
Executing Irregular Scientific Applications on Stream
Architectures

Mattan Erez
The University of Texas at

Austin

Jung Ho Ahn
Hewlett-Packard

Laboratories

Jayanth Gummaraju Mendel Rosenblum William J. Dally
Stanford University

ABSTRACT
The recent emergence of compute-intensive stream processors such
as the Cell Broadband Engine, Stanford’s Merrimac, and Clear-
Speed’s CSX600 has made them attractive platforms for scientific
high-performance computing. Unstructured mesh and graph appli-
cations are an important class of numerical algorithms used in the
scientific computing domain, which are particularly challenging for
stream architectures. These codes have irregular structures where
nodes have a variable number of neighbors, resulting in irregu-
lar memory access patterns and irregular control. We study four
representative sub-classes of irregular algorithms, including finite-
element and finite-volume methods for modeling physical systems,
direct methods for n-body problems, and computations involving
sparse algebra. We propose a framework for representing the di-
verse characteristics of these algorithms in the context of the unique
properties of stream architectures, and demonstrate it using one
representative application from each sub-class. We then develop
techniques for mapping the applications onto a stream processor,
placing emphasis on data-localization and parallelizations. Our
simulations show that efficient stream hardware with restricted con-
trol abilities can effectively run challenging irregular applications
with, for example, a finite element method and a molecular dy-
namic code sustaining69GFLOP/s and46GFLOP/s (64-bit) re-
spectively using a single chip that measures12mm on a side and
consumes less than70W in 90nm technology.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms
Performance

Keywords
Stream Processors, Scientific Computing, Irregular Control

This work was supported, in part, by the Department of Energy ASCI
Alliances Program, Contract LLNL-B523583, with Stanford University.

(c) ACM, 2007. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in the Proceedings of ICS’07 June 18-20,
Seattle, WA, USA.
.

1. INTRODUCTION
Stream Processors were originally developed for media applica-

tions and have been shown to provide significant performance and
efficiency gains over conventional architectures [26, 45]. Recently
announced industry and academic Stream Processors, such as the
Cell Broadband EngineTM(Cell) [22], ClearSpeed’s CSX600 [10],
and Merrimac [12] are bringing similar gains to scientific comput-
ing.

Stream Processors achieve their efficiency and high performance
advantage by relying on highly parallel processing elements (PEs),
hardware structures that are tuned for minimal data-dependent con-
trol, and an explicitly software-managed storage hierarchy opti-
mized for sequential access. While this set of characteristics is
ideal for the regular execution traits common to media applications,
mapping computations from scientific computing presents signifi-
cant challenges.

In this paper we focus on mapping the irregular control and data
access of unstructured mesh and graph algorithms to Stream Pro-
cessors. This is an important class of scientific computation and in-
cludes finite element and finite volume methods (FEM and FVM),
n-body simulations, and sparse algebra. We limit ourselves to al-
gorithms that apply the same computation to each node or edge
in the mesh or graph. There is a rich body of research on ex-
ecuting irregular applications on a variety of architectures. We
draw from this prior work, adapt it, and evaluate new techniques in
the context of the unique properties of stream architectures. First,
Stream Processors have an explicitly software managed storage
hierarchy that requires data to belocalized to PE storage before
computation can take place. Second, computation must bepar-
allelized onto a substrate featuring limited hardware support for
data-dependent branching and tightly coupled functional unit con-
trol. When used correctly, Stream Processors can provide much
higher performance and efficiency than traditional architectures. In
this paper we use the Merrimac infrastructure to evaluate our tech-
niques and show, for example, that our finite element method and
molecular dynamic codes can sustain69GFLOP/s and46GFLOP/s
(64-bit) respectively using a single chip that measures12mm on a
side and consumes less than70W in 90nm technology.

Our contributions in this paper include:

• Proposing a framework for representing the properties of ir-
regular unstructured mesh and graph applications in the con-
text of Stream Processors (Section 3).

• Detailing the characteristics of stream architectures and their
implications on the execution of irregular scientific codes us-
ing the above framework (Section 4).



• Developing both a methodology and techniques for mapping
irregular applications onto Stream Processors concentrating
on localization and parallelization, and describing the trade-
offs involved based on application properties (Section 5).

• Evaluating the performance of the mapping schemes on a
set of representative irregular applications, and drawing con-
clusions on which architectural mechanisms are beneficial
within the context of our framework (Section 6).

We also situate the constraints on mapping presented by stream
architectures in the context of prior work (Section 2). The main
conclusion of this work (see also Section 7) is that architectural
features that relax the sequential access and partitioning restric-
tions along with prudent mapping choices allow very efficient hard-
ware Stream Processor implementations to sustain very high per-
formance on challenging applications. We summarize these points
with decision trees for tuning applications to Stream Processors.

2. RELATED WORK
A large body of research exists on mapping irregular scientific

applications to a wide variety of architectures including: distributed
memory systems built from commodity parts such as Beowulf clus-
ters [43] and grid computing [7]; shared memory multi-processors
(e.g., [31]); vector processors (e.g., [37, 28]); and more exotic spe-
cialized architectures such as the Monsoon dataflow machine [34].

To the best of our knowledge the work in this paper is the first in-
depth study of mapping irregular scientific applications onto Stream
Processors. The particular case of sparse matrix-vector multiplica-
tion was also discussed in [47], where the application was mapped
to the Cell processor, which shares many features and constraints
with the stream architecture described in this paper.

Multi-processor systems benefit from, and in the case of dis-
tributed memory architectures require data localization into each
processor’s DRAM. Additionally, work must be distributed across
all processors. Several runtime systems (e.g., CHAOS [23]) and
languages (e.g., UPC [8], Titanium [48], and ZPL [16]) have been
developed to address the challenge of efficient data communication
and work partitioning with the large memories and coarse granular-
ity of multi-processor systems. These systems often use inspector–
executor methods [23, 44, 15] or data speculation [11] to hide data
communication time on relatively low-bandwidth connectivities.
They also employ multi-threaded methods (e.g., [21]) to partition
work and load balance across full processor systems.

We deal with similar issues in data locality and work paralleliza-
tion but in the context of the storage hierarchy and the constrained
execution fabric of a Stream Processor. The problem we address is
at a much smaller granularity of both control and storage sizes, as
opposed to large scale multiple processor systems. Therefore, even
though some concepts developed for large-scale systems could be
applied to Stream Processors, the techniques cannot be used di-
rectly because the tradeoffs in bandwidths and memory usage are
quite different.

Automatic data localization has been a topic of active research in
the compiler community [19, 20, 32]. By examining the computa-
tion loops and the data access patterns the compiler can potentially
rearrange computation using loop transformations (e.g, fission, per-
mutation, tiling) or change data layout through data transforma-
tions (e.g., padding, transpose) to improve locality and reduce com-
munication. These techniques could be incorporated into an opti-
mizing stream compiler to automate several of the techniques dis-
cussed in this paper.

Stream Processors typically utilizesingle instruction multiple
data (SIMD) execution and face similar challenges with execut-

ing irregular applications as other SIMD machines. In addition,
we address and evaluate localization methods that match the re-
stricted on-chip memory of Stream Processors, an issue that was
not discussed in prior work. To the best of our knowledge previous
work has focused on either completely general frameworks for ex-
ecuting irregular codes at a cost in performance, or on algorithm-
specific solutions outside of a generalized framework. Our work
combines multiple techniques that have been used in the past in dif-
ferent contexts into a single framework that is applicable to a large
range of unstructured and irregular scientific applications. We give
a detailed performance evaluation of such codes on Merrimac and
Stream Processors in general.

A review of specific implementations of regular and irregular
applications on both SIMD and MIMD (multiple instruction mul-
tiple data) systems is given in [17]. The paper also provides a tax-
onomy of parallel applications and the suitability of various algo-
rithms to SIMD or MIMD. However, only restricted SIMD ma-
chines are evaluated that do not support the generalized stream ex-
ecution model and relaxed SIMD found in Stream Processors.

Another general solution to executing irregular control with SIMD
is to emulate MIMD execution through interpretation (e.g., [40,
41]). The idea is that all SIMD PEs emulate a processor pipeline,
and the irregular application is compiled to this virtual ISA. Since
emulation is done in software, the virtual ISA can be application
specific and include coarse-grained operations that are free of irreg-
ular control. Note that this technique only works on architectures
that provide independent memory addressing to each PE.

Finally, frameworks based on prefix-sum operations have also
been used to implement irregular applications on data parallel sys-
tems [6]. However, implementing an entire algorithm in prefix-sum
form requires significant restructuring and may incur heavy over-
heads compared to our direct implementations.

3. A FRAMEWORK FOR UNSTRUCTURED
MESH AND GRAPH APPLICATIONS

Many scientific modeling applications contain irregular compu-
tation on unstructured mesh or graph data. The unstructured data
is a result of efficient representations of complex physical systems.
One cause of irregularity in computation and data accesses is a re-
sult of the graph structures used to represent the physical system
model, and the spatial dependence on the topology of the model. In
this section we develop a framework for representing such irregular
computation applications and characterize their fundamental prop-
erties. We explore four representative applications from the FEM,
FVM, direct n-body, and sparse algebra domains. In this paper we
limit ourselves to irregularity that arises from the unstructured data
and assume that the computation is identical for all interactions.

FEM Evaluates a 3D blast wave using a Discrete Galerkin finite
element method for systems of nonlinear conservation laws.
In our experiments we use the Euler equations with a piece-
wise linear approximation [5]. The computation consists of
a face loop, which processes faces and the two elements that
share each face, and an element loop which processes ele-
ments and their faces. The data structures for the face loop
are stored as a directed graph with vertices (nodes) denot-
ing faces and edges (neighbors) representing elements. The
roles are reversed for the element loop, where elements are
the nodes and faces the neighbors.

CDP Solves the transport advective equation for large eddy simu-
lations (LES) using a finite volume method [35]. We eval-
uate the second-order WENO (Weighted Essentially Non-



1 for (i=0; i<num_nodes; i++) {
2 process_node(nodes[i]);
3 for (j=neighbor_starts[i]; j<neighbor_starts[i+1];
4 j++) {
5 process_neighbor(neighbors[neighbor_list[j]]);
6 }
7 }

(a)

1 for (s=0; s<num_strips; s++) {
2 for (i=node_starts[s]; i<node_starts[s+1]; i++) {
3 process_node(nodes[i]);
4 for (j=neighbor_starts[i]; j<neighbor_starts[i+1];
5 j++) {
6 process_neighbor(neighbors[neighbor_list[j]]);
7 }
8 }
9 }

(b)

Figure 1: Pseudo-code for canonical irregular unstructured
computation (a), and strip-mined version (b).

Oscillatory) component of the solver. The WENO code con-
tains two main loops, one loop over control volumes and one
over faces. As with FEM, control volumes act as nodes and
faces as neighbors during the control volume loop, and vice
versa for the face loop.

GROMACS Simulates Newton’s equations of motion for large n-
body systems. The code is specialized for bio-molecules, and
we implemented the non-bonded direct water-water interac-
tion computation of the GROMACS package [46]. This al-
gorithm uses an efficient cut-off approximation, where water
molecules contain a list of other molecules that they inter-
act with. Therefore, water molecules act as both nodes and
neighbors, and edges in the graph imply an interaction.

SPAS Computes a sparse algebra matrix vector multiplication [18].
In this paper we explore the compressed sparse row storage
scheme, where rows are treated as nodes and vector elements
as neighbors, i.e., rows are vertices in the graph data structure
and edges are vector elements.

A canonical irregular unstructured application consists of po-
tentially multiple phases that process the nodes and neighbors in
the graph representing the data and computation, as shown in Fig-
ure 1a. Typically, scientific computation isstrip-mined[33] – par-
titioned into subcomputations that each processes a portion of the
data (Figure 1b). The amount of computation and data accesses
required for the processing functions, as well as the connectivity
properties of the graph affect how an algorithm should be mapped
to stream processors.

3.1 Application Parameter Space
Table 1 lists the properties of the applications above using a small

representative data set for each application.1 The properties are
discussed in detail in the following subsections.

3.1.1 Mesh Connectivity Degree and Variability
The connectivity degree, i.e, the number of neighbors of each

node, is an important metric which affects the locality of data ac-
cess, the amount of communication, and the style of implementa-
tion on a stream architecture. A high connectivity degree tends to
1Datasets were purposefully kept small to allow for extensive eval-
uation using a cycle-accurate stream processor simulator.

place greater pressure on the processor’s communication and on-
chip storage resources, because data forall neighbors must be read
in advance before processing a node when using the stream execu-
tion model [26]. A large number of neighbors also deemphasizes
the arithmetic properties of the node processing (columns 5 and
7 in Table 1). The applications based on element meshes have a
low degree, whereas n-body and sparse algebra tend to have a large
number of average neighbors. GROMACS in particular has a very
large number of potential neighbors, where over5% of nodes have
more than80 neighbors.

An important property associated with the degree of connec-
tivity is its variability (shown as the connectivity standard devi-
ation in column 4). With a fixed connectivity degree, as in the
face loops of FVMs and FEMs, the computation of all nodes typi-
cally follows the same control path, simplifying the mapping onto
a stream processor. In contrast, a high variability, exemplified by
the GROMACS n-body algorithm, poses a greater challenge (Sub-
sections 4.3 and 5.2).

Connectivity degree and its variability also influence the amount
of locality in the graph that can be exploited. Bylocality we refer
to data reuse– the number of times each data item (neighbor or
node) is accessed during execution. A high connectivity implies
large amounts of reuse, whereas low connectivity limits locality.
High connectivity variance may make locality in the graph more
difficult to detect and may limit the amount of reuse that can be
easily exploited in the application (Subsection 5.1).

3.1.2 Arithmetic Intensity
We represent the computational properties of the application in-

ner loops using four parameters: the number of arithmetic opera-
tions performed on each individual node and neighbor (process
node andprocess neighbor in Figure 1 and columns 5–6 in
Table 1); andarithmetic intensity– the ratio between arithmetic
operations and the number of input and output words required to
compute them in the loop (columns 7–8).

Computations with a low operation count often do not utilize the
many functional units of a stream processor well because compiler
techniques, such as software pipelining and loop unrolling [30],
are hindered by the irregularity of control and data-dependent loop
bounds seen in the canonical pseudo-code representation (see also
Section 6.2). A low arithmetic intensity also reduces inner loop ex-
ecution performance as it is limited by on-chip memory bandwidth.
Additionally, applications with low arithmetic intensity may re-
quire sophisticated software mapping techniques or hardware struc-
tures to reduce off-chip bandwidth demands and avoid stalls while
waiting on off-chip memory.

3.1.3 Runtime Properties
A final property of unstructured mesh and graph applications is

the rate at which the connectivity graph evolves in relation to the
algorithm time steps (column 9 of Table 1). While some appli-
cations, such as FEM and SPAS have a fixed connectivity, other
applications evolve their graph structure over time. For example,
CDP occasionally appliesadaptive mesh refinementto account for
changes in the physical model, and GROMACS recomputes the
molecule interaction list every several (∼ 10) time steps.

4. STREAM ARCHITECTURES
In this section we explain the key properties of the stream ar-

chitecture relating to locality, memory, and parallelism, and outline
the challenges they present for efficient execution of unstructured
irregular computation.

Modern VLSI technology enables high single-chip arithmetic



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Application #nodes Average Degree Ops/Node Ops/Neighbor Arithmetic Arithmetic Graph Evolution

Degree Standard Deviation Intensity (Node) Intensity (Neighbor) Timescale [steps]
FEM (elements) 9, 664 4 0 1 2 0.07 2.8 ∞
FEM (faces) 19, 328 2 0 2 159 1.6 22.3 ∞
CDP (elements) 5, 431 5.6 0.8 4 11 0.3 2.2 105

CDP (faces) 30, 180 2 0 0 22 N/A 1.8 105

GROMACS 4, 114 26.6 27.1 18 217 0.25 12.1 101

SPAS 7, 728 13.6 3.4 1 2 0.5 2.0 ∞

Table 1: Properties of Scientific Applications

performance by allowing for a large number of high-throughput
functional units on a single die. For example, Merrimac [12] and
Cell [22] can sustain128GFLOP/s (double-precision) and256GFLOP/s
(single precision) respectively, requiring over3TB/s of operand
bandwidth. The challenge for these architectures is maintaining
such large instruction and operand throughput. Thesestream archi-
tecturesrely on exploiting locality in the computation to provide for
sufficient operand bandwidth using a rich storage hierarchy, and on
taking advantage of parallelism to drive the many functional units
and tolerate latencies.

4.1 Locality
As VLSI technology scales, bandwidth decreases as the distance

an operand traverses from storage to functional unit grows [13].
Therefore, to support high sustained operand throughput, stream
architectures are strongly partitioned into PEs, which are clusters
of functional units with a hierarchy of storage (Figure 2).

memory system

controller
(instruction sequencer)

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

controller
(instruction sequencer)

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

controller
(instruction sequencer)

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

controller
(instruction sequencer)

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

PE
FPU FPU

LRF

SRF

Figure 2: Canonical stream architecture partitioned into mul-
tiple PEs with a rich storage hierarchy.

The lowest level in the storage hierarchy is thelocal register file
(LRF) of each PE, which is directly connected to the functional
units over short high bandwidth wires. The LRF exploits short term
producer-consumer locality between instructions within a function
or inner-loop body [12]. In Merrimac, the LRF is able to sustain
the operand throughput demands of the16 PEs which combine for
64 floating point units (FPUs).

The second level in the storage hierarchy is thestream register
file (SRF), which is a fast local memory structure. Merrimac’s SRF
has a1MB capacity and is partitioned across the PEs. We refer to
the64KB portion of the SRF local to a PE as anSRF lane. Being
local to a PE enables the SRF to supply data with a high512GB/s
throughput on a Merrimac chip.

The SRF has a local address space in the processor that is sepa-
rate from global off-chip memory, and requires software tolocalize

data into the SRF before computation begins. Explicitly manag-
ing this distinct space in software enables two critical functions
in the stream architecture. First, the SRF can reduce demands on
off-chip memory by providing an on-chip workspace and explicitly
capturing long term producer-consumer locality between functions
and loops. Second, explicit control allows software to stage large
granularity asynchronous bulk transfers into and from the SRF. Do-
ing this allows for a throughput optimized memory system and
shifts the responsibility of tolerating the ever-growing memory la-
tencies from hardware to software. Relying on software controlled
bulk transfers to hide latency and restricting PE memory access to
the local SRF address space result in predictable memory accesses
within the execution pipeline. This enables optimized static com-
piler scheduling of arithmetic operations onto the area and power
efficient PE computational fabric.

Beyond the SRF is a global on-chip level of the storage hier-
archy composed of an interconnection network that handles direct
communication between the PEs and connects them with the mem-
ory system. It is possible to use this interconnect to perform dy-
namiccross-laneSRF indexed accesses between PEs in addition
to the efficientin-lane accesses described above. As discussed
in [24], cross-lane indexing incurs both additional hardware com-
plexity and runtime overhead.

4.1.1 Locality Implications
The stream programming model [26] is designed for architec-

tures that include the distinct SRF address space and advocates
a gather–compute–scatterstyle, where overall execution is bro-
ken down into computational strips as with the strip-mining tech-
nique [33]. A prototypical example of a strip-mined program is
shown Figure 1b. However, requiring all data that an inner-loop
computation accesses to be gathered ahead of the computation poses
a problem for the irregular accesses of unstructured mesh algo-
rithms. Additional complexity relates to the tradeoffs of indexed
vs. sequential access to the SRF, and whether cross-lane accesses
are employed.

4.2 Memory System
Stream memory systems provide high throughput of multiple

words per cycle using conventional DRAM technology by process-
ing all requests in bulk asynchronous DMA-style transfers [3, 9].
One or more DMA engines process bulk stream requests from the
processor and issue them as potentially reordered fine-granularity
word accesses to memory. This allows the memory system to sup-
port complex addressing modes including gathers, scatters, and
atomic data-parallel read-modify-writes (scatter-add) [2].

As with a conventional memory system, a hardware managed
cache can also be added between the processor and memory. In
the case of a stream processor thestream cachebacks up the SRF
and acts as a bandwidth accelerator and is not used for reducing
memory access latency. A cache can be beneficial for unstructured
mesh applications because of the inherent locality of nodes sharing
neighbor data. However, introducing a cache requires additional



hardware area, which offers a tradeoff between dedicating on-chip
memory to the SRF or the cache. Note that not all bulk stream
memory transfers are cached. We reducecache pollutioneffects by
limiting caching to those gather/scatter accesses that exhibit tem-
poral locality.

4.2.1 Memory System Implications
Utilizing the memory system for scientific applications is made

simple by the stream programming model. We must still consider
the tradeoff of using a stream cache. Reducing the SRF to accom-
modate a cache limits the space available for data and results in
shorter strips in the strip-mined computational loop.

4.3 Parallelism
Effectively utilizing the many FPUs of a stream processor re-

quires extensive use of parallelism: FPUs must be run concurrently
on distinct data; FPUs must be provided with instructions; small
execution pipeline latencies must be tolerated; and long memory
latencies must be overlapped with computation.

In the case of our applications, and in scientific computing in
general,data level parallelism(DLP) is abundant, as the same type
of computation is applied to all nodes. DLP can be exploited both
within a PE and across PEs. In addition to DLP, a small amount of
instruction level parallelism(ILP) across independent instructions
within a loop or function body is also available.

For concurrent execution and instruction supply there are three
main hardware mechanisms available for controlling the FPUs and
PEs:

• Single instruction single data(SISD) execution, exemplified
by VLIW andsuperscalar, issues distinct instruction to sev-
eral FPUs. This technique can utilize ILP , but is limited
to controlling a small number of FPUs because the cost of
storing and issuing individual instructions does not scale.

• Single instruction multiple data(SIMD/vector) applies the
same computation to a group of data across multiple FPUs.
SIMD hardware can efficiently supply instructions to a very
large number of FPUs as a single operation is performed on
a collection of data. However, all the SIMD-controlled FPUs
are restricted to a single instruction sequence.

• Multiple instruction multiple data(MIMD) utilizes multiple
instruction sequencers for executing independent threads of
control. To amortize the hardware cost of a sequencer, this
mechanism is typically combined with SIMD and ILP exe-
cution [1].

In this paper we use the Merrimac infrastructure for evaluation.
Merrimac, has a single instruction sequencer that controls16 PEs
in SIMD fashion. Each PE’s4 FPUs execute VLIW instructions
scheduled by the compiler.

4.3.1 Parallelism Implications
The use of SIMD in stream processors poses problems for irreg-

ular unstructured computation. We cannot trivially map the compu-
tation of Figure 1 as it requires different control paths for different
nodes as the number of neighbors per node varies.

5. MAPPING IRREGULAR COMPUTATION
TO STREAM PROCESSORS

In this section we detail the basic algorithm classes used to per-
form localization (Subsection 5.1) and parallelize irregular compu-
tation (Subsection 5.2) on stream processors.

5.1 Localization
As discussed in Subsection 4.1 stream processors cannot make

arbitrary memory references from within the PEs, and can only ac-
cess the SRF local memory. Unlike traditional processors, the local
memories have distinct name-spaces and data elements must bere-
named, or localizedto the local address space. This is similar to
the requirements of distributed memory parallel systems, although
the granularity of control and degree of runtime overhead that can
be tolerated is much lower in the case of stream processors.

The renaming process entails re-writing the neighbor-list point-
ers to local memory addresses in a processing step separate from
the actual computation. This process is similar to theinspector–
executormodel [39, 29]. While renaming is performed, additional
optimizations can be applied. We first describe the basic localiza-
tion scheme that has minimal preprocessing overhead. We then
discuss an optimization that removes duplicate elements referred
to by the neighbor list.

5.1.1 Basic Renaming
With non-duplicate-removal renaming(nDR), each element of

the neighbor list is assigned a unique location in the SRF. This
amounts to dereferencing the neighbor-list pointers as they are trans-
ferred into the SRF. As a result, duplicate entries may be allocated
for a neighbor that is referred to multiple times in the neighbor list.
The computational inner loop processes the neighbor data in or-
der out of the SRF as shown in Figure 3. The number of neighbor
data elements transferred and stored in the SRF is equal to the total
length of the neighbor list.

1 for (s=0; s<num_strips; s++) {
2 strip_neighbor_start = neighbor_starts[node_starts[s]];
3 strip_num_neighbors = neighbor_starts[node_starts[s+1]] -
4 neighbor_starts[node_starts[s]];
5 // localize data (gather performed by
6 // the memory system)
7 for (i=0; i<strip_num_neighbors; i++) {
8 local_nl[i] =
9 neighbor_data[neighbor_list[strip_neighbor_starts+i]];

10 }
11 for (i=0; i< (node_starts[i+1]-node_starts[s]); i++) {
12 local_nodes[i] = node_data[i+node_starts[s]];
13 }
14 for (i=0; i< (node_starts[i+1]-node_starts[s]); i++) {
15 local_nn[i] = neighbors_per_node[i+node_starts[s]];
16 }
17

18 // process from local memory
19 for (i=0; i< (node_starts[i+1]-node_starts[s]); i++) {
20 n_ptr=0; // current location in local_nl
21 process_node(local_nodes[i]);
22 for (j=0; j<local_nn[i]; j++) {
23 process_neighbor(local_nl[n_ptr++]);
24 }
25 }
26 }

Figure 3: Pseudo-code fornDR processing (local prefix
refers to data that has been localized to the PE).

The main advantage of this scheme is that its implementation is
independent of the actual connectivity in the dataset. Each neighbor-
list element is simply loaded in neighbor-list order into the SRF;
no preprocessing is required as the pointers are dereferenced by the
memory system and are not rewritten. Additionally, the PEs ac-
cess data in the local memories in a streamed fashion utilizing the
optimized SRF hardware (Subsection 4.1).

The disadvantages stem from the potentially large number of du-
plicates created when nodes share the same neighbors. First, keep-
ing multiple copies of data in the SRF reduces the size of the execu-
tion strips increasing the overheads associated with starting stream



operations and priming software-pipelined loops. Second, creating
the copies in the SRF requires multiple reads of the same data from
the memory system. This extra communication is particularly detri-
mental when memory bandwidth is a performance-limiting factor.

5.1.2 Renaming with Duplicate-Removal
The second renaming option explicitly renames the pointers in

the neighbor list to on-chip addresses, allowing duplicate data to
be eliminated and potentially reducing off-chip memory bandwidth
and increasing the effective SRF size and computation strip lengths.
Thisduplicate removal(DR) renaming is in contrast tonDR, which
discards the pointers by dereferencing all neighbor data directly to
the SRF. These benefits, however, come at a cost of PE execution
overheads and the run-time processing of the neighbor-list. The
pseudo-code for the canonical irregular computation withDR is
shown in Figure 4.

1 // remove duplicates
2 // reads neighbor list and produces
3 // duplicate removed data (DR_data), the
4 // rewritten pointers (DR_nl),
5 // and the associated stripping information
6

7 DR(neighbor_list, output_DR_nl, output_DR_data,
8 output_DR_starts);
9 // see Algorithm 1 for sample pseudo-code for DR()

10

11 for (s=0; s<num_strips; s++) {
12 strip_neighbor_start = neighbor_starts[node_starts[s]];
13 strip_num_neighbors = neighbor_starts[node_starts[s+1]] -
14 neighbor_starts[node_starts[s]];
15 // localize data (gather performed by
16 // the memory system)
17 for (i=0; i<strip_num_neighbors; i++) {
18 local_DR_nl[i] =
19 output_DR_nl[neighbor_list[strip_neighbor_starts+i]];
20 }
21 for (i=0; i< (node_starts[i+1]-node_starts[s]); i++) {
22 local_nodes[i] = node_data[i+node_starts[s]];
23 }
24 for (i=0; i< (node_starts[i+1]-node_starts[s]); i++) {
25 local_nn[i] = neighbors_per_node[i+node_starts[s]];
26 }
27 for (i=0;
28 i<(output_DR_starts[s+1]-output_DR_starts[s];
29 i++) {
30 local_DR_data[i] = output_DR_data[i+output_DR_starts[s];
31 }
32

33 // process from local memory
34 for (i=0; i< (node_starts[i+1]-node_starts[s]); i++) {
35 n_ptr=0; // current location in local_nl
36 process_node(local_nodes[i]);
37 for (j=0; j<local_nn[i]; j++) {
38 process_neighbor(local_DR_data[local_DR_nl[n_ptr++]]);
39 }
40 }
41 }

Figure 4: Pseudo-code forDR processing (local prefix refers
to data that has been localized to the PE).

PE execution overheads stem from performing indexed accesses
into the SRF, as opposed to more hardware optimized sequential
accesses as innDR; and are discussed in Section 6.2.

Renaming the pointers requires processing the neighbor list and
allocating SRF space based on the actual connectivity, leading to
a computational overhead every time the connectivity list is modi-
fied. A simple algorithm forDR is shown in Algorithm 1.

The efficiency of theDR method, in terms of reducing SRF space
usage and off-chip bandwidth depends on the mesh locality prop-
erties. If the mesh has high locality and a high connectivity degree
large amounts of neighbor storage can be removed.

Algorithm 1 Sample algorithm forDR renaming
Require: neighbor list (nl)
Ensure: renamed neighbor list (DRnl)
Ensure: unique neighbor data (DRdata)

clear the renamingmap map
for P in { neighbor list} do

if P in renamingmapthen
write renamingmap[P ] to renamed list

else
if cannot allocate more SRF spacethen

mark strip end
reset SRF allocation
clear renamingmap

allocate new SRF location for neighbor corresponding toP : P ′

assign renamingmap[P ] = P ′

write P ′ to renamed list

Figure 5 presents the locality available in four of the unstructured
meshes as a function of available SRF space. In each figure, the x-
axis is the number of neighbor elements that fit in one strip in local
memory, and the y-axis represents locality – the average number of
times each neighbor element is reused while computing on the strip.
Each of the four sub-figures shows the locality for the original or-
dering (light squares) as well as an improved ordering obtained by
domain decomposition using METIS [27] (solid diamonds) and a
randomized order (light circles). We can see that locality increases
significantly with the size of the strip and Subsection 6.3 explores
this further. Second, the amount of reuse is strongly related to the
connectivity degree of the mesh. In the case of GROMACS, for
example, neighbors may be reused more than20 times on average,
whereas the face loop of FEM peaks out at a reuse of2. An attempt
to improve locality with METIS has mixed results. The element
loops of CDP and FEM benefit from reordering, the face loop of
FEM gains little, and locality in GROMACS is sacrificed. Look-
ing at the randomized ordering, we see that METIS does discover
partitions that improve locality. However, the original ordering of
the GROMACS dataset is based on a geometric partition that is
well suited to the molecular dynamics problem. METIS, it seems,
does not deal well with the very high degree and tightness of the
connectivity in GROMACS.

As in traditional processors, placing a cache between off-chip
memory and the SRF reduces the potential bottleneck associated
with limited DRAM throughput. A cache can eliminate unnec-
essary data transfers by supplying them from an associative on-
chip memory. As discussed in Subsection 4.2, however, the on-
chip memory for the cache comes at the expense of SRF space and
reduces computational strip lengths. Additionally, while off-chip
bandwidth is reduced, on-chip memory utilization is reduced be-
cause the PEs must copy the cached data into their local SRF lane.

5.1.3 Dynamic Renaming
Localization and renaming can also be performed dynamically,

for example following the inspector–executor methodology of CHAOS
[23]. We expect the overhead of this technique to be very large in
the context of the compute intensive and simple control charac-
teristics of stream processors, and a full evaluation is beyond the
scope of this paper. In software, dynamic renaming requires build-
ing a dynamic renaming hash structure in expensive on-chip mem-
ory, introducing high execution overheads and reducing effective
strip size and locality. Hardware dynamic renaming does not apply
to stream processors and is equivalent to a conventional cache that
transparently merges on-chip and off-chip memory into a single ad-
dress space.



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2000 4000 6000 8000 10000

METIS
Original
Random
Max

(a) FEM elements,9, 664 nodes.

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000

METIS
Original
Random
Max

(b) FEM faces,20, 080 nodes.

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000

METIS
Original
Random
Max

(c) CDP,5, 431 nodes.

0

5

10

15

20

25

30

0 1000 2000 3000 4000

METIS
Original
Random
Max

(d) GROMACS,4, 114 nodes.

Figure 5: Locality (reuse) as a function of strip size with the
original ordering in the dataset, with METIS reordering for
locality, and with a randomized order (horizontal axis – strip
size in number of neighbors; vertical axis average number of
accesses per neighbor).

5.2 Parallelization
To fully utilize a stream processor the computation must be par-

allelized to take advantage of the multiple PEs. An irregular appli-
cation poses tradeoffs with regards to both hardware and software
of a streaming system. Below is a description of the classes of
mappings that can be used to parallelize an irregular mesh compu-
tation on a stream processor. The assumptions are that the execu-
tion model is a data-parallelsingle program multiple data(SPMD)
model, where all PEs are dedicated to the same computational task.
In our applications, a global reduction operation occurs between
different computational tasks, preventing more flexible execution
models.

We classify hardware into three broad categories: SIMD with
sequential stream accesses only, SIMD with a conditional stream
access mode [25, 24]; and MIMD capable hardware.

5.2.1 SIMD Sequential Mapping
This is the most efficient hardware category, where the same in-

struction sequence is broadcast to all PEs and the local memory is
tuned for sequential access. To utilize this type of restricted execu-
tion and address mode architecture requires that the irregular com-
putation of our applications be regularized. This can be achieved
using two general techniques.

Theconnectivity sort(SORT) method sorts the nodes based on
their connectivity degree into lists of fixed degree. Computation
can then proceed in a regular fashion handling one fixed-connectivity
list at a time. This technique is conceptually very simple and po-
tentially incurs no execution overhead, but has drawbacks. First,
sorting is a computationally expensive process and leads to large
preprocessing overheads. Second, sorting into individual fixed-
connectivity lists may result in many short lists leading to increased
inner loop startup overheads. A similar method forms the basis of
the JAD sparse format [38] and CSR with permutation [14] used
for sparse matrix-vector multiplication.

Thefixed padding(PAD) technique regularizes the computation
by ensuring all neighbor lists conform to a predetermined fixed
length. Nodes whose neighbor list is shorter than the fixed length
L are padded with dummy neighbors, whereas nodes whose list is
longer thanL are split into multiple length-L lists. Splitting a node
entails replicating its data, computing separately on each replica,
and then reducing the results. The advantage of this scheme is its
suitability for efficient hardware and low preprocessing overhead.
The disadvantages include wasted computation on dummy neigh-
bors and the extra work involved in replicating and reducing node
data. The ELL [38] format for sparse matrices is equivalent toPAD,
where each row of storage contains as many elements as the row
with the most non-zeros in the matrix.

It is possible to combineSORT andPAD. For example, the con-
nectivity list can be sorted into bins and then the list of each node
padded up to the bin value. We do not evaluate hybrid techniques
in this paper and refer the reader to an algorithmic modification of
GROMACS that targets the SIMD Quadrics computer [36].

5.2.2 SIMD with Conditional Access
A simple extension to a pure sequential access SIMD stream ar-

chitecture is the addition of a conditional access mechanism. The
basis of this mechanism is to allow the PEs to access their local
memories in unison, but not necessarily advance in the stream, i.e.
the next access to the stream may read the same values as the pre-
vious access independently in each PE. Such a mechanism can be
implemented as discussed in [25] and in [42] for vector processors.
In our evaluation we use an alternative implementation based on
indexable local memory.

With conditional access (COND), the node computation of Fig-
ure 1 can be modified to support SIMD execution as shown in Fig-



ure 6. The key is to fold the processing of the node into the inner
loop that processes neighbors, but execute it conditionally, as sug-
gested in [4]. The overhead of conditionally executing the node
portion of the computation for every neighbor is typically low, as
reported in Table 1 and analyzed in Section 6.2.

1 i = 0;
2 neighbors_left = 0;
3 for (j=0; j<num_neighbors; j++) {
4 if (neighbors_left == 0) {
5 process_node(nodes[i]);
6 neighbors_left = neighbor_starts[i+1] -
7 neighbor_starts[i];
8 i++;
9 }

10 process_neighbor(neighbors[neighbor_list[j]]);
11 neighbors_left--;
12 }

Figure 6: Pseudo-code forCOND parallelization method

An additional overhead is related to load balancing. Each PE
is responsible for processing a subset of the nodes in each com-
putational strip, but the amount of work varies with the number of
neighbors. This leads to imbalance, where all PEs must idle waiting
for the PE with the largest number of neighbors to process in the
each strip completes. Load balancing techniques have been studied
in the past, and the solutions and research presented are applicable
to stream processors as well.

5.2.3 MIMD Mapping
With MIMD style execution, the basic node computation of Fig-

ure 1 can be implemented directly in parallel, and synchronization
between PEs need only occur on strip or phase boundaries. This
results in an execution that is very similar to SIMD with condi-
tional access without the overhead of performing node-related in-
structions in the inner loop.

Similarly to theCOND method, the load must be balanced be-
tween PEs to ensure optimal performance. The granularity of im-
balance, however, is at the level of processing the entire dataset, as
opposed to the strip level as inCOND.

To support true MIMD execution, the hardware must provide
multiple instruction sequencers. These additional structures reduce
both the area and energy efficiency of the design. A quantitative
analysis of this area/feature tradeoff is left for future work, but we
bound the maximal advantage of MIMD over SIMD in Subsec-
tion 6.2.

6. EVALUATION
In this section we evaluate the performance characteristics of the

mapping methods on the cycle-accurate Merrimac simulator for the
applications of Section 3. We evaluate two configurations of Mer-
rimac. The default configuration (bold values in Table 2) that has a
stream cache and an alternate configuration with an increased SRF
size and no stream cache.

We implemented a general software library that processes the
connectivity list in any combination of the localization and paral-
lelization methods. Each program provides an input and output
module for converting the specific dataset format to and from a
general neighbor list format.

For each of the four applications we implemented theSORT,
PAD, andCOND parallelization techniques (our FEM code has a
fixed connectivity degree, and all methods are equivalent). We did
not implement theMIMD variant directly, but bound its peak per-
formance advantage at only12% over the best performing SIMD

Parameter
Operating frequency (GHz) 1
Peak64-bit FP ops per cycle 128
SRF bandwidth (GB/s) 512
SRF size (MB) [1/2]
Number of PEs 16
PE to PE communication 1 word/cycle per PE
Stream cache size (KB) [512/0]
Peak DRAM bandwidth (GB/s) 64

Table 2: Machine parameters

technique. We estimateMIMD computation time by using the op-
timized pipeline execution schedule ofSORT, which has a mini-
mal inner loop, and eliminate the overheads associated with using
multiple sorted connectivity lists. We combine each parallelization
scheme with all three localization methods: renaming without re-
moving duplicates (nDR); renaming with duplicate removal where
the indexed accesses are in-lane within each PE (nDR IL); and du-
plicate removal with dynamic accesses across SRF lanes (DR XL).

6.1 Performance Summary
Table 3 summarizes the overall sustained performance of the best

mapping of each application on the cycle accurate single-chip Mer-
rimac simulator including a model of Rambus XDR DRAM with
a peak bandwidth of64GB/s. Utilizing the mapping techniques to
take advantage of both parallelism and locality at the same time,
Merrimac can achieve very high performance for challenging ir-
regular applications. FEM and GROMACS, which have significant
arithmetic intensity, achieve very high sustained performance of
53% and36% of Merrimac’s peak128GFLOP/s. CDP and SPAS,
on the other hand, have low arithmetic intensity and are mem-
ory bound applications. Therefore, they only sustain8.6GFLOP/s
and3.1GFLOP/s respectively. Note that the absolute peak perfor-
mance of an AMD90nm dual-core Opteron running at2.4GHz/s
is roughly the same as the measured sustained performance of CDP
on Merrimac.

Sustained
Performance Sustained BW

Application Variant [GFLOP/s] [GB/s]
CDP DR XL SORT 8.6 34.3
GROMACS nDR IL COND 45.9 51.4
FEM nDR IL 60.4 25.5
SPAS DR XL PAD 3.1 37.0

Table 3: Performance of best performing variant on Merrimac
with the default parameters of Table 2.

To understand the decisions made to reach these overall perfor-
mance numbers, we look at compute properties of the mapping
variants separately from memory system dependent performance
to explain both the rational for parallelization and localization. We
then draw conclusions both on how to design Stream Processors
and how to tune irregular applications for these systems in Sec-
tion 7.

6.2 Compute Evaluation
To isolate the computational properties of the variants from mem-

ory system performance, Figure 7 shows the number ofcomputa-
tion cyclesin each application normalized to thenDR IL COND
variant. Computation cyclesare equivalent to running the applica-
tion with a perfect off-chip memory system. Remember, that in a



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

CDP GROMACS FEM SPAS

nDR_IL_COND
nDR_IL_PAD
nDR_IL_SORT
nDR_IL_MIMD
DR_IL_COND
DR_IL_PAD
DR_IL_SORT
DR_IL_MIMD
DR_XL_COND
DR_XL_PAD
DR_XL_SORT
DR_XL_MIMD

Figure 7: Computation cycle simulation results for all mapping variants across the four applications. Execution cycles measured
with perfect off-chip memory and normalized to thenDR IL COND variant of each application.

stream processor the PEs cannot directly access off-chip memory
and all aspects relating to SRF access and PE-to-PE communica-
tion are faithfully modeled.

6.2.1 Parallelization Compute Properties
The left-most (solid) group of bars in each application shows

the computation cycles of thenDR variants. CDP and SPAS have
a small number of operations applied to each neighbor and the
COND technique significantly degrades performance as the extra
operations per neighbor are relatively numerous (see Table 1). Ad-
ditionally, the conditional within the inner loop introduces a loop-
carried dependency and restricts compiler optimizations. This re-
sults in the factor of5 computation cycle difference seen in SPAS.
GROMACS has a large number of inner loop operations, andCOND
outperforms bothSORT andPAD.

TheSORT technique has the least amount of computation per-
formed because there is no overhead associated with either padding
or conditionals. However, the computation cycles are also affected
by the kernel startup costs, which are greater forSORT as each
connectivity degree requires at least one kernel invocation. This
has an effect on the execution of SPAS, which has many connec-
tivity bins with few nodes. GROMACS also has a large spread of
connectivity degrees, leading to only a marginal improvement in
computation cycles ofSORT overCOND.

Finally, the performance of a MIMD implementation is bounded
by a30% improvement over the best SIMD scheme in all our appli-
cations. A true MIMD implementation will not result in execution
that is as efficient as this estimate because of load balancing, loop
startup costs, and the effects of memory bandwidth and latency.
FEM has a fixed connectivity degree, and therefore cannot bene-
fit from MIMD execution. Similarly, CDP is memory bound and
shows no potential for improving performance by reducing com-
putational overheads. While GROMACS is not memory bound,
the memory subsystem is active for over88% of the execution
time. Hence,MIMD cannot improve performance by more than
12%. The only benchmark we studied that has computation that is
not overlapped with communication is SPAS. With SPAS the per-
formance potential ofMIMD is hindered by the small number of
operations within the inner loop of the computation. Because of
this small number, the inner loop must be aggressively unrolled or
software pipelined to achieve good utilization of the FPUs. These
optimization techniques are equivalent to dynamically padding the
computation to the degree to which the loop is expanded. Thus,

with SPAS, the performance of aMIMD configuration should be
similar to that ofPAD. A more detailed evaluation ofMIMD exe-
cution for Stream Processors is presented in [1].

6.2.2 Duplicate-Removal Compute Properties
Renaming while removing duplicates relies on indexing into the

SRF, which is less efficient than sequential access. In-lane indexing
inserts index-computation operations, and cross-lane indexing has
an additional runtime penalty due to dynamic conflicts of multiple
requests to a single SRF lane.

In SPAS and CDP, the inner loop contains few instructions and
the overhead of indexing significantly increases the number of com-
putation cycles (factors of1.4−2.6x). In contrast to the short loops
of CDP and SPAS, GROMACS and FEM have high arithmetic in-
tensity. Thus, adding in-lane indexing increases the computation
cycles by only13% for GROMACS and less than5% in FEM.

Another observation relates to the amount of locality captured
by theDR XL technique. In CDP, SPAS, and FEM, increasing the
amount of available state to the entire SRF, increases the amount
of locality exploited. Therefore, a large number of nodes may have
neighbors in the same SRF lane and will dynamically conflict, in-
creasing the overhead of cross-lane access. Using cross-lane index-
ing increases the computation cycles by over70% in CDP, rougly
30% in GROMACS, more than150% in SPAS, and almost50% in
the case of FEM.

Despite the higher computation cycle count, the next subsec-
tion shows that overall application runtime can be significantly im-
proved by employing duplicate removal once realistic memory sys-
tem performance is accounted for.

6.3 Storage Hierarchy Evaluation
Figure 8 shows the execution time of the applications with a sim-

ulated64GB/s peak Rambus XDR DRAM based memory system.
We show the number for the best performing SIMD variant in each
application withnDR, DR IL, andDR XL options normalized to
the application runtime ofnDR on a configuration with a stream
cache. We also explore two storage hierarchy configurations for
analyzing the tradeoffs of using a stream cache vs. increasing strip
sizes:cacheuses a1MB SRF backed up by a512KB cache; and
nocachedoes not use a cache and dedicates2MB of on-chip mem-
ory to the SRF (the SRF size must be a power of2).

In CDP there is an advantage to increasing the strip size in all
mapping variants, even when duplicates are not removed in soft-



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

cache nocache cache nocache cache nocache cache nocache

CDP GROMACS FEM SPAS

R
el

at
iv

e 
ex

ec
ut

io
n 

cy
cl

es

nDR
DR_IL
DR_XL

Figure 8: Performance results for the best performing paral-
lelization variant of each application with a realistic memory
system. Thecache configuration employs a stream cache, while
nocache dedicates more on-chip memory to the SRF.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M noM M noM M noM M noM

cache nocache cache nocache

CDP FEM

R
el

at
iv

e 
ex

ec
ut

io
n 

cy
cl

es

nDR
DR_IL
DR_XL

Figure 9: Performance results for CDP and FEM showing the
advantage of applying localization increasing reordering with
METIS.

ware. CDP has low arithmetic intensity (Table 1) and is limited
by memory system bandwidth, therefore removing duplicate data
loads significantly improves performance. Careful management
of duplicates in software outperforms the reactive hardware cache.
The more state software controls, the greater the performance ad-
vantage. WithDR IL, performance is improved by35% with a
2MB SRF (128KB per lane), but by only7% when the SRF is half
the size. With cross-lane indexing,DR XL has access to additional
SRF space, and especially with the smaller SRF, this is a big ad-
vantage and performance is30% better thannDR. We also see,
that with the large SRF, the additional state is less critical because
DR IL is already able to reduce bandwidth demands.

GROMACS is a compute-bound program in the cached configu-
ration, but memory-bound without a cache. With a cache,nDR per-
forms best because there is no overhead associated with indexing.
DR IL has a7% execution time increase and the higher computa-
tional time overhead ofDR XL results in a slowdown of24%. With
no cache, removing duplicates can improve performance. With the
nDR technique, performance is degraded by a factor of2.1 (com-
pared to cached configuration).DR IL is unable to utilize much
locality due to the large amount of state required for GROMACS
(see Figure 5)DR XL does exploit locality and improves perfor-
mance by16% overDR IL, however, this is still a77% slowdown
compared to cachednDR.

While there is a17% performance advantage to using a cache
for nDR variant of SPAS, the software duplicate-removal methods
match the performance of a cached configuration without the addi-
tional hardware complexity of a reactive stream cache. FEM has
little reuse and benefits minimally from duplicate removal in ei-
ther hardware or software. The computation overhead ofDR XL
decreases performance by21 − 25%.

As shown in Subsection 5.1.2, reordering the nodes and neigh-
bors in the connectivity list using domain decomposition techniques

can increase the amount of reuse within a given strip size (CDP and
FEM). Figure 9 explores the effects of reordering on performance,
where bars labeled withM use METIS and those labeled withnoM
do not. We make three observations regarding the effects of using
METIS on application performance and conclude that METIS is a
generally improves application performance.

First, using METIS to increase locality significantly improves
performance of the cached configurations in CDP, with the best per-
forming cached configuration outperforming the best non-cached
configuration by23%. In FEM, the non-cached configurations con-
sistently outperform the cached configuration due to the larger strip
sizes leading to reduced kernel startup overheads. Second, regard-
less of the availability of a cache, METIS always improves the
performance of theDR IL scheme. This is because METIS ex-
poses greater locality that can be exploited by the limited SRF state
within each lane. In fact, with METIS enabled,DR IL can outper-
form DR XL by (−1)−10%, whereas without METISDR IL trails
the performance ofDR XL by 5 − 33%. Finally, while employ-
ing METIS improves locality for duplicate removal, the reordering
of nodes can reduce DRAM locality and adversely impact perfor-
mance [3]. We can see this effect in the results fornDR without
a cache where METIS degrades performance by about4% when
duplicates are not removed. This is also the reason for the counter-
intuitive result of METIS reducing the performance of uncached
DR XL in CDP.

7. CONCLUSIONS
In this paper we present a framework for characterizing irregular

unstructured mesh and graph based applications in the specific con-
text of stream architectures. Based on our observations and prior
work relating to vector and distributed architectures, we develop
and classify mapping techniques that address the critical aspects of
localization and parallelization under the constraints of restricted
control and the explicitly software managed storage hierarchy of
stream processors.

high
arithmetic 
intensity?

have
MIMD?

connectivity
can change?

short 
inner
loop?

have
MIMD?

connectivity
can change?

MIMD

MIMD

SORT

COND

PADPAD

no
no

no no

no

no

yes

yes yes

yesyes yes

many
connectivity

degree
bins?

no

yes

many
connectivity

degree
bins?

no

yes

(a) Parallelization

compute
bound?

nDR

yes

no effective
caching?

DR_IL

no

yes

have
cross-lane
access?

DR_XL

no

yes

DR_IL

(b) Localization

Figure 10: Decision trees for choosing mapping variant based
on application characteristics. Note thatMIMD is not strictly
required in the decision, and its additional hardware require-
ments provide only up to12% performance benefits.

We then analyze the properties, tradeoffs, and performance char-
acteristics of our techniques on four representative applications from



the finite element, finite volume, n-body simulation, and sparse al-
gebra domains. The evaluation shows that the complexity of cross-
lane indexing has significant compute cycle overheads, but when
combined with software duplicate removal and locality enhancing
reordering can achieve speedups greater than a factor of two com-
pared to a baseline architecture that stresses sequential access. Ad-
ditionally, we introduce and evaluate a stream cache architecture,
which can boost the performance of GROMACS by a factor of4,
but by reducing the size of the on-chip software controlled SRF lo-
cal memory hurts performance in the case of CDP and FEM. Fi-
nally we argue that restricting control to SIMD style execution,
which allows for efficient hardware structures, can come close to
an architecture with fully flexible control. We bound the maxi-
mal advantage of MIMD style SPMD execution to roughly30%
with optimistically low MIMD overhead assumptions and a perfect
memory system and a realistic performance advantage of less than
12%.

We summarize our conclusions in Figure 10, which depicts deci-
sion trees for choosing the most appropriate parallelization and lo-
calization mapping based on application characteristics and Stream
Processor capabilities. Note thatMIMD requires significant addi-
tional hardware over the SIMD parallelization techniques and can
provide at most< 12% performance gain for the style of appli-
cations evaluated in this paper. A more detailed evaluation of the
benefits and cost of adding MIMD support to a Stream Processor
appears in [1].

8. REFERENCES
[1] J. Ahn, W. J. Dally, and M. Erez. Tradeoff between Data-,

Instruction-, and Thread-level Parallelism in Stream
Processors. InProceedings of the21st ACM International
Conference on Supercomputing (ICS’07), June 2007.

[2] J. Ahn, M. Erez, and W. J. Dally. Scatter-add in data parallel
architectures. InProceedings of the Symposium on High
Performance Computer Architecture, Feb. 2005.

[3] J. Ahn, M. Erez, and W. J. Dally. The design space of
data-parallel memory systems. InSC’06, November 2006.

[4] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of control dependence to data dependence. In
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 177–189,
1983.

[5] T. Barth. Simplified discontinuous Galerkin methods for
systems of conservation laws with convex extension. In
Cockburn, Karniadakis, and Shu, editors,Discontinuous
Galerkin Methods, volume 11 ofLecture Notes in
Computational Science and Engineering. Springer-Verlag,
Heidelberg, 1999.

[6] G. E. Blelloch.Vector Models for Data-Parallel Computing.
MIT Press, Cambridge, Massachusetts, USA, 1990.

[7] R. Buyya, D. Abramson, and J. Giddy. A Case for Economy
Grid Architecture for Service-Oriented Grid Computing. In
10th IEEE International Heterogeneous Computing
Workshop, 2001.

[8] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to UPC and language
specification. University of California-Berkeley Technical
Report: CCS-TR-99-157, 1999.

[9] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, and
S. McKee. Impulse: Memory system support for scientific
applications.Journal of Scientific Programming, 7:195–209,
1999.

[10] ClearSpeed. CSX600 Datasheet.
http://www.clearspeed.com/down-
loads/CSX600Processor.pdf,
2005.

[11] L. Codrescu, D. Wills, and J. Meindl. Architecture of the
Atlas chip-multiprocessor: Dynamically parallelizing
irregular applications.IEEE Transactions on Computer,
January 2001.

[12] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonté,
J. Ahn, N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju,
and I. Buck. Merrimac: Supercomputing with streams. In
SC’03, Phoenix, Arizona, November 2003.

[13] W. J. Dally and W. Poulton.Digital Systems Engineering.
Cambridge University Press, 1998.

[14] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills. Vectorized
sparse matrix multiply for compressed row storage format. In
proceedings of the 2005 International Conference on
Computational Science (ICCS’05), pages 99–106, May 2005.

[15] S. J. Deitz, B. L. Chamberlain, S.-E. Choi, and L. Snyder.
The design and implementation of a parallel array operator
for the arbitrary remapping of data. InPPoPP ’03:
Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
155–166, 2003.

[16] S. J. Deitz, B. L. Chamberlain, and L. Snyder. Abstractions
for dynamic data distribution. InNinth International
Workshop on High-Level Parallel Programming Models and
Supportive Environments, pages 42–51. IEEE Computer
Society, 2004.

[17] G. C. Fox. What have we learnt from using real parallel
machines to solve real problems? InProceedings of the third
conference on Hypercube concurrent computers and
applications, pages 897–955, 1988.

[18] N. Goharian, T. El-Ghazawi, D. Grossman, and
A. Chowdhury. On the enhancements of a sparse matrix
information retrieval approach.PDPTA, 2000.

[19] M. Guo. Automatic parallelization and optimization for
irregular scientic applications. In18th International Parallel
and Distributed Processing Symposium, 2005.

[20] H. Han, G. Rivera, and C. Tseng. Software support for
improving locality in scientic codes. InCompilers for
Parallel Computation, 2000.

[21] J. Hippold and G. Runger. Task pool teams for implementing
irregular algorithms on clusters of SMPs. InParallel and
Distributed Processing Symposium, 2003.

[22] H. P. Hofstee. Power efficient processor architecture and the
cell processor. InProceedings of the 11th International
Symposium on High Performance Computer Architecture,
Feb 2005.

[23] Y. S. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy, R. Das,
and J. H. Saltz. Runtime and language support for compiling
adaptive irregular programs on distributed-memory
machines.Softw. Pract. Exper., 25(6):597–621, 1995.

[24] N. Jayasena, M. Erez, J. Ahn, and W. J. Dally. Stream
register files with indexed access. InProceedings of the Tenth
International Symposium on High Performance Computer
Architecture, Madrid, Spain, February 2004.

[25] U. J. Kapasi, W. J. Dally, S. Rixner, P. R. Mattson, J. D.
Owens, and B. Khailany. Efficient conditional operations for
data-parallel architectures. InProceedings of the 33rd
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 159–170, December 2000.



[26] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. Ahn,
P. Mattson, and J. D. Owens. Programmable stream
processors.IEEE Computer, August 2003.

[27] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.SIAM
Journal on Scientific Computing, 20(1):359–392, 1998.

[28] K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A
hardware overview of SX-6 and SX-7 supercomputer.NEC
Research and Development, 44(1):27, January 2003.

[29] C. Koelbel and P. Mehrotra. Compiling Global Name-Space
Parallel Loops for Distributed Execution.IEEE Trans.
Parallel Distrib. Syst., 2(4):440–451, 1991.

[30] M. Lam. Software pipelining: an effective scheduling
technique for VLIW machines. InProceedings of the ACM
SIGPLAN 1988 conference on Programming Language
design and Implementation, pages 318–328, 1988.

[31] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
highly scalable server. InProceedings of the 24th Annual
International Symposium on Computer Architecture, 1997.

[32] A. W. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine transforms. In
Proceedings of the Annual Symposium on Principles of
Programming Languages, 1997.

[33] D. B. Loveman. Program improvement by source to source
transformation. InProceedings of the 3rd ACM
SIGACT-SIGPLAN symposium on Principles on
programming languages, pages 140–152, 1976.

[34] G. Papadopoulos and D. Culler. Monsoon: an explicit
token-store architecture.ACM SIGARCH Computer
Architecture News, 18(3):82–91, 1990.

[35] D. I. Pullin and D. J. Hill. Computational methods for
shock-driven turbulence and les of the richtmyer-meshkov
instability.USNCCM, 2003.

[36] D. Roccatano, R. Bizzarri, G. Chillemi, N. Sanna, and A. D.
Nola. Development of a parallel molecular dynamics code on
SIMD computers: Algorithm for use of pair list criterion.
Journal of Computational Chemistry, 19(7):685–694, 1998.

[37] R. M. Russell. The Cray-1 computer system.
Communications of the ACM, 21(1):63–72, 1978.

[38] Y. Saad.Iterative Methods for Sparse Linear Systems. 2nd
edition, January 2000.

[39] J. H. Salz, R. Mirchandaney, and K. Crowley. Run-Time
Parallelization and Scheduling of Loops.IEEE Trans.
Comput., 40(5):603–612, 1991.

[40] P. Sanders. Efficient emulation of MIMD behavior on SIMD
machines. Technical Report iratr-1995-29, 1995.

[41] W. Shu and M.-Y. Wu. Asynchronous problems on SIMD
parallel computers.IEEE Transactions on Parallel and
Distributed Systems, 06(7):704–713, 1995.

[42] J. E. Smith, G. Faanes, and R. Sugumar. Vector instruction
set support for conditional operations. InProceedings of the
27th Annual International Symposium on Computer
Architecture, pages 260–269, June 2000.

[43] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.
Ranawake, and C. V. Packer. BEOWULF: A parallel
workstation for scientific computation. InProceedings of the
24th International Conference on Parallel Processing, pages
I:11–14, 1995.

[44] J. Su and K. Yelick. Automatic support for irregular
computations in a high-level language. In19th International
Parallel and Distributed Processing Symposium, 2005.

[45] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The raw
microprocessor: a computational fabric for software circuits
and general-purpose programs.IEEE Micro, 22:25–35,
March 2002.

[46] D. van der Spoel, A. R. van Buuren, E. Apol, P. J.
Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, B. Hess,
K. A. Feenstra, E. Lindahl, R. van Drunen, and H. J. C.
Berendsen.Gromacs User Manual version 3.1. Nijenborgh
4, 9747 AG Groningen, The Netherlands. Internet:
http://www.gromacs.org, 2001.

[47] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick. The potential of the cell processor for scientific
computing. InCF ’06: Proceedings of the 3rd conference on
Computing frontiers, pages 9–20, 2006.

[48] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance Java
dialect. InACM 1998 Workshop on Java for
High-Performance Network Computing, Stanford,
California, 1998.


