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ABSTRACT

This paper presents a novel technique, Memory Mapped ECC,
which reduces the cost of providing error correction for SRAM
caches. It is important to limit such overheads as proces-
sor resources become constrained and error propensity in-
creases. The continuing decrease in SRAM cell size and the
growing capacity of caches increases the likelihood of errors
in SRAM arrays. To address this, redundant information
can be used to correct a value after an error occurs. In-
formation redundancy is typically provided through error-
correcting codes (ECC), which append bits to every SRAM
row and increase the array’s area and energy consumption.
We make three observations regarding error protection and
utilize them in our architecture: (1) much of the data in a
cache is replicated throughout the hierarchy and is inher-
ently redundant; (2) error-detection is necessary for every
cache access and is cheaper than error correction, which is
very infrequent; (3) redundant information for correction
need not be stored in high-cost SRAM.

Our unique architecture only dedicates SRAM for error
detection while the ECC bits are stored within the memory
hierarchy as data. We associate a physical memory address
with each cache line for ECC storage and rely on locality to
minimize the impact. The cache is dynamically and trans-
parently partitioned between data and ECC with the frac-
tion of ECC growing with the number of dirty cache lines.
We show that this has little impact on both performance
(1.3% average and < 4%) and memory traffic (3%) across a
range of memory-intensive applications.

Categories and Subject Descriptors
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1 Introduction

In this paper we present Memory Mapped ECC – a strong er-
ror protection architecture aimed at large on-chip last-level
caches (LLCs) that minimizes hardware energy and area
overheads while having minimal impact on performance. Our
technique is based on several important observations and is
unique in off-loading the storage requirements of error cor-
rection to low-cost off-chip DRAM. We store error-correction
bits as addressable data within the memory hierarchy itself
instead of in a dedicated SRAM array. This is a general tech-
nique that can be used to dynamically and transparently of-
fload any meta-data that is associated with a physical cache
line to higher levels of the storage hierarchy. We also offer a
generalization of energy-reducing non-uniform error correc-
tion techniques using a tiered approach; low-overhead and
low-latency first-tier detection or correction is performed on
every access to the cache, while stronger and more costly
second-tier correction is only engaged once an error is de-
tected.

It is important to minimize the impact on area, power, and
application performance of strong error protection mecha-
nisms because with the continuing increase in on-chip cache
size, soft error propensity grows as well. This increase in
soft error rate (SER) is the result of a decrease in the criti-
cal charge required to flip a stored bit (Qcrit) as the physi-
cal dimensions of the SRAM devices shrink. There are two
main mechanisms in which a soft error occurs. The first
mechanism is a result of charge that surpasses Qcrit accu-
mulating in the device due to a particle strike (typically a
neutron in the form of a cosmic ray). While the likelihood
of a particle striking a particular SRAM cell is proportional
to the SRAM cell size, the decreasing Qcrit offsets this ef-
fect leading to a roughly constant SER per SRAM cell of
10−3FIT/bit [22, 31, 29]. The overall capacity of the LLC,
however, is growing, leading to a rapid rise in the likelihood
of soft errors in the LLC. The second mechanism relates
to supply noise, which can also overcome the potential dif-
ference associated with Qcrit and lead to a bit flip. The
increase in variability and the need to lower supply voltage
(VDD) on top of smaller Qcrit in deep sub-micron fabrication
compounds the soft error problem. Another trend in SRAM



soft errors is the increased likelihood of multi-bit errors in
the array, partially because many memory cells can fall un-
der the footprint of a single energetic particle strike leading
to a burst of consecutive errors [22, 24, 28].

Because of these trends, the need to account for high LLC
SER and also tolerate multi-bit errors in SRAM arrays is
becoming acute, and SRAM cell stability will be a primary
concern for future technologies [4]. Researchers have already
observed up to 16-bit errors in SRAM arrays and are pre-
dicting potentially higher counts in the future [1, 22, 24].
The more powerful error protection mechanisms required to
correct large numbers of bit flips come at a cost of storage
of the redundant information as well as increased energy
requirements. We aim to reduce the overheads of provid-
ing increased protection against soft errors in large SRAM
arrays. We base our Memory Mapped ECC efficient error
protection architecture on five important observations:

• While SER is increasing and cannot be ignored at any
memory hierarchy level, error events are still expected
to be extremely rare when compared to the proces-
sor cycle time. For instance, the mean time to failure
(MTTF) of a 32MB cache is around 155 days assuming
10−3FIT/bit.

• Every read from the LLC requires error detection to
ensure that no error has occurred. Error detection la-
tency, therefore, is critical to application performance
and error detection energy is important for overall power.

• Every write to the LLC is accompanied by computing
information required for error correction as well as for
detection. The latency of this operation, however, is
unimportant as long as the write throughput can be
supported. Additionally, write operations are typically
less common than read operations and the complexity
to compute error correction information can be higher.

• Given that SER is low, the latency and the complexity
of error correction is not important. Even an error
correction latency of 10ms is acceptable since it would
occur once every several weeks or months on a given
processor.

• Much of the data stored in the LLC is also stored else-
where in the memory hierarchy (clean cache lines).
Replicated data is inherently soft-error tolerant, be-
cause correct values can be restored from a copy. Thus,
it is enough to detect errors in clean lines, which can
be done with lower cost than error correction.

We combine the observations above into an architecture
that decouples error detection from error correction and that
can store the redundant information required for correction
in low-cost off-chip DRAM. This unique organization leads
to several important contributions:

1. We develop an architecture that stores the encoded re-
dundant information required for error correction within
the memory hierarchy rather than in costly dedicated
SRAM, reducing both the area and the energy over-
heads of error protection.

2. We apply low-cost error detection and/or correction
uniformly to all LLC lines to ensure we can detect er-
rors reliably and match or exceed the capabilities of

traditional architectures. We do not require that cor-
rection be low latency or simple in all cases and uti-
lize strong error-correcting codes to provide the desired
protection level. We can afford much more complex
and costly error correction because we do not dedicate
on-chip storage resources to the redundant bits. This
is a generalization of previously suggested decoupled
detection/correction approaches [27, 18, 14].

3. We provide a single, extensible, and general method to
store and manipulate error-correction data. We show
how Memory Mapped ECC dynamically adapts the
on-chip storage requirements for error correction to
minimize the impact on application performance.

In this paper we focus on the overhead reductions enabled
by Memory Mapped ECC and defer discussion of poten-
tially improved protection to future work. We evaluate our
architecture using a combination of full-system cycle-based
simulation of challenging SPLASH2, PARSEC, and SPEC
CPU 2006 benchmarks, and augment the simulation results
using PIN-based emulation for large datasets. We show that
Memory Mapped ECC outperforms prior techniques for re-
ducing error-protection overheads on nearly every metric.
We estimate 15% and 8% reductions in area and power-
consumption of a last-level cache respectively, while perfor-
mance is degraded by only 1.3% on average and by no more
than 4%.

The rest of the paper is organized as follows: Section 2
describes related work, including circuit- and device-level
techniques in addition to methods that utilize information
redundancy; Section 3 details our architecture and discusses
its benefits and requirements as well as comparing our method
with prior work; Section 4 provides the evaluation of Mem-
ory Mapped ECC in the context of the LLC of an out-
of-order processor and Chip Multi-Processors (CMPs); and
Section 5 concludes the paper.

2 Related Work

In this section we briefly provide background on circuit and
device level techniques for addressing the soft error problem,
code-based error detection and correction mechanisms, and
prior work on reducing the area and power impact of these
mechanisms.

2.1 Circuit- and Device-Level Techniques

In this paper we focus on microarchitecture level mecha-
nisms to reduce SER, but there has also been extensive work
on SRAM reliability using process, layout, and circuit tech-
niques, which typically have high overhead for significant
SER reductions. The least intrusive process level method is
deep N-well technology, which uses a triple-well process in
which NMOS devices are constructed inside P-wells, which
are themselves inside deep N-wells [6]. The Deep N-wells
provide isolation from α-particles and neutron cosmic rays
and reduce the failure rate of SRAMs by a factor of approx-
imately 1.5 − 2.5.

A more significant reduction in SER can be achieved by
modifying the SRAM cell layout to increase Qcrit. This is
done by adding poly-diffusion overlaps to the critical nodes [6],
improving SER by a factor of 20 but with a 40% area over-
head and a penalty of 6 − 8% in latency.

On the circuit side, hardened SRAM cells have been sug-
gested that use a larger number of transistors to achieve



Table 1: ECC storage array overheads [29].

SEC-DED SNC-DND DEC-TED
Data check

overhead
check

overhead
check

overhead
bits bits bits bits
16 6 38% 12 75% 11 69%
32 7 22% 12 38% 13 41%
64 8 13% 14 22% 15 23%
128 9 7% 16 13% 17 13%

reduction in soft-error propensity and more robust opera-
tion even at low VDD values. For example, 8T cells [4], 10T
cells [3], and Schmidt Trigger (ST) based 10T cells [16] can
significantly improve reliability, but at the cost of increased
access latency and SRAM cell area (8T - 30%, 10T - 60%,
and ST 10T - 100% [36]).

2.2 Information Redundancy

A common solution to address soft errors is to apply error
detecting codes (EDC) and error correcting codes (ECC)
uniformly across all cache lines. A cache line is extended
with an EDC and/or an ECC, then every read or write re-
quires error detection/correction or EDC/ECC encoding re-
spectively. Typically, error-detection only codes are simple
parity codes, while the most common ECCs use Hamming [9]
or Hsiao [10] codes that provide single bit error correction
and double bit error detection (SEC-DED).

When greater error detection is necessary, double bit er-
ror correcting and triple bit error detecting (DEC-TED)
codes [19], single nibble error correcting and double nibble
error detecting (SNC-DND) codes [5], and Reed Solomon
(RS) codes [26] have also been proposed. They are, how-
ever, rarely used in cache memories because the overheads
of ECC circuits and storage grow rapidly as correction ca-
pability is increased [13]. Instead of using these complex
codes, multi-bit correction and detection is more commonly
achieved by interleaving multiple SEC-DED codes. Table 1
compares the overhead of various ECC schemes. Note that
the relative ECC overhead decreases as data size increases.

Examples from Current Processors. If the first-level
cache (L1) is write through and the LLC (e.g., L2) is inclu-
sive, it is sufficient to only provide error detection on the
data array because the data is replicated in L2. Then, if
an error is detected in L1, error correction is done by in-
validating the erroneous L1 cache line and re-fetching the
cache line from L2. Such an approach is used in the SUN
UltraSPARC-T2 [32] and IBM Power 4 [33] processors. The
L2 cache is protected by ECC, and because L1 is write-
through, the granularity of updating the ECC in L2 must
be as small as a single word. For instance, the UltraSPARC-
T2 uses a 7-bit SEC-DED code for every 32 bits of data in
L2, an ECC overhead of 22%.

If L1 is write-back (WB), then L2 accesses are at the gran-
ularity of a full L1 cache line. Hence, the granularity of ECC
can be much larger, reducing ECC overhead. The Intel Ita-
nium processor, for example, uses a 10-bit SEC-DED code
that protects 256 bits of data [38] with an ECC overhead of
only 5%. Other processors, however, use smaller ECC gran-
ularity even with L1 write-back caches to provide higher
error correction capabilities. The AMD Athlon [11] and
Opteron [12] processors, as well as the DEC Alpha 21264 [7],
interleave 8 8-bit SEC-DED codes for every 64-byte cache
line to tolerate more errors per line at a cost of 13% addi-
tional overhead.

2.3 Reducing Error Correction Overheads

In this subsection we describe work that is closely related
to our architecture. We defer detailed comparison and dis-
cussion to later sections (Section 3.4 and Section 4.3.1 re-
spectively). Prior work on reducing on-chip ECC overhead
generally break the assumption of uniform protection of all
cache lines and either sacrifice protection capabilities, when
compared to uniform ECC protection, or utilize different
mechanisms to protect clean and dirty cache lines.

Kim and Somani [15] suggest parity caching, which com-
promises error protection to reduce area and energy costs
of ECC by only protecting those cache lines that have been
most recently used in every cache set. Another scheme in
this first category is In-Cache Replication (ICR) [40]. ICR
increases error protection for a subset of all cache lines,
which are accessed frequently, by storing their replicas in
place of cache lines that are predicted to be “dead” and no
longer required. Not all cache lines are replicated leading
to a potentially higher uncorrectable error rate than with
the baseline uniform ECC. An approach to save energy and
latency rather than area was proposed in [27]. The idea is to
decouple error detection from error correction and utilize a
low-latency and low-cost EDC for reading, while traditional
ECC is computed and stored on every write. This ECC
is used if an error is detected. A similar idea was taken
further in [18], where the SEC-DED ECC portion of clean
cache lines is power-gated to reduce leakage power, leaving
only parity EDC active. Lines that are clean can be recov-
ered from a deeper level in the memory hierarchy and only
error detection is necessary.

Kim [14] proposes a method to decrease area in addition
to energy by trading-off performance. Their area-efficient
scheme allows only one dirty cache line per set in a 4-way
set associative cache. If a larger number of lines in a set re-
quire ECC (more than one dirty line), a write-back is forced
to make space for the new ECC. In our experiments that ac-
curately model the DRAM system (Section 4.3.1), we found
that this additional memory write traffic can significantly
degrade performance. The performance impact can be re-
duced at an area and energy cost if more ECC-capable lines
are provided in each set. We will refer to this generalization
scheme where n lines per set have ECC as MAXn.

Essentially, the area-efficient scheme above implements a
set-associative cache for storing ECC bits. Other work pro-
posed a fully-associative replication cache that utilizes repli-
cation to provide error protection. The R-Cache stores repli-
cas of writes to a L1 cache [39], and the replicas are accessed
on reads to provide detection and correction. If the R-Cache
is full, the controller forces a line to be cleaned and written
back to L2 so that no data is jeopardized. Although its per-
formance impact is minimal, the R-Cache increases energy
consumption and can only be used with small L1 caches due
to its fully associative structure.

Finally, Lee et al. proposed eager write-back as a way to
improve DRAM bandwidth utilization [17]. It eagerly writes
dirty cache lines back to DRAM so that dirty evictions do
not contend with demand fetches. Many cache reliability
studies (e.g., [14, 18]), including ours, use eager write-back
as a way to reduce the average number of dirty cache lines
in the LLC.



Table 2: Possible T1EC/T2EC codes assuming 64B cache line.

T1EC T2EC T1EC T1EC T2EC
code size code size burst error correction burst error detection burst error correction

8 way parity 1B 8 way SEC-DED 8B N/A 15 bits 8 bits
16 way parity 2B 4 way SNC-DND 8B N/A 31 bits 4 nibbles
32 way parity 4B 8 bit symbol RS 8B N/A 63 bits 4 bytes

8 way SEC-DED 8B 8 way DEC-TED 8B 8bits 16 bits 16 bits
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Figure 1: Memory Mapped ECC organization (see Table 3
for definitions of symbols).

3 Memory Mapped ECC

Our Memory Mapped ECC architecture minimizes the hard-
ware energy and area costs beyond prior work while having
minimal impact on performance. Our technique stores the
ECC bits within the memory hierarchy itself rather than in
dedicated storage. Further, we provide a generalization of
the non-uniform techniques described above through a tiered
error correction structure that is naturally implemented us-
ing our method. Memory Mapped ECC uses a two-tiered
protection mechanism to ensure LLC data integrity. The
Tier-1 error code (T1EC) is a low-cost code that can be
decoded with low latency and energy because it must be
accessed on every read. The Tier-2 error code (T2EC) pro-
vides the required strong error correction capability and
is much more costly to compute and store. The T2EC,
however, is only computed on a dirty write-back into the
LLC. More importantly, it is only read and used on the rare
event that the T1EC detects an error that it cannot cor-
rect. Therefore, we do not provide storage for the T2EC
along with every cache line and instead write the T2EC bits
into the memory system as addressable data. Thus the in-
formation can be cached in the LLC and eventually stored
in low-cost off-chip DRAM. Figure 1 illustrates how T1ECs
and T2ECs are organized in the LLC and DRAM.

Storing the T2EC bits as cacheable data, rather than
in dedicated storage, offers several important advantages.
First, we avoid dedicating costly SRAM to store ECC only,
while at the same time, we do not limit the number of dirty
lines in a cache set or the cache overall. By allowing the
redundant information to be stored in DRAM and cached
on chip, we transparently and dynamically adjust the on-
chip T2EC storage to the number of dirty cache lines using
the existing cache management mechanism. Thus we elim-
inate all SRAM leakage and area overheads of dedicated
T2EC storage, improving on the savings suggested in the
past [14, 18].

The second main advantage is the generality of our tech-
nique and the flexibility it provides in choosing the T2EC.
In this paper we evaluate a T1EC/T2EC that uses 8 way in-
terleaved parity codes for the first-tier T1EC and an 8 way
interleaved SEC-DED second-tier code. Thus, the T1EC
and T2EC are 1 byte and 8 bytes per 64 byte cache line
respectively. The interleaved parity codes can detect multi-
ple adjacent bit errors and minimize on-chip overheads and
error detection latency. Once errors are detected, the off-
chip, cached SEC-DED codes (T2EC) correct the errors.
This configuration allows us to directly compare our ar-
chitecture to 8-way interleaved Hamming SEC-DED codes
commonly used in prior work. The combination of inter-
leaved parity and SEC-DED codes as T1EC and T2EC pro-
vide the same bursty error correction capability (up to 8-bit
bursts) as the conventional Hamming codes with reduced
on-chip area. The number of detectable unrecoverable er-
rors (DUEs), however, is different. The interleaved parity
T1EC can detect bursts up to 15 bits long, whereas the con-
ventional interleaved SEC-DED Hamming code can detect
up to 16-bit bursts (8 interleaved double bit errors). The
codes also differ in their detection capability for non-burst
multi-bit errors, but such errors are much less common.

With our architecture, however, it is simple to accommo-
date stronger protection. We briefly summarize a few possi-
ble T1EC/T2EC combinations providing a range of different
error protection capabilities in Table 2. Since all configu-
rations have identical T2EC size (2B), the impact on per-
formance will be roughly the same as the results that we
present in Section 4. Hence, the tradeoff is between error
protection capability and on-chip area, in which T1EC size
represents on-chip area overhead. Encoding complexity also
plays a role in cost, but we leave discussing this to future
work. Note that the size of even the 32-way interleaved par-
ity T1EC (4B) is still much less than the size of conventional
interleaved Hamming codes (8B), while the combination of
T1EC/T2EC can protect more errors. Each of the 8 inter-
leaved codes of the T2EC of the last configuration in Table 2
is a DEC-TED code with separable SEC-DED property [25],
in which the first 8 bits of the 16-bit DEC-TED code can
provide SEC-DED capabilities; Thus, the T1EC can correct
nearly all errors, those that have up to 8-bit bursts, with
a very low latency overhead. The T2EC, which constructs
the DEC-TED code from the 8 bits stored on-chip in the
T1EC and the 8 bits that are handled by Memory Mapped
ECC is used only in cases of a DUE in the T1EC, which are
extremely rare.

We now describe how to integrate Memory Mapped ECC
within the memory hierarchy including interfaces with the
DRAM memory namespace and the LLC controller, followed
by a discussion of the impact on area, energy, and perfor-
mance.

3.1 T2EC in DRAM

Memory Mapped ECC requires a region of the memory names-
pace (the T2EC region) to be allocated for T2EC storage.



Table 3: Definitions and nominal parameters used for evaluation.

LLC parameters C LLC size in bytes 1MB
W LLC associativity 8
S number of LLC sets 2048
B LLC line size in bytes 64

ECC parameters L T1EC size in bytes (per LLC line) 1
E T2EC size in bytes (per LLC line) 8

Address mapping T2EC addr(x) DRAM address in which the T2EC bits protecting address x are stored
T2EC base base pointer to T2EC in DRAM
way(x) the way within a set in which address x is cached
set(x) the set within the LLC in which address x is cached
T2EC line multiple T2ECs that are mapped to a single LLC line 8

Our current implementation is to map this region to physical
DRAM addresses and avoid address translation when read-
ing and writing T2EC. An on-chip register, (T2EC base),
points to the start of the T2EC array, which is only E×C

B

bytes in size, where E is the number of bytes of T2EC per
cache line, C is the total cache size, and B is the number
of bytes in a LLC line (Table 3). For example, using inter-
leaved SEC-DED codes, the T2EC array is just 128KB of
physical DRAM for every 1MB of a LLC with 64-byte lines.
Each physical LLC line is associated with a T2EC in physi-
cal memory, as follows: (See Table 3 for notations)
T2EC addr(x) = T2EC base +(way(x)×S+set(x)) × E.
Using this mapping for the interleaved SEC-DED T2EC on
64-byte LLC lines, 8 T2EC entries are mapped into 64 bytes
and form a T2EC cache line.

We define the T2EC region in DRAM to be cacheable in
the LLC. This has two significant advantages over writing
T2EC information directly out to DRAM. First, it reduces
the DRAM bandwidth required to support Memory Mapped
ECC by exploiting locality in T2EC addresses and access-
ing T2EC data in the cache when possible. We map LLC
lines from consecutive sets to be adjacent in T2EC DRAM
storage to increase the likelihood that accesses to arrays in
the program will have their T2EC data placed in the same
T2EC line. A T2EC cache line is fetched to the LLC, modi-
fied in the LLC, then evicted to DRAM like a normal cache
line. In other words, the LLC is dynamically partitioned to
data and T2EC cache lines and T2EC storage overheads are
eventually amortized to DRAM.

The second advantage of caching T2EC data is in match-
ing the T2EC access granularity to DRAM burst size. A
typical T2EC will require a small number of bytes for ev-
ery LLC line and writing in such fine granularity to mod-
ern DRAM systems is inefficient and wastes limited DRAM
bandwidth. By caching T2EC data, the LLC acts as a write-
combining buffer for T2EC bits and all writes to DRAM are
performed in the granularity of one or more DRAM bursts.

3.2 Cache Operation

Data Access. We assume the cache level preceding the
LLC (L1, if the LLC is L2) is a write-back cache, hence, the
LLC is always accessed at a coarse granularity of a cache
line. When a cache line is read from the LLC (fill into pre-
ceding level or write-back into DRAM), the T1EC is used
to detect and potentially correct errors (Figure 2(a)). If
the T1EC has error correction capability and the detected
errors are correctable, then the errors are corrected immedi-
ately. Otherwise, the correction is performed by the T2EC
as depicted in Figure 2(b). Clean cache lines do not require
any T2EC access and are re-fetched from DRAM or are cor-
rected by the T1EC if possible. Dirty cache lines, however,
may require accessing T2EC data and decoding it. If the

T2EC information is not already in the cache it is fetched
from DRAM.

The procedure for writing a line into the LLC is summa-
rized in Figure 2(c). In all write cases, the T1EC is com-
puted and stored in the T1EC portion of the cache line. A
T2EC, however, is only computed for dirty lines that are
written back into the LLC from a previous-level cache (e.g.,
L1). This newly generated T2EC is mapped to a cacheable
DRAM address, and if this T2EC address is already in the
cache it is updated with the newly computed T2EC. If the
T2EC address is a cache miss, a line is allocated for it in the
LLC and populated with the relevant T2EC information.
Note that a T2EC is generated only for a dirty cache line
and T2EC encoding / caching is concurrent with the LLC
data write.

T2EC Access. Our architecture provides an optimization
for the allocation and population of T2EC lines in the LLC.
Because a T2EC is just an ECC for a dirty cache line, we
can often simply allocate a T2EC line in the LLC without
first fetching its corresponding data from DRAM. If all the
cache lines that are mapped to a single T2EC cache line
are clean, the corresponding T2EC information in DRAM
is stale and unnecessary and it is wasteful to read it. The
optimized procedure for allocating and populating a T2EC
line is illustrated in Figure 2(d). T2EC cache line fills occur
only when there is at least one dirty cache line among the
cache lines mapped to the T2EC cache line.

Filling a T2EC line from DRAM is similar to a regular
data line fill and the read request is first placed in an MSHR.
The MSHR is responsible for merging the newly computed
T2EC with the T2EC data corresponding to other cache
lines that is being fetched from DRAM. This merging capa-
bility is similar to that provided by the MSHRs between two
cache levels where the granularity of writes is smaller than
the cache line size (e.g., when the preceding level is a write-
through cache). To accomplish the T2EC merging, each
MSHR entry is extended with a bit-vector that indicates
what portion of the T2EC line has just been calculated and
what portion is being fetched from DRAM (Figure 3). This
bit vector enables additional pending T2EC writes to the
same T2EC line to proceed while the line is being fetched.

3.3 Impact on Area, Energy, and Performance

ECC Storage. Our two-tiered ECC scheme requires that
all LLC lines be uniformly protected by the first-tier T1EC.
Thus, the on-chip area of Memory Mapped ECC is equal to
the total T1EC size, which is L×C

B
bytes (Table 3). This

area overhead, however, is lower than that of the conven-
tional ECC since the T1EC is a low-cost code. For in-
stance, using a simple parity-based error detecting code as
the T1EC reduces on-chip overheads significantly compared
to the conventional SEC-DED Hamming ECCs of today’s
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Figure 2: Operations in LLC with Memory Mapped ECC.
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Figure 3: Extended MSHR entry. The bit vector length is
equal to the number of T2EC entries mapped to a single LLC
line.

processors. We also require a small amount of DRAM to
be dedicated to T2EC storage, but as explained above, this
area is much smaller than the LLC capacity and is insignif-
icant when compared to DRAM capacity. Because the LLC
is shared for both data and T2EC information, it is pos-
sible that application performance suffers when compared
with the baseline organization. We evaluate this in detail in
Section 4.

Error Detection. When properly designed, the error de-
tection using a T1EC, which is the most common operation
in error protection, is less complex than that of the conven-
tional ECC. For instance, detecting a single bit error is much
simpler using a parity based T1EC than with a SEC-DED
Hamming code. We do not evaluate this advantage of our
architecture in this paper and refer the reader to the PERC
architecture [27], which uses decoupled error detection and
error correction to improve the performance and energy of
a first-level cache.

ECC Generation and Encoding. A T1EC will be com-
puted and encoded for every LLC access, including both
clean and dirty cache lines. Thus, we choose a T1EC with
low encoding complexity. The strong protection is provided
by the T2EC, and the complexity of computing and en-
coding the T2EC can be non trivial. T2EC data is rarely
read, however, because errors that cannot be handled at the
T1EC tier are rare. Therefore, the T2EC encoding circuits
need only keep up with the throughput of LLC write opera-
tions and latency can be ignored. ECC generation does not
impact performance and the required energy is no larger
than in the baseline or related techniques. In fact, as in
prior work, energy requirements are lower because the com-
plex T2EC is only computed for dirty lines as explained
in [18, 27].

Error Correction. When the T1EC detects an error, the
correction mechanism will attempt to correct the error us-
ing the T1EC if possible, which will be done with low energy
and latency. If the chosen T1EC is not strong enough for
correction, and the cache line is clean, error correcting sim-

ply involves re-fetching the line from DRAM with the cor-
responding energy and latency penalty. For dirty lines, the
correction mechanism accesses the T2EC data and decodes
the redundant information. Thus, the maximum penalty for
correction is a single LLC line fill from DRAM and invok-
ing T2EC decoding. Given the rare occurrence of an error
on a dirty line that cannot be corrected by the T1EC, this
overhead is entirely negligible.

3.4 Comparison with Baseline and MAXn

Finally, we compare the organizations of the baseline, MAXn,
and Memory Mapped ECC architectures (Figure 4). Note
that all three configurations have roughly the same error
protection capability.1 Memory Mapped ECC only dedi-
cates on-chip storage to the T1EC and significantly reduces
the area and leakage energy overheads of strong ECC. We
use CACTI [34] to measure the LLC and related ECC area.
Table 4 compares the area overheads, leakage power, and en-
ergy per access in a 45nm process. Memory Mapped ECC’s
on-chip ECC overhead is only 2.4% of the LLC area, which
is much smaller than the overhead of the conventional ECC
(20.7%) and MAXn (3.4%− 6.5% for n = 1− 4). Note that
Memory Mapped ECC reduces not only ECC area overheads
but also leakage power and energy per access. These savings
are achieved in a different way than in the energy-efficient
scheme of [18], which power-gates the ECC portion of clean
lines to curb leakage. In Memory Mapped ECC, no leakage
is associated with T2EC because it is stored within the data
array, whereas in the energy-efficient scheme, the amount of
leakage is proportional to the total number of dirty lines in
the LLC. The tradeoff we make is increasing dynamic en-
ergy because of a larger number of access to the LLC to
manage T2EC storage. As we discuss in Section 4.3.2, how-
ever, static leakage power dominates dynamic power and
validates our tradeoff decision.

4 Evaluation

In this section, we evaluate Memory Mapped ECC using
the Simics full system simulator [21] with the GEMS [23]
toolset. We use the OPAL out-of-order processor model of

1
As explained in Section 3, the interleaved parity codes used by

MAXn and the Memory Mapped ECC can detect burst errors of up
to 15 bits as opposed to the 16 bit bursts detectable by the baseline
(16bit burst error).
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Figure 4: Implementations of baseline, MAXn, and Memory Mapped ECC.

Table 4: Area, leakage power, and energy per access.

Baseline Baseline
/wo ECC /w ECC MAX1 MAX2 MAX4 Memory Mapped ECC

Leakage Power (W) 1.4 1.6 1.5 1.5 1.6 1.4
Energy per Read (nJ) 2.0 2.4 2.1 2.1 2.1 2.1
Area (mm2) 10.0 12.0 10.3 10.4 10.6 10.2
ECC area overhead (%) - 20.7 3.4 4.2 6.5 2.4

GEMS to simulate a SPARC V9 4-wide superscalar core
with a two-level write-back exclusive cache hierarchy imple-
mented in the Ruby module of GEMS. To accurately account
for the impact our technique has on memory bandwidth
and performance we integrated DRAMsim [35] into GEMS.
We use challenging applications from the SPEC CPU 2006,
PARSEC, and SPLASH2 benchmark suites that stress the
memory subsystem. Because accurate full-system simula-
tion is very slow we augment the simulation results using
PIN emulation [20] to study applications behavior with large
datasets. We believe that simulating a single core with the
given parameters proves the utility of Memory Mapped ECC
and conclusions can be drawn on the performance and over-
heads if implemented within a multi-core processor, and we
discuss Memory Mapped ECC in the context of CMPs in
Section 4.5.

4.1 Baseline System Configuration

Table 5 describes the baseline system configuration. Because
eager write-back [17] improves DRAM channel utilization
(up to 26% performance improvement in our experiments)
and reduces the number of dirty cache lines in the LLC, we
included eager write-back in the baseline system. We set
the eager write-back threshold to 106 cycles.2 The baseline
system uses uniform ECC with an 8-bit SEC-DED code as-
sociated with every 64-bit data word or, 8 bytes of 8-way
interleaved SEC-DED for every 64-byte LLC line.

4.2 Workloads

We use a mix of the SPLASH2 [37], PARSEC [2], and SPEC
CPU 2006 [30] workloads. We concentrated on applications
with large working sets that stress the memory hierarchy and
highlight the differences between our architecture and prior
work. For the detailed cycle-based simulations, we ran the

2
Because eager write-back degrades performance in bzip2 and lbm,

it is disabled in those applications. Also, different eager write-back

thresholds are applied to fluidanimate and libquantum; 0.25M and

1.2M cycles, respectively, to optimize baseline performance.

Table 5: Simulated system parameters.

Processor SPARC V9 ISA
Core 4-wide superscalar (3GHz)
L1 Cache split I/D cache

each 64KB
2-way set associative
64B cache lines
write-back
1 cycle latency

L2 Cache unified 1MB cache
8-way set associative
L1 exclusive
64B cache lines
eager write-back (106 cycle threshold)
L2 latency is 12 cycles,
including ECC encoding/decoding

DRAM single channel DDR2 DRAM (5.336GB/s)
667MHz 64-bit data bus
open page
Read and Instruction Fetch First

applications from SPLASH2 and PARSEC to completion
using a single thread and small to medium problem sizes:
tk15.O for CHOLESKY; 64K samples for FFT; a 514 × 514
grid for OCEAN; 1M samples for RADIX, and the sims-
mall inputs for all PARSEC applications. For the SPEC
CPU 2006 workloads, we used SimPoint [8] to extract five
representative regions of 200M instructions and report their
weighted sums. We use much larger datasets and execute
all applications to completion for our PIN-based evaluation
(Section 4.4).

4.3 Results and Analysis

We first show the overall performance results and compare
the impact of Memory Mapped ECC to that of the MAXn
schemes [14] (Section 2.3). We then analyze the results in
depth and attribute performance degradation to one of two
main sources: increased LLC miss rate and increased mem-
ory traffic. LLC miss rate can go up with Memory Mapped
ECC because the LLC is shared between T2EC and regular
data (Section 4.3.2). Memory traffic might be higher, be-
cause of the fetching and writing back of T2EC information.
Note that the additional memory traffic only degrades per-
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Figure 5: Normalized execution time.
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Figure 6: LLC miss rate overhead of Memory Mapped ECC
normalized to the miss rate of the baseline.

formance if it competes with data traffic for DRAM band-
width. It is therefore important to analyze both the overall
traffic demands as well as the timing of the added DRAM
reads and writes (Section 4.3.3). We also evaluate the im-
pact on power dissipation and the partitioning of the LLC
between data and T2EC.

4.3.1 Impact on Performance.

Figure 5 compares the execution times of MAXn and Mem-
ory Mapped ECC normalized to the execution of the base-
line configuration, which dedicates ECC storage uniformly
to all cache lines. The impact on application performance
of Memory Mapped ECC is minimal, with an average per-
formance penalty smaller than 1.3% and a maximum degra-
dation of under 4%. These results are encouraging because
of the benefits our scheme provides in reducing on-chip area
and leakage power by minimizing dedicated on-chip ECC
storage. The MAXn technique, on the other hand, requires
significant tradeoff between performance loss and area gains.
MAX1, which uses 0.1mm

2 more area than Memory Mapped
ECC, averages over 8% performance loss with several appli-
cations suffering 10 − 36% degradation. Even with another
2% increase in area required by MAX2, Memory Mapped
ECC still performs better. Only MAX4, which requires 4%
more area than Memory Mapped ECC, slightly improves
performance over our architecture.

The anomalous behavior of OCEAN, freqmine, mcf, and
sphinx3, where the performance of MAX2 and MAX4 is
slightly higher than baseline (less than 1%), is a result of
increased early write-backs for lines that are being forced
clean to guarantee protection. We also note that applica-
tions with small working sets, such as WATER-NSQUARED
(SPLASH2) and blackscholes (PARSEC) experience no per-
formance drop with Memory Mapped ECC, as well as with
MAXn, and we do not report their results.
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Figure 7: Breakdown of LLC accesses. LLC Rd and LLC Wr

are read and write requests for data, and LLC Evict are write-
backs of LLC lines to DRAM. T2EC Wr, LLC Dirty Probe, and
T2EC Evict are the additional requests required by Memory
Mapped ECC: T2EC Wr writes T2EC bits to a T2EC line in
the LLC; LLC Dirty Probe checks whether a cache line is dirty;
and T2EC Evict moves a T2EC line to DRAM.

4.3.2 Impact on LLC.

In this subsection we analyze the impact of Memory Mapped
ECC on the behavior of the LLC, including data miss rate,
LLC accesses, and power consumption.

Figure 6 shows that the sharing of LLC resources between
T2EC information and data does not significantly impact
the LLC data miss rate, which on average increases by only
2% and no more than 11% (bzip2). Storing T2EC informa-
tion within the memory hierarchy, however, does require a
significantly larger number of accesses to the LLC. As shown
in Figure 7, Memory Mapped ECC increases the total num-
ber of LLC accesses by around 36% on average, of which
85% are writes of T2EC bits (T2EC Wr) and 14% are for
testing whether a LLC line is dirty or clean as described in
Figure 2(d) (LLC Dirty Probe). We accurately model con-
tention on the LLC port in our simulations and demonstrate
that this increased pressure does not significantly impact
performance. Additionally, as we discuss below, the overall
power dissipation of the LLC is significantly improved by
Memory Mapped ECC even when accounting for the addi-
tional accesses.

Figure 8 compares LLC power consumption of the base-
line, decoupled EDC/ECC [27], and Memory Mapped ECC
estimated using CACTI 5.1 [34] for the cache parameters
in Table 5 in 45nm technology. Decoupled EDC/ECC saves
energy by separating EDC and ECC so that a read accesses
only data and EDC bits, while a write also accesses ECC
information. Decoupled EDC/ECC reduces dynamic power
while performance and traffic are identical to the baseline.
Memory Mapped ECC consumes less dynamic power than
the baseline and slightly more dynamic power than decou-
pled EDC/ECC. The overall power, however, is significantly
reduced by Memory Mapped ECC because of the reduction
in the dominant leakage power. While we do not show the
results in this paper, Memory Mapped ECC has an advan-
tage over MAXn and the energy-efficient scheme because
leakage dominates LLC power dissipation, as discussed in
Section 3.4. The reasons why the impact on dynamic power
is small even though the increase in number of accesses is
large are twofold. First, the energy per LLC access of the
Memory Mapped ECC architecture is over 14% lower be-
cause of the reduction in area (Table 4). Second, most of the
additional accesses are T2EC writes and LLC dirty probes,
which require only 8 bytes and 1 bit of data respectively.
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Figure 8: LLC power consumption estimated with CACTI for a 1MB, 8-way, 64B cache line LLC in 45nm technology.
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Figure 9: DRAM traffic comparison.
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Figure 10: Impact on load latency of MAXn and Memory
Mapped ECC.

4.3.3 Impact on DRAM Traffic.

Figure 9 shows the total DRAM traffic broken down into
components of data reads and writes (of LLC lines), eager
write-backs of cache lines, MAXn writes for cleaning lines,
and Memory Mapped ECC T2EC reads and writes. Mem-
ory Mapped ECC requires additional memory operations,
with T2EC reads and writes contributing an additional 0.1%
and 1.4% respectively to total DRAM traffic. These extra
DRAM requests, however, are well behaved and as shown
earlier do not have a large impact on application perfor-
mance. MAXn, on the other hand, does not increase overall
memory traffic much in most cases, but the type of traf-
fic and its timing differ significantly from both the baseline
and Memory Mapped ECC. As shown in Figure 9, MAX1
and MAX2 essentially replace eager write-backs with DRAM
writes for cleaning cache lines to avoid more dirty lines in
a set than supported. Unlike eager write-backs, which are
scheduled during idle DRAM periods [17], cleaning writes
compete with demand fetches and degrade performance.

We demonstrate this detrimental effect of replacing con-
trolled eager write-backs with cleaning writes in Figure 10
and Figure 11, which show the average load latency across all
applications and snapshots of traffic traces from CHOLESKY
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Figure 11: DRAM traffic over time.
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Figure 12: Average fraction of T2EC cache lines in the LLC.

(a) FFT (b) OCEAN

Figure 13: Fraction of dirty and T2EC cache lines over time.
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Figure 14: T2EC miss rate.

and OCEAN. Memory Mapped ECC increases latency by
under 6% and only 2.5% on average because the T2EC read
and write DRAM traffic is evenly distributed and does not
interfere with demand fetches. MAX1, on the other hand,
shows very bursty cleaning write traffic and degrades load
latency by up to 42% and over 11% on average.

4.3.4 LLC T2EC Information.

Figure 12 shows that the average fraction of the LLC that is
occupied by T2EC lines is roughly 10%. It is possible that
we can reduce the total number of T2EC lines by changing
the cache policy for T2EC lines, such as, inserting T2EC
lines in the least recently used (LRU) position. We did not
pursue such techniques in this paper because the perfor-
mance overheads of Memory Mapped ECC are already low.
Figure 13 illustrates the dynamic adjustment of T2EC lines
to the number of LLC dirty lines in the FFT and OCEAN
applications. In FFT, we can see the spatial locality of plac-
ing multiple T2EC words in a single cache line. Even as
the number of dirty lines changes, there is no need to allo-
cate additional cache lines for T2EC information. OCEAN
demonstrates how Memory Mapped ECC transparently ad-
justs to the rapid changes in the number of dirty lines in the
LLC.

Figure 14 presents the T2EC miss rate: the fraction of
accesses to T2EC data not found in the LLC. T2EC fetch
is the rate of T2EC fetches from DRAM and T2EC allocate
represents the fraction of fetches avoided when all addresses
that map to the T2EC line are clean (see Figure 2(d)). Note
that nearly all T2EC fetches from DRAM are avoided on av-
erage. The low actual T2EC miss rate (T2EC fetch), less
than 0.5% on average, indicates that T2EC caching effec-
tively captures the locality of T2EC accesses.

4.4 PIN-Based Emulation

Full-system cycle-based simulations can provide accurate per-
formance prediction and measurements, but are very slow,
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Figure 15: Total traffic with PIN-based emulation.
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Figure 16: Normalized execution time (2.667 GB/s DRAM
bandwidth).

limiting the number and lengths of experiments. Hence, we
simulated small to medium problem sets with the SPLASH2
and PARSEC benchmarks, and only representative regions
of SPEC applications. To understand how larger datasets
affect Memory Mapped ECC, we used PIN [20] to qualita-
tively evaluate LLC behavior for: tk29.O for CHOLESKY;
4M samples for FFT; a 1026 × 1026 grid for OCEAN; 8M
samples for RADIX; the simlarge inputs for all the PARSEC
applications; and the complete SPEC CPU 2006 application
runs. We implemented eager write-back, MAXn, and Mem-
ory Mapped ECC schemes in a two level cache hierarchy
PIN tool. Note that our PIN based emulation is only used
to collect statistics on LLC behavior and does not utilize a
timing model, an instruction cache, stall and re-try due to
finite resources such as MSHRs, or a DRAM model. The
results are presented in Figure 15 and follow similar trends
to those seen with full simulation (Figure 9). The most sig-
nificant difference is that the traffic overhead of Memory
Mapped ECC is smaller when larger datasets are used and
we expect to have an even smaller performance degradation
than the 1.3% average experienced with small datasets (Sec-
tion 4.3.1). We repeated the experiments while changing the
LLC size between 1 − 16MB and the results and trends are
similar to those reported in the paper.

4.5 Multi-Core Considerations

We have so far discussed and evaluated Memory Mapped
ECC in the context of a single core and now briefly dis-
cuss multi-core and multi-processor implications. Memory
Mapped ECC is easily integrated with any cache coherence
mechanism because the T2EC region is fixed and inher-

ently private; the mapping is between physical cache lines
and physical memory. A potential problem with Memory
Mapped ECC is that increased DRAM traffic for the T2EC
will hurt performance given the relatively lower memory
bandwidth per core of a multi-core processor. To assess
this sensitivity to bandwidth, we evaluated a system with
low DRAM bandwidth of only 2.667 GB/s, which is half
the bandwidth of the baseline system. As Figure 16 shows,
Memory Mapped ECC is not sensitive to DRAM bandwidth
and the relative performance is almost unchanged in the lim-
ited DRAM bandwidth system. An anomaly is lbm where
Memory Mapped ECC slightly improves performance. Most
of the memory accesses of lbm are stores, making the appli-
cation very sensitive to write-back traffic. Our analysis, not
shown in this paper, determined that Memory Mapped ECC
reduced the effective size of the LLC leading to the minor
perturbation in performance.

5 Conclusions and Future Work

This paper presents a novel architecture that provides strong
error protection for a last-level cache with minimal hardware
and performance overheads. Memory Mapped ECC min-
imizes the need to dedicate SRAM resources to maintain
ECC information by placing it within the memory hierar-
chy and re-using existing cache storage and control. The
savings in area and power dissipation are significant, 15%
and 8% respectively, while performance is degraded by only
1.3% on average and no more than 4%. These results are
achieved with a single storage mechanism and no additional
hardware, and outperform prior techniques on both hard-
ware resource reductions and performance metrics.

The Memory Mapped ECC architecture also enables gen-
eral tiered error protection techniques and offers great design
flexibility by mapping the required redundant information to
memory. In future work, we will explore how to exploit this
flexibility by supporting multiple T2EC mechanisms that
can be tailored to different applications, data types, and
access patterns. Such mechanisms have the potential to in-
crease both protection capability and performance, but are
difficult and costly to implement when storage resources are
dedicated and designed for a specific code. We also believe
that our memory-mapped mechanism is general enough to
support other meta-data that needs to be associated with
physical cache lines.
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