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Abstract—GPUs employ massive multithreading and fast con-
text switching to provide high throughput and hide memory
latency. Multithreading can increase contention for various sys-
tem resources, however, that may result in suboptimal utilization
of shared resources. Previous research has proposed variants of
throttling thread-level parallelism to reduce cache contention and
improve performance. Throttling approaches can, however, lead
to under-utilizing thread contexts, on-chip interconnect, and off-
chip memory bandwidth. This paper proposes to tightly couple
the thread scheduling mechanism with the cache management
algorithms such that GPU cache pollution is minimized while off-
chip memory throughput is enhanced. We propose priority-based
cache allocation (PCAL) that provides preferential cache capacity
to a subset of high-priority threads while simultaneously allowing
lower priority threads to execute without contending for the
cache. By tuning thread-level parallelism while both optimizing
caching efficiency as well as other shared resource usage, PCAL
builds upon previous thread throttling approaches, improving
overall performance by an average 17% with maximum 51%.

I. INTRODUCTION

GPUs have become the dominant co-processor architecture
for accelerating highly parallel applications as they offer
greater instruction throughput and memory bandwidth than
conventional CPUs. Such chips are being used to accelerate
desktops, workstations, and supercomputers; GPU computing
is also emerging as an important factor for mobile computing.

GPUs rely on massive multithreading to tolerate memory
latency and deliver high throughput. For example, a modern
NVIDIA Kepler GPU can have up to 30,720 threads resident in
hardware and operating simultaneously. GPU memory systems
have grown to include a multi-level cache hierarchy with both
hardware and software controlled cache structures. The high-
end NVIDIA Kepler now includes a total of nearly a megabyte
of primary cache (including both hardware and software
controlled) and 1.5MB of L2 cache. Exploiting locality in
throughput processors will increase in importance to reduce
both power and off-chip bandwidth requirements. However,
with so many threads sharing the caches and other shared
resources, the overall system often suffers from significant con-
tention at various levels. In particular, for applications that are
performance-sensitive to caching efficiency, such contention
may degrade the effectiveness of caches in exploiting locality,
thereby suffering from significant performance drop inside a
“performance valley” (PV region in Figure 1) – an observation
made by Guz et al. that performance becomes very low at a
middle ground between mostly cache-hits (MC region) and
mostly cache-misses (MT region) [1].
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Fig. 1: Performance impact on varying degrees of thread-level
parallelism [1]. The MC region represents systems with small
number of threads having large per-thread cache capacity to
hide latency. Systems in the MT region however leverage
massive multithreading as a way to achieve latency tolerance.

To enhance GPU caching efficiency, recent studies [2],
[3], [4] have proposed to limit the amount of thread-level
parallelism (TLP) available so that cache contention is min-
imized by reduced sharing. These throttling techniques tune
the total number of concurrently executing threads to balance
overall throughput and cache miss ratio, such that overall
performance is improved by having the active threads climb
out of the “performance valley” (into region MC in Figure 1).
As we demonstrate in this paper, however, thread throttling
leaves other resources under-utilized, such as issue bandwidth,
interconnection network bandwidth, and memory bandwidth.

In this paper, we present a fundamentally new approach
to the on-chip caching mechanism that is tailored to a mas-
sively multithreaded, throughput computing environment. We
present priority-based cache allocation (PCAL) that improves
upon previous thread throttling techniques and enables higher
throughput and better shared resource utilization. Prior thread-
throttling studies [2], [3], [4] require a sophisticated microar-
chitecture to dynamically estimate the optimal level of throt-
tling for improved performance. The key goal of our proposal
is not only to address the cache thrashing problem but also to
develop a lightweight, practical solution that can potentially
be employed in future GPUs. Unlike pure thread throttling
approaches which force all active threads to feed the on-
chip cache, PCAL categorizes active threads into regular and
non-polluting threads. The non-polluting threads are unable
to evict data from on-chip storage that has been touched by
regular threads. Such an approach reduces the cache thrashing
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problem while, at the same time, effectively allows the non-
polluting threads to use shared resources that would otherwise
go unused by a pure throttling mechanism. Compared to pure
thread-throttling, PCAL allows a larger number of threads
to be concurrently executing, while still being able to avoid
cache thrashing. In other words, our proposal avoids the
“performance valley” by moving the regular threads into the
caching-efficient MC region while at the same time leveraging
the extra non-polluting threads for extra throughput (similar to
the effect of staying in the MT region), a key insight we detail
in the rest of this paper. To summarize our most important
contributions:

• This paper provides a cost-effective solution to the
cache thrashing problem in a massively multithreaded
processor environment. While previous studies pro-
posed to stay away from the “performance valley” by
throttling the number of threads that time-share the
cache, we argue that it is still possible to achiveve
similar goals by strictly categorizing threads as being
either regular or non-polluting threads. Compared to
thread-throttling, our approach achieves both high
caching efficiency and high thread-level parallelism.

• We quantitatively demonstrate the above insight by
providing a detailed analysis of the primary ineffi-
ciencies caused by previous throttling techniques. We
observe that simply reducing the number of active
threads for better caching efficiency often leads to sig-
nificant under-utilization of various shared resources
across the system architecture.

• Based on this analysis, we propose our novel,
lightweight PCAL mechanism that minimizes cache
thrashing while maximizing throughput and resource
utilization. This paper highlights the importance of
balancing TLP, caching efficiency, and system re-
source utilization rather than simply focusing only
on the level of throttling. In summary, our best per-
forming PCAL configuration improves performance
by an average 17% with maximum 51% over previous
thread-throttling techniques.

II. BACKGROUND AND RELATED WORK

As we conduct our study in the context of GPUs, this
section provides background on GPU architectures and its
programming model. However, our approach is suitable to any
throughput architecture that employs massive multithreading to
tolerate system latencies.

A. CUDA Programming Model

Current GPUs, such as those from NVIDIA [5], consist of
multiple shader cores (streaming multiprocessors or SMs in
NVIDIA terminology), where each SM contains a number of
parallel lanes that operate in SIMD fashion: a single instruction
is issued to each of the parallel SIMD lanes. In CUDA, a single
program kernel is executed by all the threads that are spawned
for execution. The programmer groups the threads into a
cooperative thread array (CTA), where each CTA consists of
multiple warps. Current SMs schedule the instruction to be
executed in a warp of 32 threads, yet the SIMD grouping

TABLE I: Per-thread cache capacity of modern processors.

NVIDIA Kepler Intel Core IBM Oracle
GK110 [5] i7-4960x Power7 [12] UltraSPARC T3 [13]
48 KB L1 32 KB L1 32 KB L1 8 KB L1

2,048 threads/SM 2 threads/core 4 threads/core 8 threads/core
24 B/thread 16,384 B/thread 8,192 B/thread 1,024 B/thread

of warps is not generally exposed to the CUDA programmer.
The number of threads that form a CTA is an application
parameter, and a CTA typically consists of enough threads
to form multiple warps. As such, programmers are generally
encouraged to expose as much parallelism as possible to
maximize thread-level parallelism and latency tolerance. Other
studies [2], [6], however, point out that maximizing parallelism
does not necessarily lead to highest performance. We detail
such related works in Section II-D.

B. Contemporary GPU Architecture

Along with multiple SMs, current GPUs contain a shared
on-chip L2 cache and multiple high-bandwidth memory con-
trollers. NVIDIA’s high-end GK110, for instance, has 15
SMs, 1.5MB of on-chip L2 cache, and 6 GDDR5 memory
controllers [7]. Each SM includes a 128 KB register file, many
parallel arithmetic pipelines, a 64KB local SRAM array that
can be split between an L1 cache and a software controlled
scratchpad memory, and the capacity to execute up to 2,048
threads. In this model, the largest L1 cache that can be carved
out of the local SRAM is 48KB.

C. GPU Cache Hierarchy and Its Challenges

GPUs and CPUs are fundamentally different in how they
expose parallelism and tolerate memory latency. GPUs rely on
massive multithreading to hide latency and have historically
used on-chip caches as bandwidth filters to capture stream-
based spatial locality and reduce pressure on off-chip band-
width. CPUs have historically employed much more limited
threading and rely on large on-chip cache hierarchies to capture
the working sets of applications. This difference is highlighted
in Table I, which summarizes the thread and cache capacity
of contemporary parallel processing chips. The primary cache
capacity per thread for CPUs is 2–3 orders of magnitude
larger than for a GPU. As a result, keeping the working set
of all threads resident in the primary cache is infeasible on
a fully-occupied SM; the GPU is forced to rely on either
more plentiful registers, programmer managed scratchpad, or
off-chip memory for working set storage. Due to the limited
effectiveness of on-chip caching, some GPU devices disable
or limit caching capability by default [8], and some GPU
cache studies have pointed out that limiting access to the
cache can improve performance for a set of applications [9],
[10]. However, other studies have demonstrated that the cache
hierarchy in many-core processors is still essential for good
performance and energy efficiency for some applications [11],
[2], [3], [4], which we further discuss below.

D. Related Work

Recent studies have shown that massive multithreading
can cause significant cache conflicts. Guz et al. [1] [14]



describe a “performance valley” that exists between systems
in which the working set of the active threads fits primarily
within the cache and systems with massive multithreading
where fine-grained context-switching can hide the memory
latency. Several variants of thread throttling mechanisms have
been proposed to climb out of this “valley”, hence moving
the threads to the larger per-thread capacity domain. These
proposals seek to reduce the number of threads executing and
competing for the on-chip cache. Rogers et al. [2] proposed
cache-conscious wavefront scheduling (CCWS) which reduces
the number of warps that are active and able to execute, such
that the number of threads competing for the cache is reduced
and cache hit rate is improved. The authors of this work
discuss two thread-throttling strategies. First, a static warp
limiting (CCWS-SWL) approach is proposed which relies on
the programmer to manually fix the number of active warps at
kernel launch, having a very low implementation overhead but
with a higher burden on the programmer to determine optimal
warp count. Secondly, a dynamic CCWS mechanism that trades
off low programmer burden with additional hardware overhead
(e.g., 5-KB victim tag array per SM to estimate lost-locality)
is presented which approximates optimal warp count based
on runtime feedback. In effect, CCWS balances TLP and
caching efficiency, improving overall performance. Because of
this reactive nature, dynamic CCWS is reported as not being as
performant as the static CCWS-SWL approach which identifies
the optimal level of TLP before a kernel begins and maintains
that optimal level throughout kernel execution. In response to
this performance gap, Rogers et al. [4] subsequently proposed
an alternative mechanism that proactively throttles the number
of executable threads, demonstrating that such a dynamic
mechanism can match and at times slightly exceed the benefits
of the statically optimal level of TLP. Kayiran et al. [3]
proposed a similar dynamic throttling mechanism, with a key
difference being that the granularity of TLP adjustment is
in CTAs rather than in warps as in CCWS. As with our
PCAL mechanism, these thread-throttling approaches similarly
focus on assigning different execution capability in a per-
warp granularity so we quantitatively detail its benefits and
its limitations in Section V, followed by a comparison against
PCAL in Section VII.

In addition to the thread-throttling based approaches, below
we discuss other studies that are orthogonal to PCAL and can
be adopted on top of our proposal for further performance
improvements. Several researchers have proposed a variety of
schedulers that preferentially schedule out of a small pool
of warps [15], [16]. These two-level schedulers have been
developed for a number of reasons, but all of them generally
have the effect of reducing contention in the caches and mem-
ory subsystem by limiting the number of co-scheduled warps.
Apart from these warp scheuling based proposals, Jia et al. [10]
describe a compile-time algorithm to determine whether to
selectively enable allocation in the L1 data cache for each
load instruction in the program. The algorithm focuses on the
expected degree of spatial locality among the accesses within
a warp. Accesses that are anticipated to require many cache
lines to satisfy are selectively marked to bypass the L1 data
cache, thereby reducing cache capacity pressure. Jia et al. [17]
subsequently proposed a hardware-based scheme that provides
request-reordering and bypass-on-stall mechanisms to alleviate
the cache contention issues within GPUs. Based on the obser-

vation that massive multithreading frequently interrupts intra-
warp reuse patterns, the authors proposed to adopt per-warp
queues to hold and group memory requests within the same
warp such that intra-warp locality is preserved. The bypass-on-
stall technique allows a memory request to bypass the cache
when all cache blocks within the corresponding cache set and
MSHR entries have been already reserved for previous pending
requests. This policy hence prevents earlier pending requests
from blocking the current request set-conflict issues, achieving
higher memory-level parallelism and performance. In general,
proposals from [10], [17] can be applied on top of PCAL
for higher caching efficiency as it provides a fine-grained, per
cache-line control over cache allocation decisions – as opposed
to thread-throttling and PCAL which are more about applying
different execution privileges in a per-warp granularity.

III. KEY IDEA OF PRIORITY-BASED CACHE ALLOCATION

As described above, previous techniques have attempted to
stay out of the “performance valley” by adjusting either the
degree of multithreading or the ability for different threads
to contend for the cache. Our scheme seeks to holistically
incorporate both concepts to find the right balance between
thread-level parallelism, cache hit rate, and off-chip memory
bandwidth utilization in order to maximize performance.

If we consider a simple throttling scheme in which we
limit the number of co-executing threads, we may increase
cache hit rate and overall performance over the baseline
with maximum TLP enabled. At the same time, we may be
introducing vacant instruction issue slots and reducing off-chip
memory bandwidth utilization due to the reduced TLP. We
propose to allow additional threads to execute that are unable
to pollute the cache, but which can take advantage of the
available execution and main memory bandwidth, increasing
performance over a pure thread throttling approach.

Our priority-based cache allocation (PCAL) scheme seeks
to identify a number of threads which can allocate data in the
cache, giving them the “right to cache” via a priority token.
These regular, token-holding threads roughly correspond to the
pool of threads we would identify in a basic thread throt-
tling scheme. We also identify an additional number of non-
polluting threads that can exploit the remaining under-utilized
execution and memory bandwidth in the machine. By indepen-
dently selecting a number of threads that are able to compete
for cache resources and a number of additional threads that are
unable to pollute these cache resources, we aim to maximize
performance by simultaneously keeping execution resources
busy, maximizing cache hit rate, and exploiting the available
main memory bandwidth. In effect, our approach seeks to
strictly move the threads to either side of the “performance
valley” (Figure 1) and prevent them from being captured in
the middle ground, allowing high TLP while mitigating the
memory system contention issues that affect these highly-
threaded systems. Because PCAL grants tokens in a per-warp
granularity, it is simple to implement (Section VI-E) while
also enabling further extensions that can optimize the cache
allocation decisions in a finer granularity [17]. Section VI
details our key insights and the architecture implementation
of PCAL.



TABLE II: Baseline GPGPU-Sim configuration.

Number of SMs 15
Threads per SM 1536
Threads per warp 32
SIMD lane width 32
Registers per SM 32768
Shared memory per SM 48KB
Schedulers per SM 2
Warps per schedulers 24
Warp scheduling policy Greedy-then-oldest [2]
L1 cache (size/assoc/block size) 16KB/4-way/128B
L2 cache (size/assoc/block size) 768KB/16-way/128B
Number of memory channels 6
Memory bandwidth 179.2 GB/s
Memory controller Out-of-order (FR-FCFS)

TABLE III: Cache-sensitive CUDA benchmarks.

Abbreviation Description Ref.
KMN K-means [2]
GESV Scalar-vector-matrix multiply [19]
ATAX Matrix-transpose-vector multiply [19]
BICG BiCGStab linear solver sub-kernel [19]
MVT Matrix-vector-product transpose [19]

CoMD Molecular Dynamics [24]
BFS Breadth first search [23]
SSSP Single-source shortest paths [23]

SS Similarity Score [21]
II Inverted Index [21]

SM String Match [21]
SCLS Streamcluster [22]

IV. METHODOLOGY

Benchmarks. We evaluate a large collection of GPU bench-
mark suites from NVIDIA SDK [18], PolyBench [19], Par-
boil [20], Mars [21], Rodinia [22], LonestarGPU [23] and
CoMD [24]. Due to long simulation times, we execute some
of these applications only until the point where performance
exhibits small variations among different iterations of the ker-
nel. We identify cache-sensitive benchmarks in the following
manner. We first simulate each benchmark with the baseline
configuration in Table II and again with L1 and L2 cache
capacities increased by 16×. We then classify an application
as cache-sensitive if the large cache configuration achieves a
speedup of 2× or more. Table III summarizes the 12 cache-
sensitive benchmarks that we focus in the rest of this study.

Simulation Methodology. We model the proposed architec-
ture using GPGPU-Sim (version 3.2.1) [25], [9], which is
a cycle-level performance simulator of a general purpose
GPU architecture supporting CUDA 4.2 [26] and its PTX
ISA [27]. The GPU simulator is configured to be similar to
NVIDIA GTX480 [28] using the configuration file provided
with GPGPU-Sim [29] (Table II). Additionally, we enhance
the baseline GPGPU-Sim model with a XOR-based cache set-
index hashing [30] to improve the robustness of the memory

system and provide a strong baseline architecture1. The mod-
ified set-index hashing algorithm is applied at both L1 and
L2 caches to better distribute memory accesses among cache
banks, mitigating the effect of bank conflicts, and reducing
bank camping situations where regular access patterns produce
excessive contention for a small subset of cache banks.

V. MOTIVATION AND APPLICATION CHARACTERIZATION

To compare our PCAL scheme with the most relevant state-
of-the-art caching optimization strategies, this section analyzes
the effect of applying thread throttling [2], [3], [4] and Bypass-
on-Stall [17] to the baseline architecture of Table II.

A. Thread Throttling

Although GPU programming models [26], [31] encourage
the programmer to expose a large amount of parallelism to
maximize latency tolerance, mapping the maximum amount
of parallel work that the hardware can support often leads
to cache thrashing and significant contention in shared re-
sources. Thread throttling is an effective mechanism to balance
TLP and caching efficiency, thereby improving performance.
However, limiting the number of threads can potentially leave
other shared resources underutilized. To demonstrate how TLP
throttling affects various aspects of the system architecture,
this section details the effect of TLP modulation on overall
performance, L1 miss rate, and off-chip bandwidth utilization.

Throttling Granularity. As discussed in Section II-D, Rogers
et al. [2] and Kayiran et al. [3] both proposed thread-throttling,
the key difference between them being the granularity of throt-
tled threads. Our simulation results for CTA-level throttling
was shown to exhibit worse performance than the finer-grained
warp-level throttling (e.g., for KMEANS, GESV, etc) because
it was unable to reach the optimal number of active warps
unless the optimal warp count is a multiple of the CTA size.
Since the key intuitions behind the warp-level throttling of [2]
and the CTA-level throttling of [3] are similar (i.e., throttle
the number of threads when the cache thrashes), we choose
the warp-level throttling as a baseline comparison point due to
its finer-granularity and flexibility.

Static vs Dynamic Throttling. Rogers et al. [2] discussed
static warp limiting (CCWS-SWL) to motivate the dy-
namic CCWS mechanism, reporting that CCWS-SWL always
matched or slightly outperformed the dynamic CCWS. While
choosing the optimal number of static warp count requires
manual performance tuning from the programmer-end, it is a
common practice frequently used in the real world application
tuning process. Compared to dynamic CCWS, CCWS-SWL
requires minimal implementation overhead while outperform-
ing dynamic CCWS. For this reason, we adopt CCWS-SWL
as the baseline throttling mechanism to compare against.

1The original cache set-index function of GPGPU-Sim is based on a simple
bit-extraction of a subset of the data address. Our evaluation shows that
some applications exhibit significant pathological performance (up to 242%
slowdown for SRAD in Rodinia [22]) without the more realistic XOR-based
set-index hashing baseline [30]. We therefore adopt a simple XOR of bits
from the upper address region with the original set index bits.
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(c) Off-chip DRAM bandwidth utilization.

Fig. 2: Impact of TLP throttling on performance, L1 cache miss rate, and off-chip bandwidth utilization. Performance is normalized
to warp-max and the numbers 1, 2, . . . , 24 represent the number of warps the thread scheduler is able to issue instructions
from. Note that GESV, ATAX, BICG, and MVT contains only three bars as warp-max equals 4 warps.

B. Impact of Thread Throttling

TLP throttling is achieved by strictly limiting the number
of warps available to the thread scheduler. The numbers 1,
2, 4, . . . , 24 in Figure 2 designate the number of warps
from which the thread scheduler is able to issue instructions.
The number 1, for instance, represents a configuration with
minimum TLP available whereas 4 for GESV, 18 for CoMD,
and 24 for KMN represents the maximum TLP exposed to
the scheduler. The maximum number of CTAs (and hence
warps) that can concurrently execute is determined by the
number of registers allocated for each thread and the capacity
of scratchpad storage allocated for each CTA. Each application
therefore exhibits different levels of maximum possible TLP.
KMN, for example, can allocate up to 24 warps within a warp
scheduler, while GESV can only manage up to 4 warps due
to resource constraints.

Performance. Figure 2a shows the performance variation as
the number of active warps changes. For many applications,
the maximum TLP does not result in the best performance.
For instance, CoMD performs best with only 6 warps enabled
as it optimally balances overall throughput with caching ef-
ficiency, leading to the best performance. On the other hand,
KMN exhibits its best performance with only a single warp
activated. As KMN inherently contains high data locality, the
performance benefits of better caching efficiency (thanks to
one active warp) outweighs its potential loss in throughput
and latency tolerance. Overall, 9 out of the 12 cache-sensitive
benchmarks are shown to benefit from throttling. Table IV
summarizes each application’s maximum number of warps
executable (warp-max) and the optimal number of warps that
maximizes overall performance (warp-CCWS).

Cache Miss Rate. Figure 2b shows that the benchmarks



TABLE IV: Each benchmark’s warp-max, number of optimal
warp count for CCWS-SWL (warp-CCWS), and speedup of
CCWS-SWL compared to warp-max.

Benchmark warp-max warp-CCWS Speedup
KMN 24 1 2.68
GESV 4 1 1.69
ATAX 4 4 1
BICG 4 4 1
MVT 4 4 1

CoMD 18 6 1.53
BFS 24 8 1.02
SSSP 24 8 1.05

SS 24 2 1.11
II 24 2 1.24

SM 24 2 1.18
SCLS 24 4 2.44

generally exhibit significant reduction in L1 misses with lower
TLP. The miss rate of KMN, for instance, dramatically de-
creases from 94% to 4% with optimal throttling, thanks to
less cache contention. However, best performance achieved
with CCWS-SWL does not necessarily lead to the lowest cache
miss rate. CoMD performs best with 6 active warps, but
the best caching efficiency is achieved with only a single
warp activated. Such behavior highlights the importance of
balancing caching efficiency with TLP, which is effectively
achieved with statically throttling TLP with CCWS-SWL.

Off-Chip Bandwidth Utilization. Figure 2c shows the effect
warp throttling has on off-chip bandwidth utilization. The off-
chip bandwidth utilization is derived by measuring the fraction
of DRAM clock cycles when the data bus is busy transferring
requested data. For most applications, the bandwidth utiliza-
tion increases with higher TLP. First, higher TLP leads to
more outstanding memory requests and requires more memory
bandwidth. Second, higher TLP results in the higher cache
miss rates, which eventually leads to more data being fetched
from the off-chip DRAM. Overall, among the 9 applications
that exhibit higher performance with thread throttling, memory
bandwidth utilization is significantly reduced with CCWS-SWL
(e.g., CoMD with a 33% reduction and II with a 62% reduction
compared to warp-max).

C. Bypass-on-Stall

The bypass-on-stall [17] (BoS) policy has some common
aspects to PCAL in that it directs certain cache accesses to
bypass the cache rather than waiting for previous requests to
finish. When previous requests have already reserved all the
cache blocks within the corresponding cache set or MSHR
entries (which occurs when cache access intensity spikes and
congests the resource allocation process), BoS allows incom-
ing requests to make forward progress rather than waiting
for these previous requests to complete. Because BoS is an
orthogonal approach to thread-throttling, we study the perfor-
mance benefits of applying BoS at L1 and CCWS-SWL on top
of the baseline warp-max. As illustrated in Figure 3, BoS
provides an average 6% speedup compared to warp-max with
maximum 68% for SCLS, thanks to its ability to avoid cache-
set contention. When BoS is applied on top of CCWS-SWL,
however, the performance improvements become limited with
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Fig. 3: Performance benefits of CCWS-SWL [4] and BoS [17].
Note that CCWS-SWL represents the highest bar in Figure 2a.

an average 1% (maximum 6% for II) because of the following
reasons. First, the more robust cache set-indexing hashing
function [30] we applied on top of baseline (Section IV)
improves caching efficiency for multiple of these benchmarks,
reducing the cache congestion problem in the first place. Sec-
ond, CCWS-SWL also alleviates cache resource congestion due
to the reduction in TLP, making BoS less effective compared to
when it is added on top of warp-max. Note that Jia et al. [17]
discuss a separate request-reordering technique as to optimize
intra-warp reuse patterns, both of which are orthogonal to
our proposed PCAL. Studying the added benefits of BoS and
request-reordering on top of PCAL is beyond the scope of this
paper and we leave it for future work.

D. Limitations

Thread throttling relies on tuning a single parameter, the to-
tal number of concurrently executing warps, to balance overall
TLP, caching efficiency, and shared resource utilization in the
memory system. As discussed in Section V-A, however, such
a one-dimensional optimization strategy can lead to under-
utilization of those shared resources (e.g., memory bandwidth
utilization), leaving performance opportunities on the table.
When combined with a better cache set-index hashing and
optimal static warp-level throttling (CCWS-SWL), the BoS
policy becomes less effective in providing robust performance
benefits as CCWS-SWL frequently resolves the cache conges-
tion problem in the first place. Our PCAL mechanism seeks to
holistically address the GPU caching problem by minimizing
cache pollution while maximizing shared resource utilization.

VI. PCAL ARCHITECTURE

This section describes the mechanisms for implementing
our token-based priority cache allocation (PCAL) scheme.
To address caching inefficiencies of massively multithreaded
GPU architectures in concert with resource under-utilization
due to throttling, we develop PCAL which separates the
concerns of cache thrashing and resource utilization. We first
provide a high-level overview of PCAL and its architecture
design. We then discuss our software-directed, static PCAL
approach for assigning PCAL parameters on a per-kernel basis,
a practical bridge to achieving improved caching utility with
minimal implementation overhead. While we use static PCAL
to motivate and deliver the key intuition behind our work,
we also present our dynamic PCAL as a proof-of-concept to
demonstrate the feasibility of a dynamic algorithm, alleviating
the burden placed to the programmer.
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Fig. 4: PCAL architecture.

A. High-Level Overview of PCAL

PCAL assigns priority tokens to warps which grant autho-
rization to perform various cache actions, including allocation
(fill) and replacement (eviction). A subset of available warps
are assigned tokens and receive prioritized access to the L1
cache. A separate subset of warps may remain executable for
enhancing overall TLP, but have limited priority for allocation
in the cache. These warps are not able to pollute the cache
space. Finally, the remaining warps may be throttled, or tem-
porarily prevented from running, to reduce resource contention.
Given that GPU schedulers manage groups of threads in warps,
the granularity of token-assignment is also in warps.

Tokens represent priority within various shared resources in
the system. While such tokens can be leveraged to orchestrate
different access priority to various other resources, this paper
focuses on the role of tokens at the L1 cache, the most scarce
resource in current GPUs (Table I). Hence tokens represent
the ability of warps to execute as normal, with full cache
block allocation and replacement privileges in the L1 cache.
Threads without tokens remain executable, but are not allowed
to induce eviction: in essence, these warps are guaranteed to
be non-polluting in the L1 cache.

Figure 4 presents the overall PCAL architecture with the
extensions required for token management and token-based
cache allocation. The PCAL-enhanced warp scheduler keeps
scheduler status bits for each active warp, along with token
bits that represent the possession of a token. Based on the
token assignment policy, the token assignment unit updates
these token bits in the scheduler. When a memory request
is generated by the scheduled warp, the warp’s token bit is
appended to the request before it is sent to the cache-memory
hierarchy. The cache control logic, accordingly, uses this token
bit to make cache allocation and eviction decisions. We further
detail PCAL’s various policies and its operation below.

Token Assignment. The total number of tokens may be
statically designated by software or dynamically derived at
runtime. Our implementation assigns the T available tokens
to the T oldest warps.

Token Release. Once assigned a token, a warp retains the
token either until completion or until a barrier is reached.
Tokens are released and reassigned at warp termination and
assigned to the next oldest warp that does not currently hold

a token. Similarly, tokens are also released at synchronization
points while a thread waits at a barrier.

Cache Allocation Policy. Token holders access the cache as
normal, allocating cache blocks as desired. Token-less warps
(non-polluting warps) are not allowed to fill any cache block.

Cache Eviction Policy. Similar to the cache allocation policy,
possessing a priority token indicates a warp has permission to
initiate replacement (eviction). Because non-token holders are
not allowed to induce cache block fills, they cannot induce
evictions. However, we do allow non-token holders to update
cache LRU bits on access to recognize inter-warp sharing.

Data Fetching Granularity. Current GPU SMs contain a
memory coalescing unit that aggregates the memory requests
of the active threads within each warp; whose requesting data
size can range from 32 to 128 bytes. Rhu et al. [32] high-
lighted the need for a sectored cache hierarchy in throughput
processors so that data fetches do not always fetch a full
cache-line when only a portion of it is needed. Our PCAL
mechanism incorporates some of the key insights of this prior
work by having a non-polluting warp’s L1 missed data be
directly forwarded from the L2 to the SM in an on-demand
fashion, rather than fetching the entire L1 cache-line. Such
on-demand forwarding enables efficient bandwidth utilization
in the interconnection network, giving more headroom for
modulating TLP using PCAL.

B. PCAL Performance Optimization Strategies

To optimally balance TLP, caching efficiency, and off-
chip bandwidth utilization, we consider two basic strategies
to maximize overall performance when employing PCAL.

Increasing TLP while Maintaining Cache Hit Rate (ITLP).
After thread throttling is applied, the remaining active warps
might not be sufficient to fully saturate the shared resource
utilization, giving headroom to add additional non-polluting
warps. In this case, PCAL first hands out tokens to all
remaining warps and adds the minimum number of extra non-
polluting warps to saturate such shared resources (e.g., inter-
connection and memory bandwidth). The caching efficiency of
the normal warps are generally not disturbed with this strategy
as the token-less warps do not have authorization to pollute
the cache. These extra non-polluting warps enable PCAL to
utilize chip resources more effectively and get extra throughput
beyond that provided by pure thread throttling.

Maintaining TLP while Increasing Cache Hit Rate
(MTLP). In some cases, the shared resources are already
saturated so spare resources are not sufficient to add extra
non-polluting warps. Additionally, as some applications simply
achieve the highest throughput with maximum TLP, no extra
non-polluting warps can be added. In these cases, PCAL
maintains the current total number of active warps and reduces
the number of tokens that can be handed out. Only the subset
of warps that are assigned tokens can keep their working sets
inside the cache. Since the remaining non-token holding warps
cannot pollute the cache, overall caching efficiency is improved
while not reducing TLP.

C. Static Priority-based Cache Allocation

Expert GPU programmers often put significant effort to
optimally tune various kernel parameters so that overall per-



TABLE V: Microarchitectural configuration for dynamic
PCAL.

Sampling period 50K cycles
IPC variation threshold 20%
L1 miss-rate variation threshold 20%
ITLP-threshold for L2-queuing-delay 15 cycles
ITLP-threshold for NoC-queieing-delay 20 cycles
ITLP-threshold for MSHR-rsv-fauilure-rate 70%

formance is maximized. For instance, it is a common practice
to manually tune the CTA size or the amount of scratchpad
memory allocated per CTA to modulate the level of TLP for
maximum performance. We present software-directed, static
PCAL as an additional tool that performance-conscious devel-
opers can leverage. Static PCAL requires minimal implemen-
tation overhead and can be integrated easily into both current
hardware and the software stack. Given that the range of
applications that can practically benefit from thread-throttling
is fairly limited, a static approach reduces the barrier for
adoption by GPU vendors. It also provides the underlying
mechanisms as a first step required to evolve (via hardware
and/or software) towards more automated or programmer-
friendly approaches for parameter or policy selection.

Software-directed PCAL allows the programmer to specify
the following parameters to the warp scheduler: (1) the max-
imum runnable warps (W), and (2) the number of warps that
are assigned priority tokens (T). When T is less than W, the
remaining (W-T) warps remain executable but do not receive
tokens and are hence non-pollutable. The input parameters (W,
T) are supplied at launch time with other kernel parameters
and may be selected by the developer, an automated compiler,
or by an autotuner. Such statically designated parameters are
fed to the warp scheduler, where warps are divided into three
categories: (1) throttled – not eligible to execute, (2) executable
with tokens – high priority with right to allocate cache-lines,
and (3) executable without tokens – no caching privileges.
Tokens are represented with an additional bit and the token
assignment unit within the warp scheduler is responsible for
allocating and managing tokens. The token bit is appended
to the memory request packet and to the per-line storage of
priority token meta-data for the L1 cache. The cache control
logic uses the token bit of the issuing warp to determine if the
request may allocate space in the cache.

D. Dynamic Priority-based Cache Allocation

While static PCAL is an effective tool for performance
tuning GPU applications, finding the optimal parameter values
for maximum performance requires additional developer effort.
This section describes the two versions of our dynamic mech-
anism for PCAL to determine PCAL parameters automatically
at runtime. We first discuss our lightweight, MTLP-based dy-
namic PCAL mechanism which achieves competitive speedups
compared to CCWS while requiring minimal hardware over-
heads, as opposed to CCWS which requires 5-KB of SRAM
tag array per SM [2]. We then present a more aggressive
version of dynamic PCAL that leverages both MTLP and ITLP
strategies, showing comparable performance improvements as
the best performing static PCAL configuration.

Algorithm 1 History table (HT) update and reload operation.
1: reload W T count() {
2: if (HT[kernel idx].valid==false) or (HT[kernel idx].confidence<0) then
3: (W, T) = default;
4: else
5: (W, T) = HT[kernel idx].best W T;
6: end if
7: }
8:
9: update history table() {

10: if (HT[kernel idx].valid==false) then
11: HT[kernel idx].best W T = current best W T;
12: HT[kernel idx].past IPC = current IPC;
13: HT[kernel idx].confidence = 2;
14: else if (HT[kernel idx].past IPC<=current IPC) then
15: HT[kernel idx].confidence ++
16: else
17: HT[kernel idx].confidence --
18: end if
19: }

Dynamic PCAL with Max TLP. Our lightweight dynamic
PCAL mechanism (dynPCALMTLP ) adopts only the MTLP
strategy to reduce the two-dimensional (W, T) search space
down to a single-dimension. dynPCALMTLP first launches
the kernel with the total number of warps (W) at all SMs fixed
at maximum TLP (warp-max), but the number of tokens
(T) available to the individual schedulers are varied across
different SMs. After executing for a given sampling period, the
performance impact of different numbers of tokens is evaluated
by a parallel voting mechanism. At the end of this sampling
period, the token count that led to the highest performance
is chosen for adoption by all the SMs and each continue
execution under the same number of tokens. While executing,
if any of the SMs experience more than a predefined threshold
IPC drop, dynPCALMTLP initiates another round of parallel
voting to reach a common number of tokens with higher
performance. The first three entries in Table V summarizes
the key parameters used for evaluating dynPCALMTLP (we
discuss the usage of the last three parameters later in this
section).

Because dynPCALMTLP primarily relies on existing per-
formance counters within each SMs, the major overhead is
in implementing a simple finite-state-machine that manages
the parallel voting process. As we detail in Section VII-B,
dynPCALMTLP provides significant performance speedup
compared to warp-max despite its low overhead.

Dynamic PCAL with Throttling. While dynPCALMTLP

presents a low-cost solution that provides a majority of the
benefits of CCWS, it still falls behind the best performing static
PCAL configuration, primarily because it does not exploit the
ITLP strategy. As dynPCALMTLP fixes the total number of
warps at warp-max, it is unable to adjust the total amount of
TLP. As a more aggressive design point of dynamic PCAL, we
discuss the impact of enabling both ITLP and MTLP strategies
for maximum performance. To evaluate the efficacy of both
strategies, this aggressive version of dynamic PCAL initially
throttles down the number of executable warps to less than
warp-max such that the ITLP strategy can be applied. The
number of warps to throttle can be directed either by an auto-
tuner, static compiler analysis [10], or a CCWS-like hardware
microarchitecture [2] that dynamically estimates the optimal
level of throttling. This paper assumes it is augmented on
top of CCWS to demonstrate its feasibility (dynPCALCCWS).
Both the MTLP strategy of dynPCALMTLP and the ITLP
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Fig. 5: Performance (normalized to CCWS-SWL).
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(a) L1 miss rate for all active warps.
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(b) L1 miss rate excluding the non-polluting warps.

Fig. 6: L1 miss rate.
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Fig. 7: Off-chip memory bandwidth utilization.

strategy (detailed below) are evaluated to choose the best
performing (W, T) combination. For MTLP, we employ the
dynPCALMTLP approach to determine the best token number
through parallel voting. Dynamic ITLP on the other hand is
initiated by monitoring the level of various on-chip shared
resource utilization, including queueing delays at the network-

on-chip (NoC) and the L2 tag lookups, MSHR reservation
failure at the L2. When the ITLP control unit (implemented
as a finite-state-machine) observes that all the shared resource
utilization is below a given threshold (the last three parameters
in Table V), all SMs add an additional non-polluting warp to
examine the effects of added TLP during the next sampling



period. If the SM achieves more than a threshold amount of
IPC improvement, one additional non-polluting warp is added
again to the scheduler to futher saturate the shared resource
utilization. If the SM experiences more than a threshold level
of IPC loss, however, a single non-polluting warp is prevented
from begin scheduled so that resource congestion is reduced.
As in MTLP, ITLP’s simple hill-climbing approach leverages
existing (or a small number of additional) performance coun-
ters.

For applications that undergo multiple iterations of the
kernel, it is possible that the optimal (W, T) will be same (or
similar) across different iterations. To minimize the searching
overheads of MTLP/ITLP, we augment dynPCALCCWS with
a simple history table that stores prior history of best perform-
ing (W, T) information. Since different executions of the kernel
can also exhibit varying phase behavior, each table entry is
augmented with a confidence field that reflects the reliability of
the given entry. Algorithm 1 summarizes how dynPCALCCWS

manages the history table and how the confidence field is used
to react to different phasing behavior of a given kernel.

E. Implementation Overhead

We implement the possession of a token as a single bit, so
the thread scheduler entry needs to track this additional bit.
A small amount of logic is required to allocate and manage
tokens. Additionally, memory requests need to be tagged with
this additional information. Minimal logic overhead is required
for managing the assignment of tokens. Overall, we expect the
overhead of static PCAL to be minimal.

dynPCALMTLP requires a handful of logic for the finite-
state-machine controlling the MTLP optimization process.
Aside from the state-machine to implement ITLP/MTLP con-
trol units, dynPCALCCWS only requires an additional 8-entry
fully-associative history table, each entry containing 9 bits for
the kernel index, 10 bits for (W, T), and 10 bits for storing
prior IPC (Algorithm 1). The single table is shared across all
SMs. Overall, we estimate the hardware overheads of dynamic
PCAL to be negligible.

VII. RESULTS AND DISCUSSION

This section evaluates PCAL’s impact on cache efficiency,
off-chip bandwidth utilization, and performance improvements
compared to the state-of-the-art (Section V). All average values
presented in this paper are based on harmonic means.

A. Static Priority-based Cache Allocation

Figure 5 summarizes the performance benefits of static
PCAL compared to CCWS-SWL. In the figure, ITLP(N) refers
to having the number of token-holding warps identical to
CCWS-SWL while adding additional N non-polluting warps to
increase TLP and better utilize shared resources. MTLP(M)
represents our PCAL strategy where the total number of active
warps are maintained identically as in CCWS-SWL but those
that are able to allocate cache space are reduced by M,
improving caching efficiency. KMN and GESV are not eligible
for the MTLP strategy because CCWS-SWL corresponds to a
single active warp, whereas ATAX, BICG, and MVT cannot
adopt ITLP as CCWS-SWL equals warp-max (Table IV).
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Fig. 8: Speedup of dynPCALMTLP and dynPCALCCWS

(normalized to warp-max).

Overall, the best performing static PCAL leads to an aver-
age 17% performance improvement compared to CCWS-SWL.
Six of the twelve cache-sensitive applications exhibit the high-
est speedup with the MTLP strategy, while four prefer ITLP.
The remaining two benchmarks, KMN and GESV, shows no
benefits with PCAL. The L1 caching efficiency of KMN and
GESV are very sensitive to the the amount of TLP, significantly
aggravating overall L1 miss rate when more than a single
warp is activated (Figure 6). The six applications amenable to
MTLP are those that already congested shared resources with
CCWS-SWL, so adding more non-polluting warps for increased
throughput has limited effectiveness. Rather, by reducing the
number of warps contending for the L1 cache, MTLP improves
the caching efficiency of the token-holding warps (Figure 6b)
while consuming similar memory bandwidth compared to
CCWS-SWL (Figure 7). For the four applications that prefer
ITLP (SS, II, SM, and SCLS), the performance benefit pri-
marily comes from higher throughput in the memory system,
leading to an average 57% increase in memory bandwidth
utilization. Caching efficiency of the token-holding warps is
generally preserved, demonstrating the effectiveness of PCAL’s
ITLP strategy relative to CCWS-SWL.

B. Dynamic Priority-based Cache Allocation

Figure 8 summarizes the performance of our lightweight
dynPCALMTLP compared to warp-max and CCWS-SWL.
dynPCALMTLP achieves an average 18% performance im-
provement compared to the warp-max baseline, while
CCWS-SWL achieves an average 26%. Given its substantially
simpler hardware overhead, dynPCALMTLP presents a cost-
effective alternative to CCWS-style dynamic throttling mech-
anisms. In addition, Figure 9 shows that the dynPCALCCWS

scheme, with the ability to leverage both the ITLP and MTLP
strategies, outperforms all warp-max/CCWS-SWL/BoS and
provides an average 11% speedup over CCWS-SWL(Figure 9).
dynPCALCCWS also achieves 96% of the throughput of static
PCAL on average.

Overall, dynamic PCAL with its simple algorithm and
straightforward design, provides a very low-cost technique
to replace CCWS (dynPCALMTLP ) or enhance CCWS
(dynPCALCCWS).

C. Sensitivity Study

PCAL on Cache-Insensitive Workloads. Static PCAL pro-
vides a performance tuning knob to the programmer where the
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Fig. 9: Speedup of all static/dynamic PCAL (normalized to CCWS-SWL).

decision to enable PCAL or not can be provided as a compiler
or kernel-launch option. Static PCAL can be disabled (effec-
tively giving tokens to all warps) for insensitive workloads to
ensure no performance degradation is caused. Our experiments
showed that dynamic PCAL has negligible performance impact
for 38 cache-insensitive workloads: less than 1% average
performance degradation (with maximum of 3.4%). Dynamic
PCAL will disable PCAL for cache-insensitive workloads, but
requires a learning period before detecting cache-insensitivity.
Because training is short compared to overall execution time,
the overhead was minimal.

Microarchitectural Configuration for Dynamic PCAL. We
examined the performance sensitivity of dynamic PCAL to the
parameters in Table V, but did not observe major performance
variations. The reported parameters in Table V are those
that provided stable, consistent results across the benchmarks
evaluated.

PCAL on L2 caches. This paper primarily focuses on the
impact of applying PCAL at the L1. While not detailed in this
paper, we also studied the impact of employing PCAL on both
L1 and L2. Applying PCAL to both caches results in either
negligible performance improvement or a performance penalty,
depending on the benchmark. While we observed comparable
L1 miss rates for both cases, the L2 miss rate increases from
an average of 31% to 44% when adding PCAL to the L2.
Employing PCAL for both L1 and L2 leads to a performance
degradation because the non-polluting warps allocate in neither
the L1 nor the L2. If the L2 is not full of more critical data,
preventing non-polluting warps from caching in the L2 leads
to a higher L2 miss rate. Even when excluded from the L1,
the non-polluting warps see benefit from caching in the L2
rather than being forced to fetch from the off-chip DRAM.
Furthermore, as the token-holding warps see improved L1 hit
rates from reduced thrashing, they are less likely to access data
from the L2, effectively freeing up L2 capacity and bandwidth
for non-polluting warps.

D. Discussion and Extensions

Opportunistic Caching. We consider allowing cache blocks
to be allocated opportunistically, meaning that a non-polluting
warp can fill data into the cache if there are empty cache
blocks not currently occupied by token holders. In this scheme,
PCAL marks cache blocks allocated by token-holding warps
with priority bits and allows non-polluting warps to reserve
and fill only unmarked cache blocks. To allow more cache
blocks to be used opportunistically by non-polluting warps,

we can clear the priority bits of each cache block at various
intervals. We evaluated several methods for clearing cache
block priority bits: (1) clearing when a kernel ends, (2) clearing
when all owners terminate, (3) clearing when the last owner
terminates, and (4) clearing periodically. Our experiments
show that all four methods perform similarly. Consequently,
the results reported in this paper assume opportunistic caching
is disabled due to limited effectiveness.

Token Types. While this paper primarily focuses only on L1
token configurations, other token variations are possible; (1)
L2 tokens, which can be assigned to warps mutually exclusive
to the L1 token holders; (2) DRAM tokens, which can be
assigned to warps not assigned with L1/L2 tokens; and (3)
combination of L1/L2/DRAM tokens. We leave the exploration
of such token variations for future work.

Token Assignment/Release Policies. Our implementation of
PCAL provides tokens to the oldest warps, and tokens are
neither shared nor transferred to other warps until the warp
terminates or reaches a barrier. This token assignment and
release policy may not be desirable for applications that
contain different program phases, such as those with a set
of warps that only need L1 cache capacity during the part
of their lifetime. We leave to future work a study of such
sophisticated token assignment and release mechanisms that
adapt to program phase behavior.

Power Efficiency. Thanks to its improved caching and perfor-
mance, PCAL is generally expected to provide better power
efficiency. There are however situations in which the most
performance-optimal PCAL configuration may not necessarily
lead to the optimal power efficiency. The benchmark SM, for
instance, achieves its best performance with ITLP(4), but the
off-chip bandwidth utilization of ITLP(4) is 64% higher than
with ITLP(2). Given the performance advantage of ITLP(4)
over ITLP(2) is less than 3%, a more power-efficient approach
would execute SM with the ITLP(2) to reduce power-expensive
DRAM bandwidth. An investigation of power-optimized dy-
namic algorithms is left for future work.

VIII. CONCLUSION

In this paper, we showed that cache-sensitive applications
have the opportunity to increase cache locality, but not merely
by increasing cache size. Reducing the threads that compete
for the cache is the key element to enabling better usage
of the cache resources. We propose a priority-based cache
allocation (PCAL) mechanism that gives preferential access to
the cache and other on-chip resources to a subset of the threads



while having the remaining threads avoid cache pollution
by preventing them from cache space allocation. Our novel
token-based approach reduces cache contention and effectively
employs the chip resources that would otherwise go unused by
a pure thread throttling approach.

Our results show that a software-directed PCAL scheme
enables a 17% performance improvement over optimal static
thread-throttling schemes for cache-sensitive applications. We
also demonstrate a low-overhead dynamic algorithm that tunes
the PCAL parameters such that it can provide a 23% speedup
over the baseline performance (providing a majority of the
speedup of a scheme like CCWS without the associated hard-
ware overheads). We show that a dynamic PCAL scheme can
supplement thread-throttling approaches like CCWS, providing
an additional 11% speedup on top of the CCWS approach.
This basic approach of decoupling thread-level-parallelism
from cache allocation privileges provides a simple, inexpensive
approach to bridge the valley between low-thread-count, high-
cache-utility and highly-multithreaded, streaming performance
regimes.
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