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Abstract. This paper presents a cache-aware Bloom Filter algorithm with improved cache behavior
and a lower false positive rates compared to prior work. The algorithm relies on the power-of-two
choice principle to provide a better distribution of set elements in a Blocked Bloom Filter. Instead of
choosing a single block, we insert new elements into the least-loaded of two blocks to achieve a low
false-positive rate while performing only two memory accesses on each insert or query operation. The
paper also discusses an optimization technique to trade off cache effectiveness with the false-positive
rate to fine-tune the Bloom Filter properties.

1 Introduction

The Bloom Filter (BF) is a space-efficient data structure representing a set, which provides add and
probabilistic membership query operations with a certain rate of false positives, the False Positive
Rate, and no false negatives [1]. Bloom Filters are implemented in either hardware or software and
are commonly used in various fields including networks [2] and web services [3]. The two main
metrics of a Bloom Filter are its performance (throughput and latency) and its False Positive Rate
(FPR). Our work addresses both at the same time by offering the Power-of-1 + α Blocked Bloom
Filter scheme, which introduces a parametrizable tradeoff between performance and the FPR.

The performance of the BF often has a large impact on overall system performance. For example,
BF query latency and bandwidth dictate the performance of WebCache servers, which implement
a software BF [3], and network routers, which use a hardware BF [4]. As shown in Section 2.1,
BF query operations require k memory accesses to random locations, which stress the cache in
software implementations and add cost and time to hardware BFs. By changing the algorithm to
exploit locality (the likelihood of the system to reuse recently used data [5]), the performance of
BFs can be improved. For software implementations, increasing locality will decrease the number
of external memory accesses due to a higher number of cache hits. For hardware BFs, locality
enables increased lookup capacity by utilizing smaller independent blocks to construct the memory
array [4]. Due to this duality of software and hardware implementations, throughout this paper,
we use the term block to represent a cache line, memory page, or memory bank, depending on the
specific implementation.

The FPR of the BF also directly impacts overall system performance and behavior, because
queries that are falsely answered as belonging to the set typically result in unnecessary costly work
1 This is a preprint of an article whose final and definitive form has been published in the Internet Mathematics
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being performed. Thus, it is not enough to improve locality and performance, but the FPR must
be controlled so that it remains within a reasonable bound of the classic BF algorithm.

This work explores a smooth tradeoff space between the performance and the FPR. Previous
attempts of improving locality have so far been either too aggressive or too conservative and have
not reached an overall optimal point of balancing performance and the FPR. In work motivated
by a hardware implementation of a BF for a network router [6], the authors suggest to pair hash
functions such that even hash functions can choose any bit in the array but odd hash functions are
restricted to choosing a bit in the same block as their corresponding even pair. Thus only k

2 blocks
are accessed for each BF operation. Their simulation results show a minor effect on the FPR. On
the other hand, the algorithm they present is still very conservative with respect to locality and
still requires O(k) (k2 to be exact) memory block accesses.

A different publication, from the perspective of a software BF implementation, presents the
Blocked Bloom Filter [7]. This extremely aggressive approach to exploit locality requires only a
single block access for every query operation. However, it significantly increases the FPR for some
BF configurations, as we discuss in this paper.

Our approach offers a flexible and parametrizable BF algorithm for exploiting locality and we
summarize our main contributions below:

• We analyze the FPR of the Blocked Bloom Filter in detail and show how its worse FPR, relative
to the classic BF algorithm, is a result of a poor distribution of elements between memory blocks.
• We present the Power-of-Two Blocked Bloom Filter, which improves the load balance of elements

across memory blocks, thus minimizing the FPR increase relative to the classic BF algorithm
for some configurations. We then derive and validate an analytical model for the FPR of the
Power-of-Two Blocked Bloom Filter.
• We develop the Power-of-1+α Blocked Bloom Filter, which enables a smooth tradeoff curve

between the locality and the FPR by combining the Blocked Bloom Filter and the Power-of-
Two Blocked Bloom Filter approaches. We also derive and validate an analytical model for the
FPR of the Power-of-1+α Blocked Bloom Filter.
• We show how to fine-tune the tradeoff options in general, and how to find the optimal mix of

Power-of-Two and Blocked Bloom Filters for any given BF configuration.

The rest of the paper is organized as follows. In Section 2, we describe previously-published
algorithms of the (Classic) Bloom Filter and the Blocked Bloom Filter discussing their performance
and FPR metrics. In Section 3.1, we propose the Power-of-Two Blocked Bloom Filter along with its
analytical model as an alternative to the Blocked Bloom Filter. Then, in Section 3.2, we present the
Power-of-1+α Blocked Bloom Filter that allows a fine-grained tuning to optimize the performance –
FPR tradeoff; we provide an analytical model for the Power-of-1+α Blocked Bloom Filter algorithm.
In Section 4, we compare the simulation results of all mentioned approaches in terms of the FPR
and distribution load balance. We discuss the results and provide experimental evaluations of the
optimal α parameter for different configurations of the BF. Finally, we summarize our findings and
present plans for future work in Section 5.

2 Background & Related Work

The Bloom Filter is a relatively simple, yet efficient, probabilistic data structure that represents
a set. In this section we begin with a brief overview of the algorithm and the FPR properties of
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the (Classic) Bloom Filter. Many published modifications to this classic BF exist in the literature,
including one that uses the same power-of-two principle that is the basis of this paper [8]. Most
of this prior work, however, including [8], does not address the performance (throughput/latency)
of the BF. We limit the discussion in this paper to the aggressive Blocked BF [7] (Section 2.2),
which significantly improves performance at the cost of a worse FPR. We omit the details of the
very conservative approach to improve performance presented in [6] as it only reduces the number
of accesses by a factor of two, still requiring O(k) accesses.

2.1 The (Classic) Bloom Filter

This subsection provides a brief overview of the Bloom Filter data structure, algorithm, and FPR
derivation. The BF uses a vector of m bits, which represents the set of elements S (where ‖S‖ = n)
and allows membership queries. The BF utilizes k hash functions (h1..hk), with each function
mapping a potential set element to a single bit location in the range of [0,m).

Algorithm 1 Classic Bloom Filter — k block accesses on average
function Add(x)

for i = 0 to k do
mem(hi(x))⇐ 1

end for
end

function Query(x)
for i = 0 to k do

if mem(hi(x)) == 0 then
return NOT FOUND

end if
end for
return FOUND

end

Table 1: Definition of symbols used.

n number of elements
c bits per element
m total memory size (≡ c · n) [bits]
B block size [bits]
b number of blocks (≡ m/B)
k number of hash functions
hi hash function selecting a bit out of the bit array : elem⇒ [0..m)
hbi hash function selecting a bit out of a block : elem⇒ [0..B)
gi/g hash function selecting a block : elem⇒ [0..b)

mem(x) bit x of the bit array
mem[y](x) bit x of the block y

As shown in Algorithm 1 (and using the symbols summarized in Table 1), adding an element
is done by setting all the bits pointed to by the k hash functions for this element to 1. Note that
some of these bits might already be set, because they were touched by prior add operations of
other elements. To query a membership of an element, all the bits pointed by the results of the
k hash functions are tested. Only if all of them are set, the query result is positive. However, a
false positive response is possible because all the relevant bits might be have been set while adding
unrelated elements. Thus a query result may be positive even when the element queried was never
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added to the BF. Using basic probability properties and algebra (refer to [9] for more detail), the
FPR of the (Classic) Bloom Filter can be written as:

FPRBasic(m,n, k) =

(
1−

(
1− 1

m

)kn)k
≈
(

1− e−
kn
m

)k
(1)

Performance-wise, the worst-behaving query operation would require accessing k different blocks,
assuming there are at least k blocks in the BF bit array. In practice, Lemma 1 proves that an av-
erage query would require accessing k − O(1

b ) different blocks, and thus the average case quickly
approaches the worst case performance.

2.2 The Blocked Bloom Filter

The Blocked Bloom Filter attempts to improve query performance by exploiting locality [7] . As
described below, Algorithm 2 associates a single block of B bits with each element. In this way,
each element is confined to a single block with different elements associated with different blocks,
and potentially multiple elements associated with each block. As a result, it allows us to perform
add/query operations with a single block access.

Algorithm 2 Blocked Bloom Filter — 1 block access
function Add(x)
block ⇐ g(x)
for i = 0 to k do
mem[block](hbi(x))⇐ 1

end for
end

function Query(x)
block ⇐ g(x)
for i = 0 to k do

if mem[block](hbi(x)) == 0 then
return NOT FOUND

end if
end for
return FOUND

end

The FPR of the Blocked Bloom Filter is strongly dependent on load balancing among the blocks.
Let DBlocked(j) be the probability of having exactly j elements in a block; then, the FPR can be
represented as [7]:

FPRBlocked(B, k) =
n∑
j=0

DBlocked(j) · FPRBasic(B, j, k) =
∞∑
j=0

DBlocked(j) · FPRBasic(B, j, k) (2)

An element has an equal probability of 1
b to be associated with a block. Therefore, the distribu-

tion of elements among the blocks can be modeled using a Binomial distribution with parameter
p = 1

b for n elements : DBlocked() = Binomial(n, 1
b ). Since n

b is a small constant, and n
b ≡

B
c , a

Poisson approximation can be used [7]:

DBlocked() = Binomial(n,
1
b

) ≈ Poisson(
n

b
) ≡ Poisson(

B

c
) (3)

As proved by Lemma 2, however, in the special ideal case of a fully-balanced distribution among
the blocks, FPRBlocked Balanced = FPRBasic. This observation, along with Equation 2, leads us to
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conclude that improving the balance among the blocks will improve the FPR whose lower bound
will be the FPRBasic in case of a fully-balanced distribution.

3 Proposed Algorithms

In this section, we present two novel BF modifications. Using the power-of-two principle, we im-
prove the load balance among the blocks in order to reduce the FPR per our conclusion from
Section 2.2 and introduce the Power-of-Two Blocked Bloom Filter. Then, we present the Power-of-
1+α Blocked Bloom Filter, which is a combination of the Power-of-Two Blocked Bloom Filter with
the existing Blocked BF that provides a smooth tradeoff between the FPR and performance. For
both algorithms, we develop an analytical model of the FPR and validate them later in Section 4.

3.1 The Power-of-Two Blocked Bloom Filter

The distribution of elements among the blocks is similar to a problem of random distribution of n
balls into b bins. The power-of-two idea described in literature [9], suggests that instead of placing
the ball into a randomly selected bin, we should select d ≥ 2 bins and choose the least-loaded
among them. This approach would decrease the number of the balls in the bin that contains the
most from Θ

(
ln n

ln(ln n)

)
to Θ (ln (ln n)).

We propose a modification to the Blocked BF that uses two hash functions, g1 and g2, to select
two blocks for each element. For the add operation, we choose the least loaded block out of the two,
and the element is added to the chosen block in the same way as in the Blocked BF. To perform a
membership query, we have to check both blocks that are associated with the element, because we
do not know which of the two blocks the element was added to. Thus, the result will be a positive
if any of the two blocks returns a positive. In other words, only if the query result is negative for
both blocks, the outcome will be negative. Algorithm 3 presents the algorithm.

Algorithm 3 Power-of-Two Blocked Bloom Filter — 2 block accesses
function Add(x)
block ⇐ choose less loaded block(g1(x), g2(x))
for i = 0 to k do
mem[block](hbi(x))⇐ 1

end for
end

function Query(x)
block1 ⇐ g1(x)
block2 ⇐ g2(x)
for i = 0 to k do

if mem[block1](hbi(x)) == 0 then
for j = 0 to k do

if mem[block2](hbj(x)) == 0 then
return NOT FOUND

end if
end for
return FOUND

end if
end for
return FOUND

end

Making the algorithm access two blocks and selecting the least-loaded block, improves the load
balance among the blocks (see Figure 1). Equation 4 shows the FPR of the Power-of-Two Blocked
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BF, which can be derived in a similar fashion to the FPR of the Blocked BF (Equation 2), with
two important changes. First, the distribution DPTwo(x) is different and more balanced than the
distribution of the Blocked BF - DBlocked(x). Second, unlike the Blocked BF, querying the Power-
of-Two Blocked BF selects two blocks and queries each of them independently, and hence the FPR
requires a coefficient of 2.
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Fig. 1: D() distribution of various approaches after inserting n=106 elements with c=20bits per element.

FPRPTwo(B, k) = 2 ·
∞∑
j=0

DPTwo(j) · FPRBasic(B, j, k) (4)

The distribution of elements among the blocks using the Power-of-Two Blocked BF, DPTwo(x),
differs from the one generated by the Blocked BF, DBlocked(x) as depicted in Figure 1. Therefore,
FPRPTwo(B, k) 6= 2FPRBlocked(B, k). Moreover, as it will be discussed and shown in Section 4,
FPRPTwo is actually lower than FPRBlocked for a range of configurations.

The distribution DPTwo(x) is derived iteratively by analyzing the process of adding elements to
the Power-of-Two Blocked BF structure. After adding an element, there are three possible outcomes:
the number of blocks having x elements can increase by 1 if the element was added to a block with
x− 1 elements (so that it becomes a new block with x elements); it can decrease by 1 if an element
was added to a block with x elements (that becomes a block with x+ 1 elements), or finally, it can
remain unchanged.

The algorithm selects two blocks and chooses the least-loaded one. In order to choose the
block with exactly x elements, either both selected blocks, should contain x elements or one block
contains x elements and the second block any greater number. The order of selecting the blocks
is unimportant. Let Pchoose(x) be the probability of choosing to add the new element to a block
with exactly x elements. Then, we can derive Pinc(x) as the probability to increase the number
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of blocks with exactly x elements and Pdec(x) as the probability to decrease the number of blocks
with exactly x:

Pchoose(x) = (DPTwo(x))2 + 2 ·DPTwo(x) ·
∞∑

j=x+1

DPTwo(j) (5)

Pinc(x) = Pchoose(x− 1)

Pdec(x) = Pchoose(x)

Let Nn(x) be the number of blocks with x elements after the nth element insertion, we can
derive DPTwo(x):

DPTwo(x) =
N(x)
b

Nn+1(x) = Nn(x) + 1 · Pinc(x)− 1 · Pdec(x)

∂N(x)
∂n

= Pinc(x)− Pdec(x)

DPTwo(x) is derived in Equation 6. We solve it numerically to obtain FPRPTwo(B, k) using
Equation 4. These results are validated and compared with other algorithms later in Section 4.

∂DPTwo(x)
∂n

=
1
b
· ∂N(x)

∂n
=

1
b
· (Pchoose(x− 1)− Pchoose(x)) (6)

3.2 The Power-of-1 + α Blocked Bloom Filter

In this subsection, we introduce the Power-of-1 + α Blocked Bloom Filter. This approach allows
fine-grained control over the distribution balance, the FPR, and the number of blocks to be accessed
by combining the Blocked BF with the Power-of-Two Blocked BF.

The tradeoff is controlled using the Φ(x) function, which uses 0 ≤ α ≤ 1 defined as follows:

Φ(x) =

{
0 with probability 1− α
1 with probability α

Note that although Φ(x) is a probabilistic function, it is deterministic, i.e. a result for a given
element never changes. Algorithm 4 shows the usage of Φ(x) in the add and query operations.

Deriving FPRα(B, k) is similar to the derivation of FPRPTwo(B, k) (Equation 4), although
the coefficient will be 1 + α rather than 2 and the distribution is different as well, as shown in
Equation 7. The probability of using the Power-of-Two Blocked BF algorithm with a coefficient of
two is α. On the other hand, the probability of using the Blocked BF algorithm with a coefficient
of one is 1 − α. One can observe that for α = 0, this scheme reduces to the Blocked BF, whereas
for α = 1, it turns into the Power-of-Two Blocked BF.
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Algorithm 4 Power-of-1 + α Bloom Filter — 1+α block accesses on average
function Add(x)

if Φ(x) then
AddPower−of−Two(x)

else
AddBlocked(x)

end if
end

function Query(x)
if Φ(x) then

return QueryPower−of−Two(x)
else

return QueryBlocked(x)
end if

end

FPRα(B, k) = α ·

2 ·
∞∑
j=0

Dα(j) · FPRBasic(B, j, k)

+ (1− α) ·

 ∞∑
j=0

Dα(j) · FPRBasic(B, j, k)


= (1 + α) ·

∞∑
j=0

Dα(j) · FPRBasic(B, j, k)

(7)

Dα(x) can be calculated iteratively. Adding an element to the data structure, with probability of
α will follow the Power-of-Two Blocked BF algorithm and update the distribution in a way similar
to Equation 6. As before, with probability of 1 − α, the add operation will follow the Blocked
BF algorithm and update the distribution according to Equation 10. Lemma 3 proves that the
distribution defined by Equation 3 is the solution of the iterative Equation 10. To simplify the
equation, we define Pα choose(x) similarly to Pchoose(x) in Equation 5 and use it in Equation 8. We
solve Equation 8 numerically to obtain FPRα(B, k) using Equation 7. These results are validated
and compared with other algorithms later in Section 4.

Pα choose(x) = (Dα(x))2 + 2 ·Dα(x) ·
∞∑

j=x+1

Dα(j)

∂Dα

∂n
= α ·

[
1
b
· (Pα choose(x− 1)− Pα choose(x))

]
+ (1− α) ·

[
1
b

(Dα(x− 1)−Dα(x))
]

(8)

4 Results and Discussion

This section compares the FPR and distribution metrics of the schemes described in our work.
Results are generated using a simulator written in C++ and run on an Intel R© CoreTM2 CPU. We
use the linear congruential algorithm with 48-bit integer arithmetic (drand48) to generate pseudo-
random numbers to be used as the hash functions for adding elements. Each simulation is repeated
100 times, and the FPR is derived from the number of set bits after 106 random elements are added.
Table 2 summarizes the parameters used in the simulations.

In Section 2.2, we mentioned that improving balance among blocks improves the FPR. The
Power-of-Two Blocked BF uses the power-of-two principle to achieve this. In the Power-of-1+α
Blocked BF approach we introduce α to control the balance. Figure 1 shows experimental results
for the distributions D(x) of all three approaches. The benefit of the power-of-two principle is
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Fig. 2: False Positive Rates of different Bloom Filter approaches for varying values of c (bits per element).

Table 2: Parameters used for simulation.

n number of elements 106

c bits per element (1..40)
m total memory size ≡ c · n [bits]
B block size 500 [bits]
b number of blocks ≡ m/B
k number of hash functions |ln2 · c|round

clearly seen where the 1 + α approach (with α = 0.3), as expected, is in between the the Blocked
and Power-of-Two Blocked BFs.

The FPRs of the different approaches are depicted in Figure 2. It clearly shows the disadvantage
of the Blocked BF against the Power-of-Two Blocked BF for configurations with c ≥ 17. The figure
also shows how the Power-of-1+α Blocked BF (α = 0.3) enables greater flexibility and yields the
best overall FPR for 13 ≤ c ≤ 20. Finally, Figure 2 validates the analytical models and shows a
good match with the simulation results for all three schemes.

The parameter α in the Power-of-1+α Blocked BF controls the algorithm. As mentioned before,
both the Blocked BF and the Power-of-Two Blocked BF are special cases of the Power-of-1+α
Blocked BF for α = 0 and α = 1 respectively. Therefore, to choose the best scheme for each BF
parameter configuration, an optimal α value should be selected.

Figure 3 shows the ratio of the Power-of-1+α Blocked BF FPR versus the Blocked BF FPR as
a function of α for different configurations of c. This function has a convex form where an optimal
α exists. As an example, Figure 3 shows the optimal points for c=16, 18, 20, which are respectively
α=0.3, 0.4, 0.5.

Figure 4 plots the optimal α values across a range of BF configurations (varying c). The figure
clearly shows that for c ≤ 10, the best FPR is achieved with α = 0, i.e. the Blocked BF; the Power-
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of-Two Blocked BF is optimal for c ≥ 31; and the optimal α in between can be approximated
linearly.

5 Summary and Future Work

The Bloom Filter is an efficient and widely used probabilistic data structure implemented both in
software and hardware. In Section 2.1, we summarized the (Classic) BF algorithm, derived its FPR,
and showed how its performance disadvantaged due to accesses to multiple (k) memory blocks. We
then described the Blocked BF [7], which is a high-performance alternative, which only requires
a single memory block access. The Blocked BF, however, introduces a higher False Positive Rate
(FPR). We discussed the reason for the FPR increase and showed that by balancing the load of
elements among the blocks, the FPR could be improved.

We followed this conclusion and developed the Power-of-Two Blocked BF, which improves the
balance of element distribution using the power-of-two choice principle (Section 3.1), and derived
an analytical model for its FPR. Our analysis showed, however, that for some configurations,
the Blocked BF still has a lower FPR compared to the Power-of-Two Blocked BF; therefore, we
introduced the Power-of-1+α Blocked BF to blend the advantages of both the Blocked and Power-
of-Two Blocked schemes (Section 3.2). Using the parameter α, the Power-of-1 + α Blocked BF
approach allows a fine-grained tuning of the algorithm for an optimal FPR.

Using the analytical model we presented for the Power-of-1 + α Blocked BF, we analyzed the
FPR’s dependence on α and depicted it in Figure 4. We found that it can be approximated using
a linear function; however, we leave deeper analysis of this dependency to future work.
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Appendix

Lemma 1. Let k be the number of hash functions used in a (Classic) BF and b be the number of
blocks that the memory array consists of. Then, the average query operation will require accesses to
k −O(1

b ) different blocks.

Proof. Each query operation requires accesses to k different bits in the memory array. For a single
bit look-up, the probability that a specific block is accessed is 1

b . Conversely, the probability that
a block is not accessed is 1 − 1

b . Therefore, the probability that a block is not accessed for any
lookups of the k bits is

(
1− 1

b

)k, and the probability that the block is accessed by at least a

single bit lookup is 1−
(
1− 1

b

)k. Based on that, the average number of blocks accessed by a query

operation is b
[
1−

(
1− 1

b

)k]. Using the Binomial expansion, we derive the required average number
of accessed blocks:

b ·

[
1−

(
1− 1

b

)k]
= b ·

[
1−

(
1− k

b
+O(

1
b2

)
)]

= k −O(
1
b

)

ut

Lemma 2. In the special case of a fully balanced distribution among the blocks of a Blocked BF
containing a total of n elements in m bits of memory split into b blocks, let DBlocked Balanced(j)
be the probability of having exactly j elements in a block. Then, FPRBlocked Balanced is equal to
FPRBasic.

Proof. Since the blocks are balanced, the number of elements in each block is equal to n
b ; therefore,

DBlocked Balanced(j) is defined as:

DBlocked Balanced(j) =

{
0 j 6= n

b

1 j = n
b

(9)

Utilizing Equation 9 in Equation 2 yields:

FPRBlocked Balanced(B, k) =
∞∑
j=0

DBlocked Balanced(j) · FPRBasic(B, j, k)

= FPRBasic(B,
n

b
, k) = FPRBasic(m,n, k)

ut

Lemma 3. Let DBlocked(j) be the probability of having exactly j elements in a block of a Blocked
BF as defined by Equation 3. Then, DBlocked(j) solves the iterative Equation 10 below.

∂DBlocked(x)
∂n

=
1
b

(DBlocked(x− 1)−DBlocked(x)) (10)
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Proof. We prove by using Equation 3 in Equation 10. According to Equation 3:

DBlocked(x) ≈ Poisson(
n

b
) =

(
n
b

)x · e−nb
x!

∂DBlocked(x)
∂n

=
∂

∂n

((
n
b

)x · e−nb
x!

)
=

x·nx−1

bx · e−
n
b

x!
+

(
n
b

)x · e−nb
x!

·
(
−1
b

)

=
1
b
·

((
n
b

)x−1 · e−
n
b

(x− 1)!
−
(
n
b

)x · e−nb
x!

)
=

1
b

(DBlocked(x− 1)−DBlocked(x))

Another way to prove it is by constructing a similar derivation to the iterative method used in
Equation 6. ut


