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ABSTRACT
This paper explores the scalability of the Stream Processor ar-
chitecture along the instruction-, data-, and thread-level paral-
lelism dimensions. We develop detailed VLSI-cost and processor-
performance models for a multi-threaded Stream Processor and
evaluate the tradeoffs, in both functionality and hardware costs,
of mechanisms that exploit the different types of parallelism.
We show that the hardware overhead of supporting coarse-
grained independent threads of control is 15 − 86% depending
on machine parameters. We also demonstrate that the perfor-
mance gains provided are of a smaller magnitude for a set of
numerical applications. We argue that for stream applications
with scalable parallel algorithms the performance is not very
sensitive to the control structures used within a large range of
area-efficient architectural choices. We evaluate the specific ef-
fects on performance of scaling along the different parallelism
dimensions and explain the limitations of the ILP, DLP, and
TLP hardware mechanisms.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms
Performance
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1. INTRODUCTION
The increasing importance of numerical applications and the

properties of modern VLSI processes have led to a resurgence
in the development of architectures with a large number of
ALUs and extensive support for parallelism (e.g., [7, 17, 19, 21,
23, 28, 32, 37]). In particular, Stream Processors achieve area-
and energy-efficient high performance by relying on the abun-
dant parallelism, multiple levels of locality, and predictability
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of data accesses common to media, signal processing, and scien-
tific application domains. The term Stream Processor refers to
the architectural style exemplified by Imagine [17], the Clear-
Speed CSX600 [6], Merrimac [7], and the Cell Broadband En-
gine (Cell) [28].

Stream Processors are optimized for the stream execution
model [16] and not for programs that feature only instruction-
level parallelism or that rely on fine-grained interacting threads.
Stream Processors achieve high efficiency and performance by
providing a large number of ALUs partitioned into processing
elements (PEs), minimizing the amount of hardware dedicated
to data-dependent control, and exposing a deep storage hierar-
chy that is tuned for throughput. Software explicitly expresses
multiple levels of parallelism and locality and is responsible for
both concurrent execution and latency hiding [11].

In this paper we extend the stream architecture of Merrimac
to support thread-level parallelism (TLP) on top of the mecha-
nisms for data-level and instruction-level parallelism (DLP and
ILP respectively). Previous work on media applications has
shown that Stream Processors can scale to a large number of
ALUs without employing TLP. However, we show that exploit-
ing the TLP dimension can reduce hardware costs when very
large numbers of ALUs are provided and can lead to perfor-
mance improvements when more complex and irregular algo-
rithms are employed.

In our architecture, ILP is used to drive multiple functional
units within each PE and to tolerate pipeline latencies. We
use VLIW instructions that enable a highly area- and energy-
efficient register file organization [30], but a scalar instruction
set is also possible as in [28]. DLP is used to achieve high
utilization of the throughput-oriented memory system and to
feed a large number of PEs operated in SIMD fashion. To
enable concurrent threads, multiple instruction sequencers are
introduced, each controlling a group of PEs in MIMD fash-
ion. Thus, we support a coarse-grained independent threads of
control execution model. Each instruction sequencer supplies
SIMD-VLIW instructions to its group of PEs, yielding a fully
flexible MIMD-SIMD-VLIW chip architecture. More details
are given in Sec. 3.

Instead of focusing on a specific design point we explore the
scaling of the architecture along the three axes of parallelism
as the number of ALUs is increased and use detailed models to
measure hardware cost and application performance. We then
discuss and simulate the tradeoffs between the added flexibility
of multiple control threads, the overhead of synchronization and
load balancing between these threads, and features such as fine
grained communication between PEs that are only feasible with
lockstep execution. Note that our stream architecture does
not support multiple execution models as described in [21, 23,



32, 37]. The study presented here is a fair exploration of the
cost-performance tradeoff and scaling for the three parallelism
dimensions using a single execution model and algorithm for
all benchmarks.

The main hardware cost of TLP is in additional instruction
sequencers and storage. Contrary to our intuition, the cost
analysis indicates that the area overhead of supporting TLP
is in some cases quite low. Even when all PEs are operated
in MIMD, and each has a dedicated instruction sequencer, the
area overhead is only 15% compared to our single threaded
baseline. When the architectural properties of the baseline are
varied, the cost of TLP can be as high as 86% Therefore, we
advocate a mix of ILP, DLP, and TLP that keeps hardware
overheads to less than 5% compared to a minimum-cost orga-
nization. The performance evaluation also yielded interesting
results in that the benefit of the added flexibility of exploiting
TLP is hindered by increased synchronization costs. For the ir-
regular applications we study, performance improvement of the
threaded Stream Processor over a non-threaded version is lim-
ited to 7.4%, far less than the 30% figure calculated in [10]. We
also observe that as the number of ALUs is scaled up beyond
roughly 64 ALUs per chip, the cost of supporting communi-
cation between the ALUs grows sharply, suggesting a design
point with VLIW in the range of 2–4 ALUs per PE, SIMD
across PEs in groups of 8–16 PEs, and MIMD for scaling up to
the desired number of ALUs.

The main contributions of this paper are as follows:

• We develop detailed processor-performance and hardware-
cost models for a multi-threaded Stream Processor.

• We study, for the first time, the hardware tradeoff of scal-
ing the number of ALUs along the ILP, DLP, and TLP
dimensions combined.

• We evaluate the performance benefits of the additional
flexibility allowed by multiple threads of control, and the
performance overheads associated with the various hard-
ware mechanisms that exploit parallelism.

In Sec. 2 we present prior work related to this paper. We de-
scribe our architecture and the ILP/DLP/TLP hardware trade-
off in Sec. 3. Sec. 4 discusses application properties and corre-
sponding architectural choices. We develop the hardware cost
model and analyze scaling in Sec. 5. Our experiments and per-
formance evaluation appear in Sec. 6 and we conclude in Sec. 7.
This work is described in more detail in Chapter 6 of [1].

2. RELATED WORK
In this section we describe prior work related to this paper.

We focus on research that specifically explored scalability.
A large body of prior work addressed the scalability of gen-

eral purpose architectures targeted at the sequential, single-
threaded execution model. This research includes work on
ILP architectures, such as [13, 26, 27], and speculative or fine-
grained threading as in [12, 31, 33]. Similar studies were con-
ducted for cache-coherent chip multi-processors targeting a more
fine-grained cooperative threads execution model (e.g., [4]). In
contrast, we examine a different architectural space in which
parallelism is explicit in the programming model offering a
widely different set of tradeoff options.

Recently, architectures that target several execution mod-
els have been developed. The RAW architecture [37] scales
along the TLP dimension and provides hardware for software
controlled low overhead communication between PEs. Smart

Memories [23] and the Vector-Thread architecture [21] support
both SIMD and MIMD control, but the scaling of ALUs fol-
lows the TLP axis. TRIPS [32] can repartition the ALU control
based on the parallelism axis utilized best by an application,
however, the hardware is fixed and scalability is essentially on
the ILP axis within a PE and via coarse-grained TLP across
PEs. The Sony Cell Broadband EngineTM processor (Cell) [28]
is a flexible Stream Processor that can only be scaled utilizing
TLP. A feature common to the work mentioned above is that
there is little evaluation of the hardware costs and tradeoffs of
scaling using a combination of ILP, DLP, and TLP, which is
the focus of this paper.

The hardware and performance costs of scaling the DLP di-
mension were investigated in the case of the VIRAM archi-
tecture for media applications [20]. Media applications with
regular control were also the focus of [18], which evaluated
the scalability of Stream Processors along the DLP and ILP
dimensions. We extend this work by incorporating TLP sup-
port into the architecture and evaluating the tradeoff options
of ALU control organizations for both regular- and irregular-
control applications.

3. STREAM ARCHITECTURE
In this section we give an overview of the stream execution

model and stream architecture and focus on the mechanisms
and tradeoffs of controlling many ALUs utilizing a combination
of ILP, DLP, and TLP. A more thorough description of stream
architectures and their merits appears in [7, 17].

3.1 Stream Architecture Overview
We first present the generalized stream execution model, and

then a stream architecture that is designed to exploit it.

3.1.1 Stream Execution Model
The stream execution model targets compute-intensive nu-

merical codes with large amounts of parallelism, structured
control, and memory accesses that can be determined well in
advance of data use. Stream programs may follow a restricted
synchronous data flow representation [22, 35] or a generalized
gather–compute–scatter form [5, 16]. We use the generalized
stream model that has been shown to be a good match for
media, signal processing, and physical modeling scientific com-
puting domains [7,17]. In the generalized form, coarse-grained,
complex kernel operations are executed on collections of data
elements, referred to as streams or blocks, that are transfered
using asynchronous bulk operations. The generalized stream
model is not restricted to sequentially processing all elements
of the input data; instead, streaming is on a larger scale and
refers to processing a sequence of blocks (streams). Relying on
coarse-grained control and data transfer allows for less complex
and more power- and area- efficient hardware, as delegating
greater responsibility to software reduces the need to dynami-
cally extract parallelism and locality.

3.1.2 Stream Processor Architecture
Fig. 1 depicts a canonical Stream Processor that consists of

a simple general purpose control core, a throughput-oriented
streaming memory system, on-chip local storage in the form
of the stream register file (SRF), a set of ALUs with their as-
sociated local register files (LRFs), and instruction sequencers.
This organization forms a hierarchy of bandwidth, locality, and
control mitigating the detrimental effects of distance in modern
VLSI processes, where bandwidth drops and latency and power
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Figure 1: Canonical Stream Processor architecture

rise as distance grows.
The bandwidth hierarchy [30] consists of the DRAM inter-

faces that process off-chip communication, the SRF that serves
as a staging area for the bulk transfers to and from DRAM
and utilizes high bandwidth on-chip structures, and the LRFs
that are highly partitioned and tightly connected to the ALUs
in order to support their bandwidth demands. The same or-
ganization supports a hierarchy of locality. The LRFs exploits
short term producer-consumer locality within kernels while the
SRF targets producer-consumer locality between kernels and is
able to capture a working set of the application. To facilitate
effective utilization of the bandwidth/locality hierarchy each
level has a separate name space. The LRFs are explicitly ad-
dressed as registers by ALU instructions. The SRF is arbitrar-
ily addressable on-chip memory that is banked to support high
bandwidth and may provide several addressing modes. The
SRF is designed with a wide single ported SRAM for efficiency,
and a set of stream buffers (SBs) are used to time-multiplex
the SRF port [30]. The memory system maintains the global
DRAM address space.

The general purpose core executes scalar instructions for
overall program control and dispatches coarse-grained stream
instructions to the memory system and instruction sequencer.
Stream Processors deal with more coarsely grained instructions
in their control flow than both superscalar and vector proces-
sors, significantly alleviating the von Neumann bottleneck [3].
The DMA engines in the memory system and the ALU in-
struction sequencers operate at a finer granularity and rely on
decoupling for efficiency and high throughput. In a Stream Pro-
cessor the ALUs can only access their private LRF and the SRF
and rely on the higher level stream program to transfer data
between memory and the SRF. Therefore, the SRF decouples
the ALU pipeline from the unpredictable latencies of DRAM
accesses enabling aggressive and effective static scheduling and
a design with lower hardware cost compared to out-of-order ar-
chitectures. Similarly, the memory system only handles DMA
requests and can be optimized for throughput rather than la-
tency.

In addition to the ALUs, a Stream Processor provides non-
ALU functional units to support specialized arithmetic opera-
tions and to handle inter-PE communication. We assume that
at least one ITER unit is available in each PE to accelerate
iterative divide and square root operations; and that one or
more COMM functional units are provided for inter-PE com-
munication when applicable. The focus of this paper is on the
organization and scaling of the ALUs along the ILP, DLP, and
TLP axes of control as described below.

3.2 ALU Organization
We now describe how control of the ALUs can be structured

along the different dimensions of parallelism and discuss the im-
plications on synchronization and communication mechanisms.

3.2.1 DLP
A DLP organization of ALUs takes the form of a single in-

struction sequencer issuing SIMD instructions to a collection
of ALUs. The ALUs within the group execute the same in-
structions in lockstep on different data. Unlike with vectors
or wide-word arithmetic, each ALU can potentially access dif-
ferent SRF addresses. In this organization an optional switch
can be introduced to connect the ALUs. Fig. 2(a) shows how
all ALUs receive the same instruction (the “white” instruc-
tion) from a single instruction issue path and communicate
on a global switch shared between the group of ALUs. Be-
cause the ALUs within the group operate in lockstep, simple
control structures can utilize the switch for direct exchange of
words between the ALUs, to implement the conditional streams
mechanism for efficient data-dependent control operations [15],
and to dynamically access SRF locations across several SRF
banks [14].

Another possible implementation of DLP in a Stream Proces-
sor is to use short-vector ALUs that operate on wide words as
with SSE [34], 3DNOW! [25], and Altivec [8]. This approach
was taken in Imagine for 8-bit and 16-bit arithmetic within
32-bit words, on top of the flexible-addressing SIMD, to pro-
vide two levels of DLP. We chose not to evaluate this option
in this paper because it significantly complicates programming
and compilation and we explore the DLP dimension using clus-
tering.

3.2.2 ILP
To introduce ILP into the DLP configuration the ALUs are

partitioned into clusters (in this organization clusters corre-
spond to PEs). Within a cluster each ALU receives a different
operation from a VLIW instruction. DLP is used across clusters
by using a single sequencer to issue SIMD instructions as be-
fore, but with each of these instructions being VLIW. Fig. 2(b)
shows an organization with four clusters of four ALUs each. In
each cluster a VLIW provides a “black”, a “dark gray”, a “light
gray”, and a “white” instruction separately to each of the four
ALUs. The same set of four instructions feeds the group of
ALUs in all clusters (illustrated with shading in Fig. 2(b)).

In this SIMD/VLIW clustered organization the global switch
described above becomes hierarchical. An intra-cluster switch
connects the ALUs and LRFs within a cluster, and is statically
scheduled by the VLIW compiler. The clusters are connected
with an inter-cluster switch that is controlled in the same man-
ner as the global DLP switch. This hierarchical organization
provides an area-efficient and high bandwidth interconnect.

3.2.3 TLP
To address TLP we provide hardware MIMD support by

adding multiple instruction sequencers and partitioning the
inter-cluster switch. As shown in Fig. 2(c), each sequencer con-
trols a sequencer group of clusters (in this example four clusters
of two ALUs each). Within each cluster the ALUs share an
intra-cluster switch, and within each sequencer group the clus-
ters can have an optional inter-cluster switch. The inter-cluster
switch can be extended across multiple sequencers, however,
doing so requires costly synchronization mechanisms to ensure
that a transfer across the switch is possible and that the data
is coherent. A discussion of such mechanisms is beyond the
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Figure 2: ALU organization along the DLP, ILP, and TLP axes with SIMD, VLIW, and MIMD mechanisms
respectively.

scope of this paper. It is possible to design an interconnect
across multiple sequencer groups and partition it in software
to allow a reconfigurable TLP option, and the hardware cost
tradeoff of a full vs. a partitioned switch is discussed in Sec. 5.
Another option is to communicate between sequencer groups
using coarser-grained messages that amortize synchronization
costs. For example, the Cell processor uses DMA commands
to transfer data between its 8 sequencer groups (SPEs in Cell
terminology) [28].

We do not evaluate extending a Stream Processor in the TLP
dimension by adding virtual contexts that share the existing
hardware as suggested for other architectures in [21, 36]. Un-
like other architectures a Stream Processor relies heavily on ex-
plicitly expressing locality and latency hiding in software and
exposes a deep bandwidth/locality hierarchy with hundreds of
registers and megabytes of software controlled memory. Repli-
cating such a large context is infeasible and partitioning the
private LRFs reduces software’s ability to express locality.

4. IMPACT OF APPLICATIONS ON ALU CON-
TROL

In order to understand the relationship between applica-
tion properties and the mechanisms for ALU control and com-
munication described in Sec. 3 we characterize numerically-
intensive applications based on the following three criteria.
First, whether the application is throughput-oriented or presents
real-time constraints. Second, whether the parallelism in the
application scales with the dataset or is fixed by the numerical
algorithm. Third, whether the application requires regular or
irregular flow within the numerical algorithm. Regular con-
trol corresponds to loops with statically determined bounds,
and irregular control implies that the work performed is data
dependent and can only be determined at runtime.

4.1 Throughput vs. Real-Time
In throughput-oriented applications, minimizing the time to

solution is the most important criteria. For example, when
multiplying large matrices, simulating a complex physical sys-
tem as part of a scientific experiment, or in offline signal and
image processing, the algorithms and software system can em-
ploy a batch processing style. In applications with real-time
constraints, on the other hand, the usage model restricts the
latency allowed for each sub-computation. In a gaming envi-

ronment, for instance, the system must continuously respond
to user input while performing video, audio, physics, and AI
tasks.

The Imagine and Merrimac Stream Processors, as well as the
similarly architected CSX-600, are designed for throughput-
oriented applications. The ALUs in these processors are con-
trolled with SIMD-VLIW instructions along the ILP and DLP
dimensions only. The entire on-chip state of the processor, in-
cluding the SRF (1MB/576KB in Merrimac/CSX600) and LRF
(64KB/12KB), is explicitly managed by software and controlled
with a single thread of execution. The software system exploits
locality and parallelism in the application to utilize all proces-
sor resources. This organization works well for a large number
of applications and scales to hundreds of ALUs [7,18]. However,
supporting applications with real-time constraints can be chal-
lenging. Similarly to a conventional single-threaded processor,
a software system may either preempt a running task due to an
event that must be processed, or partition tasks into smaller
subtasks that can be interleaved to ensure real-time goals are
achieved.

Performing a preemptive context switch requires that the
SRF be allocated to support the working set of both tasks.
In addition, the register state must be saved and restored po-
tentially requiring over 5% of SRF capacity and consuming
hundreds of cycles due to the large number of registers. It
is possible to partition the registers between multiple tasks to
avoid this overhead at the expense of a smaller register space
that can be used to exploit locality.

Subdividing tasks exposes another weakness of throughput-
oriented designs. The aggressive static scheduling required to
control the Stream Processor’s ALUs often results in high task
startup costs when software pipelined loops must be primed
and drained. If the amount of work a task performs is small,
because it was subdivided to ensure interactive constraints for
example, these overheads adversely affect performance.

Introducing MIMD to support multiple concurrent threads
of control can alleviate these problems, by allocating tasks spa-
tially across the sequencer groups. In this way resources are
dedicated to specific tasks leading to predictable timing. The
Cell processor, which is used in the Sony PlayStation 3 gaming
console, takes this approach. Using our terminology a Cell is
organized as 8 sequencer groups with one cluster each, and one
non-ALU functional unit and one FPU per cluster. The func-
tional units operate on 128-bit wide words representing short



vectors of four 32-bit operands each. As mentioned in Sec. 3,
we do not directly evaluate vector-style SIMD in this paper
and focus on an architecture where SIMD clusters can access
independent SRF addresses.

4.2 Scaling of Parallelism
Many numerical algorithms and applications have parallelism

that scales with the dataset size. Examples include n-body sys-
tem simulation where interactions are calculated for each par-
ticle, processing of pixels in an image, images within a video
stream, and points in a sampled signal. In such applications
the parallelism can typically be cast into all three parallelism
dimensions. Multiple threads can process separate partitions
of the dataset, multiple clusters can work simultaneously on
different elements, and loop unrolling and software pipelining
transform data parallelism into ILP. The resulting performance
depends on multiple factors such as the regularity of the con-
trol, load balancing issues, and inherent ILP as will be discussed
in Sec. 6.

On the other hand, some numerical algorithms place a limit
on the amount of parallelism, reducing scalability. For exam-
ple, the deblocking filter algorithm of H.264 is limited in paral-
lelism to computations within a 4 × 4 block because of a data
dependency between blocks [29]. This leads to fine-grained se-
rialization points of control, and the application may be more
amenable to a space-multiplexed TLP mapping. The mapping
of this type of limited-parallelism algorithm to highly parallel
systems is a topic of active research and its evaluation is beyond
the scope of this paper.

4.3 Control Regularity
All control decisions within a regular control portion of an al-

gorithm can be determined statically. A typical case of regular
control is a loop nest with statically known bounds. Regu-
lar control applications are very common and examples include
convolution, FFT, dense matrix multiplication, and fixed de-
gree meshes in scientific codes. Such algorithms can be easily
mapped onto the DLP dimension and executed under SIMD-
type control, and can also be cast into ILP and TLP. Convert-
ing DLP into TLP incurs overheads related to synchroniza-
tion of the threads due to load imbalance. Casting DLP as
ILP increases pipeline scheduling overheads related to software
pipelining and loop unrolling, that are required to effectively
utilize many ALUs. As a result, we expect that a high SIMD
degree is necessary to achieve best performance on regular con-
trol applications.

In code with irregular control, decisions on control flow are
made based on runtime information and cannot be determined
statically. For example, when processing an element mesh the
number of neighbors each element has may vary, leading to
irregular control. Mapping irregular algorithms to the TLP
dimension is simple as each sequencer follows its own control
path. Mapping along the DLP dimension onto SIMD hardware
is more challenging, and is discussed in detail in prior work [10,
15]. In [10] results based on an analytic performance model
of a threaded stream architecture suggest that the potential
of utilizing TLP can be as high as 30% over a DLP-ILP only
configuration.

We evaluate the benefits and overheads of utilizing paral-
lelism along the three axes for both regular and irregular ap-
plications in Sec. 6.

5. VLSI AREA MODELS

Our hardware cost model is based on an estimate of the area
of each architectural component for the different organizations
normalized to a single ALU. We focus on area rather than en-
ergy and delay for two reasons. First, as shown in [18], the
energy of a stream processor is highly correlated to area. Sec-
ond, a Stream Processor is designed to efficiently tolerate laten-
cies by relying on software and the locality hierarchy, thereby
reducing the sensitivity of performance to pipeline delays. Fur-
thermore, as we will show below, near optimal configurations
fall within a narrow range of parameters limiting the dispar-
ity in delay between desirable configurations. In this paper we
only analyze the area of the structures relating to the ALUs
and their control. The scalar core and memory system per-
formance must scale with the number and throughput of the
ALUs and do not depend on the ALU organization. Based on
the implementation of Imagine [18] and the design of Merri-
mac we estimate that the memory system and the scalar core
account for roughly 40% of a Stream Processor’s die area.

5.1 Cost Model
The area model follows the methodology developed in [18]

adapted to the design of the Merrimac processor [7,14] with the
additional MIMD mechanism introduced in this paper. Tab. 1
and Tab. 2 summarize the parameters and equations used in
the area cost model. The physical sizes are given in technology
independent track and grid units, and are based on an ASIC
flow. A track corresponds to the minimal distance between two
metal wires at the lowest metal layer. A grid is the area of a
(1 × 1) track block. Because modern VLSI designs tend to be
wire limited, areas and spans measured in grids and tracks scale
with VLSI fabrication technology.

We only briefly present the parameters and equations of the
area model and a more detailed description can be found in [18].

The first parameter in Tab. 1 is the data width of the archi-
tecture, and we show results for both 64-bit and 32-bit arith-
metic. The second set of parameters corresponds to the per-bit
areas of storage elements, where the GSRF parameter accounts
for the multiplexers and decoders necessary for the SRF struc-
tures. The third group relates to the datapath of the Stream
Processor and gives the widths and heights of the functional
units and LRF.

Because the stream architecture is strongly partitioned, we
only need to calculate the area of a given sequencer group to
draw conclusions on scalability, as the total area is simply the
product of the area of a sequencer group and the number of
sequencers.

The main components of a sequencer group are the sequencer
itself, the SRF, the clusters of functional units, LRF, and intra-
cluster switch. A sequencer may also contain an inter-cluster
switch to interconnect the clusters.

The sequencer includes the SRAM for storing the instruc-
tions and a datapath with a simple and narrow ALU (similar
in area to a non-ALU numerical functional unit) and registers.
The instruction distribution network utilizes high metal layers
and does not contribute to the area.

In our architecture, the SRF is banked into lanes such that
each cluster contains a single lane of the SRF, as in Imagine
and Merrimac. The capacity of the SRF per ALU is fixed
(SSRF ), but the distribution of the SRF array depends on C
and N . The SRF cost also includes the hardware of the stream
buffers. The amount of buffering required depends on both the
number of ALUs within a cluster, and the bandwidth supplied
by the wide SRF port. The number of SBs is equal to the
number of external ports in a cluster Pe. The number of ports



Parameter Value Description (unit)

b 64/32 Data width of the architecture (bits)
ASRAM 16 Area of a single ported SRAM bit used for SRF and instruction store (grids)
Asb 128 Area of a dual ported stream-buffer bit (grids)
GSRF 0.18 Area overhead of SRF structures relative to SRAM bit
wALU 1754 Datapath width of a 64-bit ALU (tracks)
wnonALU 350 Datapath width of non-ALU supporting functional unit (FU) (tracks)
wLRF 281 Datapath width of 64-bit LRF per functional unit (tracks)
h 2800 Datapath height for 64-bit functional units and LRF (tracks)
GCOMM 0.25 COMM units required per ALU
GITER 0.5 ITER units required per ALU
Gsb 1 Capacity of a half stream buffer per ALU (words)
I0 64 Minimal width of VLIW instructions for control (bits)
IN 64 Additional width of VLIW instructions per ALU/FU (bits)
LC 4 Initial number of cluster SBs
LN 1 Additional SBs required per ALU
LAG 8 Bandwidth of on-chip memory system (words/cycle)
SSRF 2048 SRF capacity per ALU (words)
SSEQ 2048 Instruction capacity per sequencer group (VLIW words)
C — Number of clusters
N — Number of ALUs per cluster
T — Number of sequencers

Table 1: Summary of VLSI area parameters (ASIC flow). Tracks are the distance between minimal pitch metal
tracks; grids are the area of a (1 × 1) track block.

has a minimal value LC required to support transfers between
the SRF and the memory system and a term that scales with
N . The capacity of each SB must be large enough to effec-
tively time multiplex the single SRF port, which must support
enough bandwidth to both feed the ALUs (scales as GsbN)
and saturate the memory system (scales as 2LAG/C). The
SRF bandwidth required per ALU (Gsb) will play a role in the
performance of the MATMUL application described in Sec. 6.

The intra-cluster switch that connects the ALUs within a
cluster and the inter-cluster switch that connects clusters use
two dimensional grid structures to minimize area, delay, and
energy as illustrated in Fig. 2. We assume fully-connected
switches, but sparser interconnects may also be employed. The
intra-cluster switch area scales as N2, but for small N the clus-
ter area is dominated by the functional units and LRF, which
scale with N but have a larger constant factor.

The inter-cluster switch can be used for direct communica-
tion between the clusters, and also allows the clusters within a
sequencer group to share their SRF space using the cross-lane
indexed SRF mechanism [14]. We use a full switch to inter-
connect the clusters within a sequencer group and its grid or-
ganization is dominated by the C2 scaling term. However, the
dependence on the actual area of a cluster, the SRF lane, the
SBs, and the number of COMM units required (NCOMM scales
linearly with N) plays an important role when C is smaller.

5.2 Cost Analysis
As the analysis presented above describes, the total area cost

scales linearly with the degree of TLP, and is equal to the num-
ber of sequencer groups (T ) multiplied by the area of a single se-
quencer group. Therefore, to understand the tradeoffs of ALU
organization along the different parallelism axes we choose a
specific number of threads, and then evaluate the DLP and
ILP dimension using a heatmap that represents the area of dif-
ferent (C, N) design space points relative to the area-optimal
point. Fig. 3 presents the tradeoff heatmap for the baseline

configuration specified in Tab. 1 for both a 32-bit and a 64-bit
datapath Stream Processor. The horizontal axis corresponds
to the number of clusters in a sequencer group (C), the vertical
axis to the number of ALUs within each cluster (N), and the
shading represents the relative cost normalized to a single ALU
of the optimal-area configuration. In the 64-bit case, the area
optimal point is (8-DLP,4-ILP) requiring 1.48 × 107 grids per
ALU accounting for all stream execution elements. This corre-
sponds to 94.1mm2 in a 90nm ASIC process with 64 ALUs in
a (2-TLP,8-DLP,4-ILP) configuration. For a 32-bit datapath,
the optimal point is at (16-DLP,4-ILP).

Fig. 3 indicates that the area dependence on the ILP dimen-
sion (number of ALUs per cluster) is much stronger than on
DLP scaling. Configurations with an ILP of 2 − 4 are roughly
equivalent in terms of hardware cost, but further scaling along
the ILP axis is not competitive because of the N2 term of the
intra-cluster switch and the increased instruction store capacity
required to support wider VLIW instructions. Increasing the
number of ALUs utilizing DLP leads to better scaling. With a
64-bit datapath (Fig. 3(a)), configurations in the range of 2−32
and 4 ALUs are within about 5% of the optimal area. When
scaling DLP beyond 32 clusters, the inter-cluster switch area
significantly increases the area per ALU. A surprising observa-
tion is that even with no DLP, the area overhead of adding a
sequencer for every cluster is only about 15% above optimal.

Both trends change when looking at a 32-bit datapath (Fig.3(b)).
The cost of a 32-bit ALU is significantly lower, increasing the
relative cost of the switches and sequencer. As a result only
configurations within a 2− 4 ILP and 4− 32 DLP are competi-
tive. Providing a sequencer to each cluster in a 32-bit architec-
ture requires 62% more area than the optimal configuration.

Scaling along the TLP dimension limits direct cluster to clus-
ter communication to within a sequencer group, reducing the
cost of the inter-cluster switch, which scales as C2. The inter-
cluster switch, however, is used for performance optimizations
and is not necessary for the architecture because communica-



Component Equation

COMMs per cluster NCOMM = (C = 1 ? 0 : ⌈GCOMMN⌉)
ITERs per cluster NITER = ⌈GITERN⌉
FUs per cluster NFU = N + NITER + NCOMM

External Cluster Ports Pe = LC + LNN
COMM bit width bCOMM = (b + log2(SSRF NC))NCOMM

Sequencer area ASEQ = SSEQ(I0 + INNFU )ASRAM + h(wnonALU + wLRF )
SRF area per cluster ASRF = (1 + GSRF )SSRF NASRAMb + 2AsbbPemax(GsbN, LAG/C)
Intra-cluster switch area ASW = NFU (

√
NFUb)(2

√
NFUb + h + 2wALU +2wLRF )+

√
NFU (3

√
NFUb + h + wALU + wLRF )Peb

Cluster area ACL = NFUwLRF h + (NwALU + (NITER + NCOMM )wnonALU )h + ASW

Inter-cluster switch area ACOMM = CbCOMM

√
C(bCOMM

√
C + 2

√
ACL + ASRF )

Total area ATOT = T (C(ASRF + ACL) + ACOMM + ASEQ)

Table 2: Summary of VLSI area cost models

Number of clusters

N
um

be
r 

of
 A

LU
s 

pe
r 

cl
us

te
r

 

 

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

1.05
1.1
1.2

1.4

2

4

(a) 64-bit datapath

Number of clusters

N
um

be
r 

of
 A

LU
s 

pe
r 

cl
us

te
r

 

 

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

1.05
1.1
1.2

1.4

2

4

(b) 32-bit datapath

Figure 3: Relative area per ALU normalized to optimal
ALU organization with the baseline configuration: (8-
DLP,4-ILP) and (16-DLP,4-ILP) for 64-bit and 32-bit
datapaths respectively.

tion can always be performed through memory. Fig. 4 shows
the area overhead heatmaps for configurations with no inter-
cluster communication. The area per ALU without a switch im-
proves with the amount of DLP utilized, but all configurations
with more than 8 clusters fall within a narrow 5% area overhead
range. The relative cost of adding sequencers is larger when no
inter-cluster switch is provided because partitioning the con-
trol does not reduce the inter-cluster switch area. Thus, the
single-cluster sequencer group configurations have an overhead
of 27% and 86% for a 64-bit and a 32-bit datapath respectively.
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Figure 4: Relative area per ALU normalized to opti-
mal ALU organization for configurations with no inter-
cluster switch: (128-DLP,4-ILP).

Note that the area-optimal configurations with no inter-cluster
switch are 9% and 13% smaller than the area-optimal baseline
configurations for 64-bit and 32-bit datapaths respectively.

We evaluate two extreme configurations of no inter-cluster
communication and a fully-connected switch. Intermediate trade-
off points include lower bandwidth and sparse interconnect
structures, which will result in overhead profiles that are in
between the heatmaps shown in Fig. 3 and Fig. 4.

Fig. 5 shows the sensitivity of the results presented above
to the amount of on-chip storage in the sequencer instruction
store (Fig. 5(a)) and SRF (Fig. 5(b)). The results are presented
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Figure 5: Relative increase of area per ALU as the
number of clusters and capacity of storage structures
is varied. Area is normalized to the baseline 64-bit
configuration.

as a multiplicative factor relative to the baseline configuration
shown in Fig. 3(a). In the case of instruction storage, there is a
minor correlation between the area overhead and the degree of
ILP due to VLIW word length changes. This correlation is not
shown in the figure and is less than 1% for the near-optimal
2 − 4-ILP configurations. The area overhead of increasing the
instruction store is a constant because it only changes when
sequencer groups are added along the TLP dimension. There-
fore, the overhead decreases sharply for a larger than baseline
instruction store, and quickly approaches the baseline. Simi-
larly, when the instruction store is smaller than the baseline,
the area advantage diminishes as the number of clusters in-
creases. The trends are different for changing the amount of
data storage in the SRF as the SRF capacity scales with the
number of ALUs and, hence, the number of clusters. As a re-
sult, the area overhead for increasing the SRF size is simply
the ratio of the added storage area relative to the ALU area
for each configuration. The area per ALU has an optimal point
near 8 − 16 clusters, and the SRF area overhead is maximal.

6. EVALUATION
In this section we evaluate the performance tradeoffs of utiliz-

ing ILP, DLP, and TLP mechanisms using regular and irregular
control applications that are all throughput-oriented and have
parallelism on par with the dataset size. The applications are
summarized in Tab. 3.

6.1 Experimental Setup
We modified the Merrimac cycle accurate simulator [7] to

support multiple sequencer groups on a single chip. The mem-
ory system contains a single wide address generator to trans-
fer data between the SRF and off-chip memory. We assume a
1GHz core clock frequency and memory timing and parameters
conforming to XDR DRAM [9]. The memory system also in-
cludes a 256KB stream cache for bandwidth amplification, and
scatter-add units, which are used for fast parallel reductions [1].
Our baseline configuration uses a 1MB SRF and 64 multiply-
add floating point ALUs arranged in a (1-TLP,16-DLP,4-ILP)
configuration along with 32 supporting iterative units, and al-
lows for inter-cluster communication within a sequencer group
at a rate of 1 word per cluster on each cycle.

The applications of Tab. 3 are written using a two-level pro-
gramming model: kernels, which perform the computation re-
ferring to data resident in the SRF, are written in KernelC
and are compiled by an aggressive VLIW kernel scheduler [24],
and stream level programs, which control kernel invocation and
bulk stream memory transfers, are coded using an API that
is executed by the scalar control processor. The scalar core
dispatches the stream instructions to the memory system and
sequencer groups.

6.2 Performance Overview
The performance characteristics of the applications on the

baseline configuration with the 1-TLP, 16-DLP, 4-ILP (1, 16,
4) configuration of Merrimac are reported in Tab. 4. Both
CONV2D and MATMUL are regular control applications that
are compute bound and achieve a high fraction of the 128
GFLOPS peak performance, at 85.8 and 117.3 GFLOPS re-
spectively. FFT3D is also characterized by regular control and
regular access patterns but places higher demands on the mem-
ory system. During the third FFT stage of computing the
Z dimension of the data, the algorithm generates long strides
(214 words) that limit the throughput of DRAM and reduce
the overall application performance. StreamFEM has regular
control within a kernel but includes irregular constructs in the
stream-level program. This irregularity limits the degree to
which memory transfer latency can be tolerated with software
control. StreamFEM also presents irregular data access pat-
terns while processing the finite element mesh structure. This
irregular access limits the performance of the memory system
and leads to bursty throughput, but the application has high
arithmetic intensity and achieves over half of peak performance.
StreamMD has highly irregular control and data access as well
as a numerically complex kernel with many divide and square
root operations. It achieves a significant fraction of peak per-
formance at 50.2 GFLOPS. Finally, the performance of Stream-
CDP is severely limited by the memory system. StreamCDP
issues irregular access patterns to memory with little spatial
locality, and also performs only a small number of arithmetic
operations for every word transferred from memory (it has low
arithmetic intensity). In the remainder of this section we will
report run time results relative to this baseline performance.

Fig. 6 shows the run time results for our applications on 6
different ALU organizations. The run time is broken down into
four categories: all sequencers are busy executing a kernel cor-
responding to compute bound portion of the application; at
least one sequencer is busy and the memory system is busy, in-
dicating load imbalance between the threads, but performance
bound by memory throughput; all sequencers are idle and the
memory system is busy during memory bound portions of the
execution; at least one sequencer is busy and the memory sys-
tem is idle due to load imbalance between the execution control
threads.



Application Type Description
CONV2D regular 2-dimensional 5 × 5 convolution on a 2048 × 2048 dataset [14].
MATMUL regular blocked 512 × 512 matrix matrix multiply.
FFT3D regular 128 × 128 × 128 3D complex FFT performed as three 1D FFTs.
StreamFEM (ir)regular streaming finite-element-method code for magnetohydrodynamics flow equations operating on a

9, 664 element mesh [10].
StreamMD irregular molecular dynamics simulation of a 4, 114 molecule water system [11].
StreamCDP irregular finite volume large eddy flow simulation of a 29, 096 element mesh [10].

Table 3: Applications used for performance evaluation.
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Figure 6: Relative run time normalized to the (1, 16, 4) configuration of the 6 applications on 6 ALU organizations.

Application Computation Memory BW

CONV2D 85.8 GFLOPS 31.1 GB/s
MATMUL 117.3 GFLOPS 15.6 GB/s
FFT3D 48.2 GFLOPS 44.2 GB/s
StreamFEM 65.5 GFLOPS 20.7 GB/s
StreamMD 50.2 GFLOPS 36.3 GB/s
StreamCDP 10.5 GFLOPS 39.1 GB/s
Peak 128 GFLOPS 64 GB/s

Table 4: Summary of application performance on base-
line (1-TLP, 16-DLP, 4-ILP) configuration

The six configurations were chosen to allow us to understand
and compare the effects of controlling the ALUs with different
parallelism dimensions. The total number of ALUs was kept
constant at 64 to allow direct performance comparison. The
degree of ILP (ALUs per cluster) is chosen as either 2 or 4 as
indicated by the analysis in Sec. 5, and the amount of TLP
(number of sequencer groups) was varied from 1 to 16. The
DLP degree was chosen to bring the total number of ALUs to
64.

Overall, we see that with the baseline configuration, the
amount of ILP utilized is more critical to performance than
the number of threads used. In FFT3D choosing a 2-ILP con-
figuration improves performance by 15%, while the gain due to
multiple threads peaks at 7.4% for StreamFEM.

We also note that in most cases, the differences in perfor-
mance between the configurations are under 5%. After careful
evaluation of the simulation results and timing we conclude that
much of that difference is due to the sensitivity of the memory
system to the presented access patterns [2]. Below we give a
detailed analysis of the clear performance trends that are inde-
pendent of the memory system fluctuations. We also evaluate
the performance sensitivity to the SRF size and availability of
inter-cluster communication.

6.3 ILP Scaling
Changing the degree of ILP (the number of ALUs per cluster)

affects performance in two ways. First, the SRF capacity per
cluster grows with the degree of ILP, and second, the VLIW
kernel scheduler performs better when the number of ALUs it
manages is smaller.

Because the total number of ALUs and SRF capacity is con-
stant, a 2-ILP configuration has twice the number of clusters
of a 4-ILP configuration. Therefore, a 2-ILP configuration has
half the SRF capacity per cluster. The SRF size per cluster
can influence the degree of locality that can be exploited and
reduce performance. We see evidence of this effect in the run
time of CONV2D. CONV2D processes the 2048 × 2048 input
set in 2D blocks, and the size of the blocks affects performance.
Each 2D block has a boundary that must be processed sepa-
rately from the body of the block, and the ratio of boundary
elements to body elements scales roughly as 1/N (where N
is the row length of the block). The size of the block is de-
termined by the SRF capacity in a cluster and the number of
clusters. With a 128KB SRF, and accounting for double buffer-
ing and book-keeping data, the best performance we obtained
for a 2-ILP configuration uses 16 × 16 blocks. With an ILP
of 4 the blocks can be as large as 32 × 32 leading to an 11.5%
performance advantage.

Looking at Fig. 7 we see that increasing the SRF size to
8MB reduces the performance difference to 1%, since the pro-
portion of boundary elements decreases and it is largely due to
imperfect overlap between kernels and memory transfers at the
beginning and the end of the simulation.

The effectiveness of the VLIW kernel scheduler also plays an
important role in choosing the degree of ILP. Our register orga-
nization follows the stream organization presented in [30], and
uses a distributed VLIW register file with an LRF attached di-
rectly to each ALU port. As a result, the register file fragments
when the number of ALUs is increased, reducing the effective-
ness of the scheduler. Tab. 5 lists the software pipelined loop
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Figure 7: Relative run time normalized to the (1, 16, 4) configuration of the 6 applications comparing a 1MB
and 8MB SRF.

initiation interval (II) achieved for 3 critical kernels. We can
clearly see the scheduling advantage of the 2-ILP configuration
as the II of the 2-ILP configurations is significantly lower than
twice the II achieved with 4 ALUs. This leads to the 15%
and 8.3% performance improvements observed for FFT3D and
StreamMD respectively.

6.4 TLP Scaling
The addition of TLP to the Stream Processor has both ben-

eficial and detrimental effects on performance. The benefits
arise from performing irregular control for the applications that
require it, and from the ability to mask transient memory sys-
tem stalls with useful work. The second effect plays an impor-
tant role in improving the performance of the irregular stream-
program control of StreamFEM. The detrimental effects are
due to the partitioning of the inter-cluster switch into sequencer
groups, and the synchronization overhead resulting from load
imbalance.

First, we note that the addition of TLP has no impact on
CONV2D beyond memory system sensitivity. We expected
synchronization overhead to reduce performance slightly, but
because the application is regular and compute bound, the
threads are well balanced and proceed at the same rate of ex-
ecution. Therefore, the synchronization cost due to waiting on
threads to reach the barrier is minimal and the effect is masked
by memory system performance fluctuation.

The performance of MATMUL strongly depends on the size
of the sub-matrices processed. For each sub-matrix, the compu-
tation requires O(N3

sub) floating point operations and O(N2

sub)
words, where each sub-matrix is Nsub ×Nsub elements. There-
fore, the larger the blocks the more efficient the algorithm.
With the baseline configuration, which supports direct inter-
cluster communication, the sub-matrices can be partitioned
across the entire SRF within each sequencer group. When the
TLP degree is 1 or 2, the SRF can support 64× 64 blocks, but
only 32 × 32 blocks for a larger number of threads. In all our
configurations, however, the memory system throughput was
sufficient and the performance differences are due to a more
subtle reason. The kernel computation of MATMUL requires a
large number of SRF accesses in the VLIW schedule. When the
sub-matrices are partitioned across the SRF, some references
are serviced by the inter-cluster switch instead of the SRF. This
can most clearly be seen in the (4,8,2) configuration, in which
the blocks are smaller and therefore data is reused less requiring
more accesses to the SRF. The same problem does not occur
in the (16,1,4) configuration because it provides higher SRF

bandwidth in order to support the memory system throughput
(please refer to discussion of stream buffers in Sec. 3). The left
side of Fig. 8 presents the run time results of MATMUL when
the inter-cluster switch is removed, such that direct communi-
cation between clusters is not permitted, and for both a 1MB
and a 8MB SRF. Removing the switch prevents sharing of the
SRF and forces 16×16 sub-matrices with the smaller SRF size,
with the exception of (16,1,4) that can still use a 32×32 block.
As a result, performance degrades significantly. Even when
SRF capacity is increased, performance does not match that of
(16,1,4) because of the SRF bandwidth issue mentioned above.
The group of bars with Gsb = 2 increases the SRF bandwidth
by a factor of two for all configurations, and coupled with the
larger SRF equalizes the run time of the applications if memory
system sensitivity is ignored.

We see two effects of TLP scaling on the performance of
FFT3D. First, FFT3D demonstrates the detrimental synchro-
nization and load imbalance effect of adding threading support.
While both the (1,16,4) and (1,32,2) configurations, which op-
erate all clusters in lockstep, are memory bound, at least one
sequencer group in all TLP-enabled configurations is busy at
all times.

The stronger trend in FFT3D is that increasing the number
of threads reduces the performance of the 2-ILP configurations.
This is a result of the memory access pattern induced, which
includes a very large stride when processing the Z dimension
of the 3D FFT. Introducing more threads changes the blocking
of the application and limits the number of consecutive words
that are fetched from memory for each large stride. This effect
has little to do with the control aspects of the ALUs and is
specific to FFT3D.

StreamFEM demonstrates both the effectiveness of dynam-
ically masking unexpectedly long memory latencies and the
detrimental effect of load imbalance. The structure of the
StreamFEM application limits the degree of double buffering
that can be performed in order to tolerate memory latencies. As
a result, computation and memory transfers are not perfectly
overlapped, leading to performance degradation. We can see
this most clearly in the (1, 32, 2) configuration of StreamFEM
in Fig. 6, where there is a significant fraction of time when all
clusters are idle waiting on the memory system (white portion
of bar). When multiple threads are available this idle time in
one thread is masked by execution in another thread, reducing
the time to solution and improving performance by 7.4% for
the (2, 16, 2). Increasing the number of threads further re-
duces performance by introducing load imbalance between the



Fraction of Run Time Initiation Interval
Application Kernel (1, 32, 2) (1, 16, 4) (1, 32, 2) (1, 16, 4)

FFT3D FFT 128 stage1 to stage3 20.7% 23.1% 28 16
FFT 128 stage4 to stage6 45.6% 47.2% 53 33

StreamMD mole DR XL COND 98.2% 98.7% 125 68

Table 5: Scheduler results of software-pipeline initiation interval for critical kernels.
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Figure 8: Relative run time normalized to the (1, 16, 4) configuration of MATMUL and StreamMD with and
without inter-cluster communication.

threads. StreamFEM contains several barrier synchronization
points, and load imbalance increases the synchronization time.
This is most clearly seen in the extreme (16,1,4) configuration.

Based on the results presented in [10] we expect the benefit
of TLP for irregular control to be significant (maximum 20%
and 30% for StreamMD and StreamCDP respectively). Our
results, however, show much lower performance improvements.
In the baseline configuration, with 1MB SRF and inter-cluster
communication, we see no advantage at all to utilizing TLP.

For StreamMD the reason relates to the effective inter-cluster
communication enabled by SIMD. In the baseline configuration
with 2-ILP, the algorithm utilizes the entire 1MB of the SRF for
exploiting locality (cross-lane duplicate removal method of [10])
and is thus able to match the performance of the MIMD enabled
organizations. As discussed earlier, the 4-ILP configurations
perform poorly because of a less effective VLIW schedule. If we
remove the inter-cluster switch for better area scaling (Sec. 5),
the performance advantage of MIMD grows to a significant 10%
(Fig. 8). Similarly, increasing the SRF size to 8MB provides
enough state for exploiting locality within the SRF space of a
single cluster and the performance advantage of utilizing TLP
is again 10% (Fig. 7).

In the case of StreamCDP, the advantage of TLP is negated
because the application is memory throughput bound. Even
though computation efficiency is improved, the memory system
throughput limits performance as is evident by the run time
category corresponding to all sequencers being idle while the
memory system is busy (white bars in Fig. 6).

7. CONCLUSION
We extend the stream architecture to support and scale along

the three main dimensions of parallelism. VLIW instructions
utilize ILP to drive multiple ALUs within a cluster, clusters are
grouped under SIMD control of a single sequencer exploiting
DLP, and multiple sequencer groups rely on TLP. We explore
the scaling of the architecture along these dimensions as well as

the tradeoffs between choosing different values of ILP, DLP, and
TLP control for a given set of ALUs. Our methodology pro-
vides a fair comparison of the different parallelism techniques
within the scope of applications with scalable parallelism, as
the same execution model and basic implementation were used
in all configurations.

We develop a detailed hardware cost model based on area
normalized to a single ALU, and show that adding TLP sup-
port is beneficial as the number of ALUs on a processor scales
above 32 − 64. However, the cost of increasing the degree of
TLP to an extreme of a single sequencer per cluster can be
significant and ranges between 15 − 86%. The smaller part of
this large overhead span is for configurations in which intro-
ducing sequencer groups partitions global switch structures on
the chip, whereas high overhead is unavoidable in cases where
the datapath is narrow (32-bits) and no inter-cluster commu-
nication is available.

Our performance evaluation shows that a wide range of nu-
merical applications with scalable parallelism are fairly insen-
sitive to the type of parallelism exploited. This is true for
both regular and irregular control algorithms, and overall, the
performance speedup is in the 0.9 − 1.15 range. We provide
detailed explanation to understand the many subtle sources of
the performance difference and discuss the sensitivity of the
results.

Continuous increases of transistor count force all the ma-
jor parallelism types – DLP, ILP, and TLP – to be exploited
in order to provide performance scalability as the number of
ALUs per chip grows. The multi-threaded stream processor
introduced in this paper is a step toward expanding the appli-
cability and performance scalability of stream processing. The
addition of hardware MIMD support allows efficient mapping
of applications with a limited amount of fine-grain parallelism.
In addition our cost models enable the comparison of stream
processors with other chip-multiprocessors in both performance
and efficiency.
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