stored
in non-volatile memory available to the FreeFault firmware.
When a DRAM region is first retired, FreeFault would register
the region to a retirement table in the non-volatile memory.
Based on the analysis presented later, we expect this table to
have at most 16K entries, each storing a retired physical cache
line address (roughly 34 bits per entry in today’s systems).
Current firmware typically contains more FLASH memory in
the chipset than the required 68KB. For example, a typical
Unified Extensible Firmware Interface (UEFI) chipset has
8MB of FLASH [60].
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If non-volatile storage is not available, it is possible to
allow cache lines to experience an error and be dynamically
“re-retired” by FreeFault. This re-retirement may be done
during the boot sequence or even at runtime. During boot,
a memory test can be run. If such a test is too expensive,
faults can be dynamically identified as errors reoccur. Although
these approaches avoid non-volatile storage, there is a risk that
an uncorrectable error that could have been prevented with
retirement from a persistent table during boot will occur.

B. Memory Error Tracking

A key aspect of retirement-based repair is identifying
DRAM regions that are candidates for retirement. We design a
hardware memory error tracker (MeET) based on the insights
about memory faults summarized in Section II-B. Specifically,
we account for the fact that per-DRAM chip fault rates are very
low, the fact that most faults affect a fairly small number of
cacheline-sized regions of DRAM, and the fact that many hard-
intermittent errors are difficult to differentiate from soft errors.
While we can design fairly complex hardware mechanisms
that can differentiate between soft and hard-intermittent errors



with high likelihood, we argue below that such a distinction
will rarely, if at all, impact the benefits of FreeFault. Instead,
the goals of MeET are to enable policies for managing
reliability/performance tradeoffs with a very rough estimate of
fault type. Figure 5 illustrates how MeET achieves this goal.

As with the retirement/repair mechanism of FreeFault,
MeET utilizes and slightly augments structures that already
exist within the memory hierarchy, specifically, the LLC and
the hardware memory scrubber [51]. The scrubber periodically
(typically once every few hours) cycles through all of memory
performing ECC corrections of errors caused by soft faults
and possibly by infrequent hard-intermittent faults. MeET
augments the scrubber to monitor the severity of faults in
DRAM locations retired with FreeFault and uses the LLC to
track fault state.

MeET interacts with the processor’s reliability infrastruc-
ture to identify erroneous transfers from DRAM. When an
error is detected, MeET decides whether to retire and repair the
corresponding DRAM location based on the state and number
of previously retired DRAM locations. The baseline policy is
to aggressively retire DRAM as long as performance impact
is small. This is because, when an error is first detected, it is
impossible to determine whether it is a result of a soft fault or
an infrequently-activated hard-intermittent fault. Because the
fault rate per memory module is so low, MeET must only
worry about coarse-grained faults that impact a large number
of DRAM locations that span many cachelines.

There are two main tradeoffs associated with reducing
the capacity needed for FreeFault repair. The first has to do
with whether faults are soft and will not reoccur, or hard
and require mitigation. The second aspect is whether ECC
protection should be relied upon for correction, and retirement
only performed for faults potentially leading to uncorrectable
errors.

While coarse-grained hard faults are indeed problematic,
we wish to avoid our aggressive retirement policy from
requiring software intervention when a coarse-grained soft
fault occurs. In such cases, retired lines can be reused and
aggressive retirement was unnecessary. We observe that all
retirement events associated with a soft fault must occur
within a single scrubbing interval. This is because scrubbing
essentially repairs all soft faults.2 Therefore, we track the
number of retirement events within a single scrubbing period.
Once this number exceeds a coarse-grained threshold we seek
to determine if a coarse-grained soft fault occurred. To do this,
we invoke the hardware scrubber immediately in a mode that
attempts to do a quick read-correct-write-read test. If no errors
are reported during this test, the fault was very likely a soft
fault. We then unretire the DRAM locations that have been
retired in the now-previous scrubbing interval.

In keeping with FreeFault low-cost approach, we propose
to identify those lines retired in the current/previous scrub
interval using the same approach we use to differentiate
between FreeFault-locked lines and software-locked lines. We
reserve two ways for locking only by FreeFault (disallow
software locking) instead of just one. When a line is first

2Some rare soft faults may affect DRAM control state that persists across
scrub periods, however, we assume such faults are very rare and that it is
therefore acceptable to conservatively treat them as hard faults.

locked, it is placed into Way1 indicating it was locked in the
current scrubbing interval. After MeET confirms retirement
during scrubbing, retired lines are moved to Way0.

Because it is possible the errors were due to a hard-
intermittent fault, we also record the coarse-grained fault event
with a sticky bit associated with the memory module. If a
second coarse-grained event is observed in the same module
we conservatively assume that both events were due to the
same coarse-grained fault. Using the Birthday Paradox, we
estimate the rate of two coarse-grained soft faults occurring
at the same module to be less than once every 1 year per
million DRAM devices. Note that invoking the scrubber in
the proposed way will introduce a multi-second disruption
to memory traffic on the memory channel, but such coarse-
grained faults are rare and are expected to occur not more
than once every several weeks on even the largest installations
that have millions of memory devices.

Higher-level support for FreeFault. As FreeFault retires
cachelines, performance degradation may become unaccept-
able. While we discuss the microarchitecture aspects of
FreeFault, FreeFault is not intended as hardware-only solution
for all fault types. Instead, we offer a new tradeoff opportunity
to reduce the need for software approaches (or retirement) for
the vast majority of processors. We argue that FreeFault can
be used along with SW approach to enhance efficiency.

While coarse-grained events may lead to many retire-
ments within a single scrubbing interval, coarse-grained hard-
intermittent faults may also create new cacheline-sized retire-
ment over a long period of time. This accumulating effect may
also lead to performance degradation if FreeFault locks a large
enough capacity of the LLC. In such cases another potential
tradeoff is between reliability and coverage. FreeFault may be
configured to only retire DRAM locations once they lead to
an uncorrected error. Thus, less severe faults will not consume
LLC capacity and will instead rely on ECC for correction.
However, this may increase the number of ECC correction
events reducing performance in a different way or degrade
reliability because protection capability is compromised by
the faulty component. Thus, this configuration must be done
carefully and only for installations that can tolerate this loss
of reliability and that may require coarser-grained retirement
because of performance degradation.

IV. METHODOLOGY

The primary objective of FreeFault is to provide very low-
overhead resilience while simultaneously maintaining perfor-
mance, DRAM capacity, and DRAM reliability. We therefore
evaluate the impact of FreeFault on three factors:

DRAM Capacity. We evaluate the impact of FreeFault repair
by estimating what fraction of nodes with DRAM faults can
be repaired with different LLC volumes locked for repair.

DRAM Reliability. To represent the reliability tradeoff, we
evaluate the impact on DRAM capacity of repairing any fault
or just those faults that cannot be corrected by ECC; the impact
on performance and power can then be derived.

Performance/Power. We evaluate performance by measuring
the throughput of an 8-core simulated processor under different
assumptions of how much LLC capacity is locked for FreeFault



repair. We also evaluate DRAM power, which may increase if
more LLC cache misses occur.

A. Capacity and Reliability

We use a Monte Carlo fault-injection simulator of a
processing node to estimate the impact on DRAM capacity
and reliability. We use a set of independent fault processes,
with each fault type on each module and device following
an independent Poisson process. We detail the fault processes
and their associated rates below. As faults accumulate over
a period of time (we simulate 1-year and 6-year scenarios),
a greater fraction of SRAM capacity must be dedicated for
FreeFault repair as more DRAM requires retirement. We report
the expected fraction of faulty nodes that can be handled with
varying FreeFault LLC usage. Note that all the figures are
normalized to just those nodes that experienced any faults. We
assume 8 stacks (8 dies or devices per stack) of on-package
memory and 8 DIMMs (each has 8 or more DRAM devices
depends on ECC support) of off-package memory and present
results of the two configurations separately. We run 200 million
Monte Carlo experiments per scenario.

Reliability. For evaluating reliability, we explore two different
retirement policies: retire on any fault and retire only on faults
that can lead to uncorrectable errors. Our baseline ECC is
capable of correcting errors that impact an entire device in the
off-package scenario (i.e., chipkill [10]) and an entire sub-array
in the on-package scenario (i.e., subarray-kill ECC [15]). For
each module in the system at each point in time in simulation,
we decide which memory regions may result in uncorrectable
errors and report only those as requiring retirement. Note that
this methodology is likely conservative, because many such
faults are unlikely to interact in a way that causes uncorrectable
errors.

Fault Model. For off-package memory, we use the fault model
presented by Sridharan and Liberty [55], which is based on a
large-scale empirical study of DDR2 memories. We do not use
the model for DDR3 presented more recently [56] because
the earlier model provides additional detail that we use to
determine potentially uncorrectable errors. We also provide
results based on a 10× higher fault rate, which we use as a
proxy for potentially much higher future error rates. While
there is no model that we are aware of for future DRAM
technology fault rates, there is consensus that DRAM fault
rates are much more strongly related to the number of DRAM
dies (chips/devices) than to the number of DRAM bits [55, 56].
Table I summarizes the fault rate used in this work.

We are also unaware of a detailed model of faults in
on-package memories. We believe the best estimate is the
same model described above because DRAM faults have been
shown to be strongly correlated to DRAM-die counts and not
strongly correlated with DRAM technology nodes. To account
for uncertainty, we use the 10× greater fault-rate model as
well. While better models should be developed, we believe our
conclusions are unlikely to fundamentally change with greater
model fidelity.

B. Performance and Power Simulation

To understand the expected performance impact of us-
ing the LLC for FreeFault repair, we measure execution

Fault mode Fault rate (1x) Fault rate (10x)
Single-bit 18.6 186
Single-row 8.2 82
Single-column 5.6 56
Single-bank 10 100
Multiple-bank 1.4 14

TABLE I: Permanent fault rate of each DRAM device (FIT/device) [55]

Processor 8-core, single-threaded, 4GHz, x86 ISA, 4-way out-of-order
L1 I-caches 32KB, private, 8-way, 64B cache line, 1-cycle, 5 fetch cycle
L1 D-caches 32KB, private, 8-way, 64B cache line, 3-cycle

L2 caches 128KB, private for instruction and data, 8-way
64B cache line, 8-cycle

L3 caches 8MB shared, 32-way, 64B cache line, 30-cycle
Memory FR-FCFS scheduling [50], open page policy
controller channel/rank/bank interleaving

bank XOR hashing [63]
Main memory 2 channels, 2 ranks / channel, 8 banks / rank

All parameters from the Micron DDR3-1600 datasheet [43]

TABLE II: Simulated system parameters

throughput with MacSim [21], a cycle-based x86 processor
simulator. While FreeFault targets both on-package and off-
package memory, the impact of lower LLC capacity is likely
to be greater with slower off-package memory. We therefore
configure the simulator with a dual DDR3 memory channels.
Table II summarizes the baseline system parameters for our
performance evaluation. We explicitly mention changes to
the baseline configuration when reporting sensitivity study
results. We reduce cache capacity by randomly locking up
to one way in each LLC set, or same number of ways per
set when requires reducing more than one way per set. As
explained in Section III, the existing XOR-based physical
address interleaving balances faults across sets and our random
selection is realistic [16]. While we did not run a large number
of Monte Carlo experiments, we did verify that our random
selection did not result in outliers with respect to access
frequency.

Performance. We use Weighted Speedup (WS) [54] as defined
by Equation (1) as our performance metric. IPCalone

orig is the
IPC when an application is run alone in the baseline system
with no LLC retirement. IPCreduced

new is the IPC when running
with other applications sharing LLC with various LLC capacity
reduction to locate retired data. We use misses per kilo-
instruction (MPKI) and DRAM power to analyze impact on
the memory hierarchy.

WS =

N−1∑
i=0

IPCreduced
i,new

IPCalone
i,org

(1)

Power. We estimate DRAM power with the number of dif-
ferent DRAM operations (activate, precharge, read, and write)
performed and the energy associated with each operation as
detailed by Micron [42]. Note that DRAM power is sufficient
for our evaluation because, as we show in our results, the
performance impact of FreeFault is very small.

Workloads. For our workloads we use both multi-threaded
HPC-oriented benchmarks [5, 11, 13, 39] and multi-
programmed SPEC CPU2006-based workloads [57]. Because
we are concerned with the interactions with memory, we
choose mostly memory intensive benchmarks among the SPEC
CPU2006 benchmark suite. We also run compute-intensive



Workload Benchmark Input Description
BT C Block Tri-diagonal solver
CG C Conjugate Gradient
DC A Data Cube

NAS EP C Embarrassingly Parallel
parallel FT B Discrete 3D FFT
bench IS C Integer Sort

LU C Lower-Upper Gauss-Seidel solver
MG B Multi-Grid on a sequence of meshes
SP C Scalar Penta-diagonal solver
UA C Unstructured Adaptive mesh

Livermore Unstructured LagrangianCo-design LULESH 303 Explicit Shock Hydrodynamics

TABLE III: Multi-threaded workloads

Workload Benchmarks
HIGH1 H1 lb, mi, so, li, lb, mi, so, li
HIGH2 H2 lb, mi, so, mc, lb, mi, so, mc
HIGH3 H3 lb, mi, mc, li, lb, mi, mc, li
HIGH4 H4 lb, mc, so, li, lb, mc, so, li
HIGH5 H5 mc, mi, so, li, mc, mi, so, li
MIX1 M1 lb, mi, so, li, mc, om, le, om
MIX2 M2 lb, mi, so, li, mc, om, le, le
LOW L1 le, om, le, om, le, om, le, om

COMPUTE C1 lb, mi, so, li, mc, le, sj, bz

Description
lb 470.lbm
mi 433.milc
so 450.soplex
li 462.libquantum

mc 429.mcf
le 437.leslie3d

om 471.omnetpp
sj 458.sjeng
bz 401.bzip2

TABLE IV: SPEC CPU2006 multi-programmed workloads composition

workloads and memory-intensive workloads simultaneously to
measure the impact of FreeFault in various scenarios. Table III
and Table IV summarize the benchmarks we use. In Table IV,
HIGHn, MIXn, and LOW have only memory intensive work-
loads while COMPUTE includes compute-intensive workloads
(bzip2 and sjeng). Benchmarks in HIGHn exhibit a larger
number of LLC misses, those in LOW exhibit a moderate LLC
miss rate and still stress memory to a degree, and those in
MIXn are a mix of HIGH and LOW benchmarks.

In each simulation, every application begins executing at
a SimPoint [47], and simulation of all applications continues
until the slowest application (or core/thread in multi-threaded
workloads) completes 200M instructions. We collect statistics
from each application or core only for its first 200M instruc-
tions, but keep executing all applications or cores to correctly
simulate contention for shared resources.

V. EVALUATION RESULTS

As explained earlier, we focus our evaluation on the
potential impact on performance and power of LLC capacity
loss due to FreeFault repair, and the required capacity for
maintaining certain levels of DRAM reliability and repair
coverage.

A. Capacity and Reliability

Figure 6 shows what fraction of nodes that experienced
DRAM faults (14% of nodes with the baseline fault rate)
can be fully repaired as greater LLC capacity is dedicated
for FreeFault repair. In this experiment, any fault leads to
retirement and we do not rely on ECC corrections except for
initial repair. With even just a small ∼ 8KB capacity hit to the
LLC, FreeFault is able to fully repair roughly 60% (60% for
on-package, 58% for off-package) of faulty nodes assuming
the baseline fault rates (Figure 6a and Figure 6b). Importantly,
these repaired nodes have no degradation in reliability and
no degradation in performance due to ECC corrections. As
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Fig. 6: Cumulative repair coverage vs. required LLC capacity for full repair with
no impact on reliability or regular ECC corrections. The fractions of nodes having
any retired data with on-/off-package DRAM are 14% and 77% for 1x and 10x
baseline FIT respectively.
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Fig. 7: Cumulative repair coverage vs. required LLC capacity for repairing only
faults that are not correctable by ECC. Relying on ECC lowers the fraction of
nodes having any retired data to 6% (1x FIT) and 45% (10x FIT) for on-package
memory, and 0.1% (1x FIT) and 1% (10x FIT) for off-package memory.

we show later, with such a small LLC capacity requirement,
performance and power are also not impacted. With greater
LLC capacity of up to ∼ 768KB, 89% of nodes with on-
package faults and 85% of nodes with off-package faults can
be fully repaired. Even at that level of LLC capacity decrease
for FreeFault locking, performance impact is small.

Nodes that cannot be repaired (11–15% of nodes based on
above estimation) suffered coarse-grained failures that require
many MB of capacity to repair and are not suitable for
FreeFault, requiring higher-level mitigation. The trends are
similar for the 10× error rate experiments with slightly lower
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Fig. 8: Performance comparison with various LLC capacity dedicated to FreeFault in a system with the configuration shown in Table II. (a) Performance is measured in
Weighted Speedup. (b) Cache performance is measured with LLC MPKI.

repair coverage (Figure 6c and Figure 6d). Note that the graphs
are normalized to the number of nodes that experienced any
fault, which are roughly 77% of nodes with the 10× fault rates
after 6 years of operation.

As explained in Section III, FreeFault can improve its
repair coverage by relying on ECC to handle those faults that
result in correctable errors. We show the impact on repair
coverage in Figure 7. At the baseline fault rate, 97%/78%
of nodes can be restored with roughly 1.2MB of the LLC
dedicated to FreeFault for nodes with faults in on-/off-package
memory, respectively. With the accelerated 10× fault rate, the
trends are similar with slightly lower coverage of 95%/72%
for nodes with faults on/off-package respectively. The higher
fault rate also shows the impact of fault accumulation as a
greater number of nodes suffer coarse-grained faults after 6
years compared to at 1 year. Note that the underlying number
of nodes (sockets) that require repair is much smaller when
relying on ECC as discussed in Section III-B, which explains
the difference in coverage compared to the scenario where
reliability is not impacted.

B. Performance and Power

Repurposing a portion of the LLC for FreeFault increases
the LLC miss rate, which in turn, increases DRAM accesses
and degrades performance and power efficiency. We show the
impact of this effect on system throughput (weighted speedup)
and LLC miss rates (MPKI) in Figure 8. There are two main
takeaways from our experiments. First, nearly all workloads
are very insensitive to small – mild reductions in LLC capacity.
Only two benchmarks showed performance variation of > 2%
(EP and LULESH). The EP NAS parallel benchmark is most
impacted by cache reduction because, by chance, its working
set fits tightly within the baseline cache size chosen. EP also
suffers from significantly greater MPKI as more capacity is
devoted to repair, but its overall MPKI is not high and the
impact on DRAM behavior is small overall. Even EP does not
suffer any measurable degradation when only 8KB are used
for FreeFault, although this point is already enough to fully
repair roughly 60% of nodes and restore with ECC corrections
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Fig. 9: DRAM dynamic power consumption with various amount of retirement
blocks while running multi-threaded applications (NPB and Lulesh) in a machine
with 8MB LLC.
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Fig. 10: Performance impact with 16MB and 4MB LLC. Both cases show consistent
results with our baseline, 8MB LLC, and FreeFault is applicable to various sized
LLC having higher set associativity. For clarity, we exclude NPB workloads not
showing noticeable performance difference with reduced LLC by 1.5MB and 1MB
for each, and present averaged WS for SPEC CPU2006.

almost 42% of nodes. Thus, FreeFault delivers on our goal of
no-compromise repair for a majority of faults.

Figure 9 shows the impact of FreeFault on DRAM power,
which corresponds almost directly to MPKI. The reason is that
performance impact is so small that the overall behavior of the
application is unchanged. Furthermore, the only significantly-
impacted application, EP, does not consume any active DRAM
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Fig. 11: Memory access frequencies per 8KB block are measured with PIN-tool [41].
Note that a graph on the right has 4 times bigger address range. The applications
shown in the left side presents very high data access locality, so when those blocks
are suffered from permanent faults the performance impact becomes significant
even if they are correctable. Workloads in the right graph have relatively lower
data locality, but in many cases, more than 50% of DRAM accesses are serviced by
less than 64 MB memory region. Simple retirement on those blocks greatly reduces
performance degradation due to data correction by ECC.

power and is therefore a non-factor in this analysis. We do
not show overall system power because it is flat and energy
efficiency correlates perfectly with performance.

The results are even better with a larger LLC. Figure 10a
shows that with a larger LLC, all applications are essentially
not impacted even when 1.5MB of the LLC is used for
retirement – a point that can fully repair 90% of nodes and
restore with ECC over 98% and 78% of nodes with on-
/off-package memory faults, respectively. Figure 10b shows
FreeFault works even with a smaller, 4MB LLC because
associativity is still high and FreeFault consumes a small part
of the LLC. Note that with the smaller case, the impact of
FreeFault on EP is small because its working set no longer
fits in the baseline cache and its absolute performance is lower
(5.8 instead of 7.3).

Impact of ECC Corrections. While relying on ECC to correct
the errors of some faults improves repair coverage, correc-
tions increase memory latency and may decrease performance.
Because the details of how chipkill correction is performed
are not discussed in detail by vendors, it is unclear what this
penalty is. Some research indicates that correction may take
tens of cycles. Thus, if corrections are frequent, the small
performance degradation because of FreeFault impact on LLC
capacity may be dwarfed by that of ECC corrections. Figure 11
plots the cumulative distribution of memory accesses services
by a certain (possibly non-contiguous) portion of DRAM.
Many benchmarks show that even a small < 2MB region of
memory may be responsible for a majority of accesses. Thus
in some unfortunate situations, ECC corrections that could be
avoided with FreeFault repair may be triggered on the majority
of accesses. Thus, without FreeFault, such nodes would be
retired because of poor performance. Of course, software can
address such anomalies by remapping virtual memory pages,
but FreeFault achieves this entirely in the microarchitecture.

VI. RELATED WORK

With hard faults being more frequent than transient
faults [55, 56] and leading to far more frequent error
events [22, 53], mechanisms have been developed to augment
ECC for their protection. While some techniques involve
fault-specific adaptation of the ECC code [3], a more gen-
eral approach is to retire faulty components and potentially
replace them. Such retire/replace techniques generally fall
into one of six main categories (from least to most intrusive
in terms of hardware design): (1) retire entire nodes in a
large system (software); (2) retire memory ranks or channels
(hardware); (3) retire memory frames at OS page granularity
(software) [18, 25, 59]; (4) retire individual chips in a rank,
which necessitates a reduction in ECC coverage of additional
faults (hardware) [18, 25]; (5) compensate for reduced ECC by
increasing access granularity with memory-channel coupling
(hardware) [25]; and (6) fine-grained retirement with remap-
ping to redundant storage (hardware) [45, 58, 18, 25, 38].

Retiring entire nodes is simple and can be effective pro-
vided the fault rate leading to such retirement is low enough
and that no critical data is lost when retirement occurs. The
problem with this approach is that the fault rate may be quite
high if fault rates increase over time (Section IV) and that
it is not suitable when specific node availability requirements
are strict. Retirement of memory channels or ranks is also
quite expensive in that it reduces memory capacity, which
often has a severe adverse impact on performance and power
efficiency. When cost is of secondary concern, channel mir-
roring can be used to completely mask faults and even allow
hot-replacement of faulty memory for maintaining a desired
reliability level [18, 25]. Of course, with mirroring, half the
memory capacity and possibly also half the memory bandwidth
is sacrificed [28].

More targeted retirement can be performed in systems with
page-based virtual memory support. With virtual memory, the
OS can be modified to remove faulty memory frames from
the frame free list and thus prevent application data from ever
using faulty memory regions [18, 25, 59]. While conceptually a
simple and effective technique, successful and efficient imple-
mentations are not straightforward because physical to DRAM
address mapping may increase the footprint of some DRAM
faults to many OS-page granularity memory frames [63] and
because some OS components and peripheral devices do not
fully utilize virtual memory facilities [12] (IBM’s AIX, in
particular, limits its retiring feature to a specific memory
address space [18, 25]).

For example, when a single column in a 512 × 512
sized subarray experiences faults, it may requires retiring
up to 2MB or 1GB memory in 4KB and 2MB OS page
respectively (512 pages with 4KB OS page, 2–512 pages
with 2MB OS page depending on interleaving and number
of ranks/banks/channels) while each OS page includes only
a few defective bit cells. Additionally, recent work related
to very high-capacity memory systems has proposed avoiding
page-based memory management altogether due to translation
inefficiency and replacing it with direct segments [7]. Such a
system may be suitable for applications designed to fit into its
physical memory size, but precludes page-based OS-managed
retirement while FreeFault remains effective.



An interesting alternative to retiring nodes or reducing ca-
pacity is to retire the faulty DRAM device itself. Because ECC
protection requires redundant devices, part of that redundancy
can be repurposed for remapping data from the faulty DRAM
device. Examples of this technique include the bit-steering
approach of IBM’s Memory ProteXion scheme of X-Series
servers [9, 18, 25] and one way by which Intel’s SDDC and
DDDC schemes tolerate chip failures [28]. The downside of
this repair approach is that resilience against further faults is
significantly degraded because ECC redundancy is reduced.
To compensate for this reduction, it is possible to change the
ECC code used to a wider codeword and maintain protection
level, but this requires coupling memory channels and reduces
performance and power efficiency [14].

Finally, at the finest granularity hardware can introduce
redundant storage for remapping faulty DRAM at a fine gran-
ularity. A classic example of this approach is row and column
sparing within memory arrays [37], although such techniques
are often only available during manufacture/test/integration
time and may not be available for use in the field by customers.
As an alternative, structures external to the arrays themselves
have been suggested for use in repair. Fault Caches have been
proposed within the DRAM die or package to be used as spare
locations for memory retirement and repair [58]. A fault cache
can effectively tolerate DRAM faults, but adds substantial
cost because secondary storage and remapping components
are necessary at each of the numerous memory devices in
the system. A different implementation of a broadly similar
idea has been proposed as part of the ArchShield architecture,
which uses a fraction of DRAM storage to hold both indirec-
tion information and spare storage for remapping [44]. Also,
in the same vein, ideas for tolerating wearout faults in non-
volatile memories often utilize fine-grained spare storage and
remapping [52, 30, 61, 48].

We note that while not discussed in prior work, it is also
possible to include a small fault cache within each memory
controller. Such a design still suffers from adding hardware and
complexity that is very rarely exercised. Contrary to all these
previous approaches, FreeFault supports fine-grained retire-
ments with minimal impact on complexity (see Section III-A),
performance, and power, without compromising reliability, and
with no reliance on or interruption to running software.

VII. CONCLUSION

To conclude, we presented and demonstrated the potential
of FreeFault as another layer in the memory resilience scheme
of a highly-reliable and highly-available system. We show how
FreeFault can be implemented with only minor modifications
to current designs, with the most significant modifications
amounting to ensuring DMA and other uncached accesses are
snooped by the coherence mechanisms of the LLC, while pro-
viding repair capabilities entirely within the microarchitecture.

Our results show that FreeFault can be used to fully
repair roughly 60% of all faulty nodes assuming current
fault rates with only an 8KB reduction in LLC capacity. In
some scenarios, a larger fraction of the LLC may be locked
without impacting performance and this extra capacity (up
to 768KB total) improves fault coverage to over 85% in
general and roughly 90% of on-package faults. This is done

with essentially no impact on performance and absolutely no
impact on reliability and DRAM capacity. Furthermore, by
sacrificing some reliability and relying on ECC corrections
(new faults may lead to undetected errors), fault-repair cov-
erage is increased to 97% and 78% of nodes with faults
in on- and off-package memory, respectively. Again, this is
done transparently and before software must be called upon
to perform coarser-grained tradeoffs between DRAM capacity,
performance, and reliability.

Thus, we reach the surprising conclusion that FreeFault
demonstrates the counter-intuitive property of benefiting from
trading off a small amount of on-chip SRAM for repairing
DRAM.
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