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ABSTRACT
Current GPUs maintain high programmability by abstract-
ing the SIMD nature of the hardware as independent concur-
rent threads of control with hardware responsible for gen-
erating predicate masks to utilize the SIMD hardware for
different flows of control. This dynamic masking leads to
poor utilization of SIMD resources when the control of dif-
ferent threads in the same SIMD group diverges. Prior re-
search suggests that SIMD groups be formed dynamically
by compacting a large number of threads into groups, miti-
gating the impact of divergence. To maintain hardware ef-
ficiency, however, the alignment of a thread to a SIMD lane
is fixed, limiting the potential for compaction. We observe
that control frequently diverges in a manner that prevents
compaction because of the way in which the fixed alignment
of threads to lanes is done. This paper presents an in-depth
analysis on the causes for ineffective compaction. An im-
portant observation is that in many cases, control diverges
because of programmatic branches, which do not depend on
input data. This behavior, when combined with the default
mapping of threads to lanes, severely restricts compaction.
We then propose SIMD lane permutation (SLP) as an opti-
mization to expand the applicability of compaction in such
cases of lane alignment. SLP seeks to rearrange how threads
are mapped to lanes to allow even programmatic branches to
be compacted effectively, improving SIMD utilization up to
34% accompanied by a maximum 25% performance boost.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures]: Single-
instruction-stream multiple-data-stream processors (SIMD)
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1. INTRODUCTION
Recent GPUs adopt the single-instruction multiple-thread

(SIMT) execution model, which can use efficient hardware
organizations while presenting a simple parallel abstraction
to the programmer. With SIMT, GPUs can utilize efficient
single-instruction multiple-data (SIMD) pipelines while still
supporting arbitrary control flow in each thread. GPUs have
native hardware support for conditional branches, allowing
each (SIMD) lane to execute its own logical thread. Despite
the hardware support, mapping control-flow intensive appli-
cations to GPUs is challenging. When a conditional branch
is evaluated such that a subset of the SIMD lanes execute
the taken path and others the non-taken path, the underly-
ing SIMD hardware serializes the two paths and each path
only occupies a subset of the SIMD lanes.

Recent work [14, 15, 25] has demonstrated that the per-
formance degradation caused by this control divergence can
be alleviated by dynamically re-grouping SIMD instructions
from a larger collection of threads (Section 2.3). The collec-
tions of threads are referred to as cooperating thread arrays
(CTAs) or thread blocks by NVIDIA’s CUDA [28] and work-
groups by OpenCL [4, 5]; and the SIMD instructions are
known as warps in CUDA and wavefronts in OpenCL. The
idea is that the large number of warps within a CTA offers
opportunities to compact execution and fill in idle lanes in
one warp with active threads from another warp [14, 25, 31].

We address a significant issue with previously proposed
compaction mechanisms that limits their applicability. To
simplify the structure of the register-file, current GPUs stat-
ically assign a fixed SIMD lane to each thread based on
its thread-ID in a sequential manner. As we show in this
paper, however, such a fixed mapping limits the potential
compactability of branches. A branch is compactable if com-
paction can reduce the number of idle lanes in either the true
or the false path. We refer to some compactable branches
as aligned ; when threads that diverged into the same path
are clustered (aligned) on a common subset of SIMD lanes.
Such threads cannot be compacted effectively because the
active and inactive threads are aligned between warps. We
observe that in many cases, aligned divergence originates
from a branch whose condition is dependent only on pro-
grammatic values (e.g., CTA-/warp-/thread-ID, scalar input
parameters), in which case the divergence pattern exhibits
similarly across warps. We present the first in-depth quan-
titative analysis on the cause of aligned divergence.

Based on the insights of the analysis, we propose and
evaluate SIMD lane permutation (SLP) which improves the
compaction behavior of divergent branches. SLP permutes



the home SIMD lanes of threads such that threads with a
similar control flow do not execute in a common SIMD lane.
Using SLP, diverging paths that are non-compactable as-is
can potentially be transformed into compactable ones. This
expands the applicability of compaction thus leading to bet-
ter performance. While the idea of applying a permutation
to alleviate scheduling conflicts is not new (e.g., [9, 15, 22,
23, 30, 41]), we make the following contributions in the con-
text of thread compaction:

• We identify previous compaction mechanisms as being
limited in effectiveness by aligned divergence. Using a
GPU emulator, we provide a quantitative and qualita-
tive analysis on the root cause of aligned divergence.

• We introduce the concept of SLP that enables higher
compactability of branches. By revisiting some prelim-
inary studies on permutation, we quantitatively show
why one works better than the other. Based on this,
we carefully design a new balanced permutation, that
is highly robust and well-suited to the branching be-
havior we observe in CUDA applications.

• We evaluate the benefits of SLP in terms of compactabil-
ity, SIMD lane utilization, and performance using a
set of CUDA workloads; SLP provides up to a 34%
increase in SIMD lane utilization accompanied by a
maximum 25% performance improvement.

2. BACKGROUND AND RELATED WORK

2.1 CUDA Programming Model
Current GPUs, such as NVIDIA’s Fermi [26], consist of

multiple shader cores (streaming multiprocessors (SM) in
NVIDIA terminology), where each SM contains a number
of parallel execution lanes (referred to as CUDA cores by
NVIDIA) that operate in SIMD fashion: a single instruc-
tion is issued to each of the parallel SIMD lanes and that
instruction is repeated multiple times per lane. In CUDA,
a single program (the kernel) is executed by all the threads
that are spawned for execution. The programmer groups
the threads into CTAs, where each CTA consists of multiple
warps. In Fermi, each SM schedules the instruction to be
executed in a warp of 32 threads, yet the SIMD grouping
of warps is not explicitly exposed to the CUDA program-
mer [28]. The number of threads that constitute a CTA is
an application parameter, and a CTA typically consists of
enough threads to form multiple warps. In the rest of this
paper, we will mainly use the terms defined in CUDA [28].

2.2 Control Divergence
Although GPU hardware is modeled for SIMD execution,

the execution model enables each thread to maintain its
own logical control flow. The hardware generated active
bitmasks (predicates), designate whether a thread is active
or not, allowing independent branching for each thread. Be-
cause threads that are masked out do not commit the results
of their computation, only threads that are active actually
execute the instruction; thus enabling SIMT, however, par-
tially serializes execution on a divergent branch as the true
and false path must be executed one after another with those
threads on the non-active path being masked out (shown as
“bubbles” in some SIMD lanes in Figure 1). Accordingly,
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Figure 1: Example showing how a control flow graph (a) is
executed without compaction (b) and with compaction (c).
Each CTA contains 3 warps of 4 threads each. The numbers
represent the thread-IDs that are executing in a basic block,
while “–” denotes masked-out threads.

each divergence reduces SIMD lane utilization because more
threads are masked out from execution.

To alleviate the resource underutilization, proposals were
made to have threads from the true and false path reconverge
at the immediate post-dominator [15, 37] (the first instruc-
tion of basic block F and G in Figure 1 (a)) in the control
flow graph, rather than serializing execution until threads
complete execution. Such reconvergence point of a branch
is computed at compile time and is tracked by a hardware
reconvergence stack. Current NVIDIA GPUs adopt such
reconvergence stack structure per-warp, tracking the points
of divergence and reconvergence of threads within a warp.
Each stack entry tracks the active mask associated with each
control flow path (hence each basic block in a control flow
graph), its program counter, and its reconvergence point.
By always scheduling active threads at the top of its stack,
only threads executing in a common path are issued thereby
avoiding any structural hazard of the SIMT model. Figure 1
(b) provides a high-level overview of how warps are sched-
uled in executing the control flow graph of Figure 1 (a) with-
out compaction (No TBC ). While the divergent branch at
the end of block A and C reduces the SIMD lanes occupied,
such inefficiency is minimized by reconverging the diverged
paths at the immediate post-dominator (block F and G).

2.3 Compaction for Better SIMD Utilization
While the aforementioned mechanism correctly handles

even nested divergent branches, each divergence reduces the
number of active threads and increases the number of wasted
execution slots. Several mechanisms have been proposed
to mitigate the magnitude of waste, including compaction-
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Figure 2: Example showing how the priority encoders com-
pact the CTA-wide bitmask (at basic block C of Figure 1)
into three warps (NWTBC = 3). Although we explicitly use
the thread-IDs to illustrate the bitmask, the actual hard-
ware uses single bits. Note that threads with thread-ID 0,
4, and 8 always execute in the leftmost SIMD lane, as each
thread’s home SIMD lane is statically determined using their
thread-IDs. Compaction is ineffective in the above example
as NWTBC equals NWNoTBC .

based architectures [14, 25, 31]. The basic idea of improv-
ing utilization through compaction is to consider multiple
warps, up to the entire CTA, as a single unit when a branch
diverges and reconverges. Instead of allowing each warp to
be serially executed, threads executing in a common ba-
sic block dynamically form new warps to minimize masked
execution slots. Thread block compaction (TBC) [14], for
instance, considers the entire CTA as a single unit when a
branch diverges. TBC considers the active mask of the en-
tire CTA and dynamically compacts it on all diverging paths
(true/false paths) and reconvergence points. To maintain
hardware efficiency, compaction is activated while maintain-
ing the fixed association of each thread to its home SIMD
lane. The two threads executing in Figure 1–path B (thread-
ID = 7 and A), for instance, can be compacted into a sin-
gle warp (thus having better SIMD lane utilization) as both
threads are executing in different SIMD lanes. As illustrated
in Figure 2, however, threads in path C are not compactable
as thread-ID 0, 4, and 8 are all aligned in the leftmost lane,
preventing compaction. Compaction is performed by a set
of priority encoders (Figure 2) that leverage the CTA-wide
mask to identify the minimum number of warps to execute
the active threads. When the number of active warps gen-
erated through compaction (NWTBC) is smaller than the
number of warps needed to execute without compaction
(NWNoTBC), SIMD lane utilization is improved (e.g., path
B in Figure 1 (c)).

One downside to TBC is that it can degrade performance
because compaction requires that all threads in a CTA syn-
chronize on all conditional branches. Rhu et al. [31] intro-
duced the idea of predicting whether a diverging path is
likely to be compactable, so that such synchronization over-
head of compaction is reduced.

2.4 Related Work
The focus of this paper is on SIMD lane permutation

(SLP) that increases the effectiveness of compaction. We
summarize prior work that is closely related to the idea of
permutation below and do not include a discussion of work
related to compaction itself beyond the descriptions above.
For more discussions on compaction hardware and general
divergence issues in recent GPUs, we refer the interested
readers to the discussions in [11, 14, 24, 25, 31, 32, 38, 39].

Using randomized permutation and hashing to mitigate
scheduling conflicts on shared resources and improve load

Table 1: Evaluated CUDA benchmarks.

Abbreviation Description #Instr. Ref.
BACKP Back propagation 1M [10]

LPS 3D laplace solver 985K [17]
BFS Breadth first search 256K [19]

MUM MUMmerGPU 2.7M [34]
BITONIC Bitonic sort 2K [27]
REDUCT Reduction (Kernel 0) 44K [27]
MDBROT Mandelbrot 8.3M [27]

DXTC DXT compression 955K [27]
AOSSORT AOS sorting 39K [27]
FDTD3D FDTD stencil on 3D 71M [27]
SORTNW Sorting network 2M [27]
EIGENVL Eigen-value 6.7M [27]

3DFD Finite diff. comp. 3D 29K [27]
DWTHARR Harr wavelets 2K [27]

QSRDM Quasirandom generator 3.1M [27]
BINOM Binomial options 176K [27]

CONVSEP Separable convolution 204K [27]
SOBFLT Sobel filter 575K [27]

balance has been studied in many contexts in the past. Ex-
amples of techniques that are related to SLP include resource-
allocation algorithms for networks and switches [6, 21, 35]
and compute load balance [13, 29]. A more relevant ex-
ample is the use of deterministic and randomized permu-
tations to reduce memory bank conflicts [22, 23, 30, 41].
Zhang et al. [41], for example, used XOR-permuted bank
indexing to reduce bank conflicts from cache-induced ac-
cesses, which is conceptually similar to SLP. While not tar-
geting compaction-based architectures, Brunie et al. [9] dis-
cussed some lane shuffling mechanisms in the context of
dual-instruction multiple-thread architectures. Their use is,
in some ways, more directly about load balancing than our
use for compaction, but there are similarities with SLP and
we compare their best performing permutations (WID and
Rev WID) in Section 6. We also evaluate the only permu-
tation mechanism previously mentioned in the context of
compaction. Fung et al. [15] adopted a simple permuta-
tion (detailed in Section 4) to mitigate lane conflicts for
compaction, but we demonstrate cases where this permu-
tation falls short. Our work goes much beyond these re-
lated studies by analyzing the root cause of lane conflicts in
compaction-based GPU pipelines, designing a permutation
from first-principles that specifically targets these sources of
inefficiency, and evaluating lane permutation in detail.

We briefly summarize related but less directly relevant
work below. Cray-I [33] and Illiac-IV [8] were early vector
machines that incorporated masked execution. Cray-I con-
tained a vector mask for vectorizing if-else statements and
the Illiac-IV had a mode bit for turning each processing mod-
ule on or off. These are conceptually similar to the active
masks used in GPUs, but are explicit in software. Predica-
tion [3] is another possible implementation of masked execu-
tion, which is amenable to compiler optimization. Smith et
al. [36] proposed density-time execution for vector architec-
tures. Density-time execution is similar to compaction but
operates in time with traditional masked vector execution,
rather than across lanes. Similar studies have been done by
Kapasi et al. for stream processors [20].

3. ANALYSIS OF SIMT COMPACTION

3.1 Current Compaction Limitations
Figure 3 shows the average SIMD lane utilization (SIMDutil)

of several benchmarks (see Table 1), which exhibit branch
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Figure 3: Average SIMD lane utilization of divergent benchmarks (Table 1), without compaction (No TBC), with a current
branch compaction technique (TBC), and with ideal compaction (TBCideal). SIMD lane utilization is defined as the fraction of
SIMD lanes occupied (active) when a warp is executing. In order to isolate the effect of idle cycles, we only average the SIMD
lane utilization of issued warps with at least a single thread active.

divergence, using each of three configurations: baseline with-
out compaction, TBC (thread block compaction), and ideal
compaction (TBCideal). With ideal compaction, threads
can change SIMD lanes for optimal compaction. Changing
SIMD lanes is not practical because of the required inter-
connect in the register file, but TBCideal provides an upper
bound on any compaction within a CTA.

Overall, 11 of the 18 benchmarks show noticeable improve-
ment in SIMDutil with ideal compaction (another 3 have im-
provement of less than 2%). Interestingly, while all applica-
tions with low SIMDutil can benefit from compaction, even
some applications with relatively high SIMDutil show signif-
icant potential (e.g., LPS, BACKP, AOSSORT, FDTD3D,
SORTNW, and 3DFD). It is also important to note that
TBC is unable to approach the full potential of compaction
for any of the benchmarks. Furthermore, some of the high-
SIMDutil benchmarks actually benefit more from the current
TBC implementation than some with low SIMDutil, for ex-
ample, FDTD3D shows a 17% benefit, compared to just 13%
exhibited by LPS.

While a benchmark’s absolute SIMDutil is certainly cor-
related with its compactability, it is not the sole factor that
determines it. Rather, how the divergence manifests among
warps is more critical because only threads that have di-
verged to the same path and do not share a common home
SIMD lane can be compacted together (Figure 2). Previous
compaction-mechanisms [14, 25, 31] are therefore only effec-
tive on divergent branches that do not cause active threads
to align with a few common SIMD lanes (which we refer to
as aligned divergence in the rest of this paper). For exam-
ple, the three active threads in Figure 2 are fully aligned at
the leftmost SIMD lane. As a result, compaction provides
no benefit and NWTBC and NWNoTBC both equal 3. Such
aligned branches are fairly common, as we discuss in the rest
of this section.

3.2 Aligned Divergence
What fundamentally decides the control flow of each thread

is how the branch predicate is evaluated. Aligned diver-
gence is a phenomenon where threads with a common home
SIMD lane have their predicate condition resolved the same
way, causing active threads to be concentrated on a sub-
set of the SIMD lanes. We observe that such alignment is
rarely exhibited when the predicate depends on input data
arrays. In such data-dependent branches (D-branches), dif-
ferent threads most likely reference different values thereby
resolving the predicate differently (Figure 4 (a)). The diver-
gence behavior of branches with a predicate condition that
does not depend on a data array value (we refer to such
non-data array values as programmatic values) is substan-

tially different from the behavior of D-branches.
A programmatic value is viewed the same way across the

threads. The indices for the CTA-ID (blockIdx), width and
height of a CTA (blockDim), and scalar input parameters
of a CUDA kernel (e.g., imageW in Figure 4 (d)), are all
seen as constant values to all the threads within a CTA and
are therefore programmatic values. In addition, the index-
ing value components of the thread-ID (e.g., threadIdx.x,
threadIdx.y) are a virtual constant to the threads sharing
the same index value (Figure 4 (c)), and are also program-
matic. Compared to D-branches, branches depending on
programmatic values (P-branches) are likely to be aligned
because the (programmatic) values being used for resolving
predicates are the same among threads (e.g., threads within
the same warp or ones sharing a common home SIMD lane).
Although P-branches that cause only partial alignment (Fig-
ure 5 (c)) can be compacted as-is, we observe that such cases
are relatively rare compared to P-branches causing full align-
ment and preventing compaction (Figure 5 (a,b)).

It is worth mentioning that a branch condition depending
on both programmatic and data value (Figure 4 (b)) be-
haves as a D-branch; this is because the data each thread
is referencing will likely cause the predicate to be evaluated
differently, regardless of the programmatic value. In Sec-
tion 3.3 and Section 6, we categorize divergent branches into
P-/D-branches and quantitatively verify our observations.

3.3 Key Observations and Analysis
Figure 6 summarizes the overall behavioral of branch di-

vergence and compactability of our benchmarks. First, Fig-
ure 6 (a) shows a breakdown of all dynamically executed
branches based on their divergence and potential compactabil-
ity. The divergent branches are further categorized as P-
/D-branches based on a taint analysis of the predicates of
branch instructions using GPUOcelot [12] in Figure 6 (b)
(taint analysis detailed in Section 5). In addition, we eval-
uate TBCideal and TBC’s compaction rate across the diver-
gent P-/D-branches in order to compare what fraction of
the potential compaction opportunities are actually utilized
(Figure 6 (c)). We define compaction rate as the fraction of
compactable paths among all the (CTA-wide) paths gener-
ated from divergent branches (true/false) in an application.

To quantify our results, we evaluate the number of warps
for each path when applying compaction with TBC or ide-
ally. We use NWNoTBC to refer to the number of warps in a
CTA without compaction applied, NWTBC for the number
of warps after compaction, and NWideal for the minimum
number of warps possible with any compaction mechanism.
The lower bound on compaction is simply the minimum
number of warps needed to execute the number of threads



0 // Code snippet from the kernel of BFS benchmark 

1 // g_graph_visited and g_graph_edges are data array parameters.

2

3 int tid = blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x; 

4

5 …

6 int id = g_graph_edges[…];
7 if( !g_graph_visited[id] )

8 {

9 …
10 }

 Code #1) Branch depending on data arrays - (i)

(a) Threads that load a data array value (g graph visited) of zero execute
the true path. The branch at line 7 is therefore data-dependent.

0 // Code snippet from the kernel of SORTNW benchmark 

1 // s_key[ ] and s_val[ ] are data array parameters.

2

3 uint ddd = dir & ((threadIdx.x&(size/2)) != 0);

4 …
5 Comparator(s_key[~], s_val[~], s_key[~], s_val[~], ddd);

6 …
7 __device__ inline void Comparator(uint& keyA, keyB, uint dir ){

8 if( (keyA>keyB) == dir ){ … };
9 }

 Code #2) Branch depending on data arrays - (ii)

(b) The intermediate variable (ddd), which is tainted by a programmatic
value, is combined with values from data arrays (s key, s val) to calculate
the predicate. As the data values referenced by each thread are likely
different, the branch at line 8 is data-dependent.

0 // Code snippet from the kernel of BITONIC benchmark 

1

2 const unsigned int tid = threadIdx.x;

3 …
4 for (unsigned int k = 2; k <= NUM; k *= 2){

5 for (unsigned int j = k/2; j>0; j/=2){ 

6 unsigned int ixj = tid ^ j;

7 if( ixj > tid ) {

8 if( (tid & k)==0 ){…} else {…}
9 }

10 __syncthreads();

11 }

12 }

 Code #3) Branch dependent on a programmatic value - (i)

(c) The index value of a thread-ID (tid) solely determines whether the
true path (if ) or the false path (else) is taken. Hence, the branches at
line 7 and 8 are programmatic.

0 // Code snippet from the kernel of Mandelbrot benchmark 

1 // imageW and imageH are scalar input parameters of the kernel

2

3 const int ix = blockDim.x * blockX + threadIdx.x;

4 const int iy = blockDim.y * blockY + threadIdx.y;

5 …
6 if( (ix < imageW) && (iy < imageH) )

7 {

8 …
9 }

 Code #4) Branch dependent on programmatic values - (ii)

(d) An intermediate variable (ix, iy), which is tainted by programmatic
values, is combined with another programmatic value (imageW, imageH )
from a scalar input parameter of the kernel. The branch at line 6 is
therefore programmatic.

Figure 4: Example kernel codes containing P-branches and
D-branches.

in each path of the CTA:

NWideal = dNumActiveCTA

SIMDwidth
e (1)

where, NumActiveCTA refers to the total number of threads
active at the diverging path across the CTA and SIMDwidth

designates the width of the SIMD pipeline. When NWideal

and NWTBC (number of warps after compaction with TBC)
for a path are both smaller than the number of warps with-
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Figure 5: Active warp status for programmatic-value depen-
dent control flow. Wn designates the warp with warp-ID n.

out compaction (NWNoTBC), then the path can be com-
pacted as-is with TBC. When NWNoTBC and NWTBC are
equal and NWideal is smaller, a path is potentially com-
pactable but not be compacted as-is with TBC (Figure 5
(a)). When the values of NWideal and NWNoTBC are the
same, a path has neither potential nor actual compactability
(Figure 5 (b)).

By definition, benchmarks with a nonzero TBC compaction
rates in either P-/D-branches (Figure 6 (c)) exhibit improve-
ments in SIMDutil with TBC. As expected, all 9 benchmarks
containing any D-branches exhibit nonzero TBC compaction
rates for this branch type, and we confirm our intuition
that previous compaction mechanisms work relatively well
for D-branches. However, in 13 of the 15 benchmarks con-
taining P-branches, no compaction occurs at all, as seen
by their zero P-branch TBC compaction rate in Figure 6
(c). Of these 13 benchmarks, only 5 have no potential for
compaction (zero compaction with TBCideal). The other
8 benchmarks (BITONIC, REDUCT, LPS, BACKP, AOS-
SORT, FDTD3D, 3DFD, and QSRDM) show that substan-
tial opportunity for improving SIMDutil is untapped with
TBC and other current compaction techniques because a
thread’s home SIMD lane is fixed. We tackle such P-branches
and enable new compaction opportunities using SIMD lane
permutation, which we describe in the following section.

4. SIMD LANE PERMUTATION

4.1 Motivation
SIMD lane permutation (SLP) is based on the insight that

if the home SIMD lanes of threads are permuted from their
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Figure 6: Analysis of the behavior of control divergence and compactability.

sequentially-assigned locations, the alignment of threads can
be eliminated in many cases. The permutation is applied to
each thread when a warp is launched, before it starts exe-
cuting, and is then fixed until the warp completes execution.
This improves compactability while maintaining the cost-
efficiency of the baseline compaction mechanism and SIMT
architecture.

Permuting the home SIMD lane of each thread requires
changing how each thread-ID is mapped to a SIMD lane.
Figure 7 illustrates some example permutations and their
associated mapping, including the ones discussed in prior
work [9, 15]. Because these mapping functions can be calcu-
lated statically using only the thread-IDs and warp size, the
compaction-hardware requires no modification. While older
NVIDIA GPUs mandated threads to access memory in se-
quence to enable memory coalescing and minimize memory
transactions, AMD GPUs and recent NVIDIA GPUs (start-
ing with NVIDIA Compute Capability 2.0) can coalesce any
collection of addresses into the minimum possible number of
transactions [28]. Thus, thread order within a warp does not
impact performance and SLP can be incorporated smoothly
without disrupting memory access behavior.

Some expert programmers of current GPUs occasionally
rely on undocumented-behavior for optimization and tun-
ing. SLP may break applications that rely on the fact that
in current GPU implementations the same logical thread lo-

cation within a warp always wins arbitration when resource
conflicts between threads in a warp occur. To preserve this
arbitration behavior, which may be very desirable in some
cases, a programmer can explicitly disable SLP on a partic-
ular kernel. Note that compaction itself already breaks this
particular undocumented behavior.

4.2 Pitfalls of a Random Permutation
While the permutations in Figure 7 (b)-(h) can all break

the alignment of active lanes in some cases, their effective-
ness in increasing compactability can vary substantially be-
cause some permutations are only optimal for certain diver-
gence patterns. Odd Even [15], for example, works most ef-
fectively for the alignment pattern shown in Figure 8 (c), but
provides no benefit when active threads are grouped together
as in Figure 8 (b) (active/active, inactive/inactive). Another
permutation, such as XOR-ing only the odd-ID warps with(

SIMDwidth
2

)
, on the other hand, will perfectly compact all

the threads in Figure 8 (b), but none for Figure 8 (c).
Incorporating randomness in the permutation function (e.g.,

Random, WID, and Rev WID in Figure 7 (f–h)) intuitively
seem more effective in redistributing clustered threads. How-
ever, such random permutations do not perform well when
a large fraction of the threads are active across the CTA.
For example, consider a case where half the threads in each
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Figure 7: Examples of various SIMD lane permutation mech-
anisms that alter the alignment of active threads to lanes.

warp are active – unless the active threads are permuted
exactly to the other half of the (vacant) lanes, compaction
will fail. Figure 8 shows an example of a P-branch causing
half of the threads in a CTA to be active. This behavior is
exhibited in applications such as BITONIC, QSRDM, MD-
BROT, and others. While such a divergence pattern can oc-
cur from an under-optimized kernel, it can also be generated
by the nature of the algorithm itself. Note that Odd Even
and Rev WID both only effectively compact one of the two
example patterns but not both (Figure 9). In general, we
observe that previously discussed permutation functions fall
short of ideal and are not robust because they are based on
empirical observations of a subset of divergence patterns.

4.3 Balanced Permutation
Based on the previous discussion, we construct a robust

permutation mechanism. An important insight is that the
permutation to be applied should distribute active threads
across the SIMD lanes in a balanced manner because aligned
divergence from P-branches frequently exhibits highly skewed
distributions of active lanes. Balanced is designed such that
for any CTA (with fewer than SIMDwidth warps) each phys-
ical lane only has a single instance of each logical thread
location within a warp. This characteristic is unique to
Balanced and provides its robustness. Intuitively, threads
within warps with an even warp-ID (WID) are only per-
muted within each half-warp (each warp uses a different
XOR mask). Every even-ID warp is paired with an odd-
ID warp that uses a complementary mask and ensures that

0 // Code snippet from the kernel of BACKP benchmark 

1 // CTA is a (8 × 16) 2-D array of threads.

2

3 int tx = threadIdx.x;

4 int ty = threadIdx.y;

5 …
6 for (int i=1; i<=__log2f(HEIGHT); i++){

7 int power_two = __powf(2,i);

8

9 if( ty % power_two == 0 ) {…}

10 …
11 }

 Code #5) Programmatic branch causing only the 1
st
 half of the warp active

(a) Code snippet from BACKP benchmark that exhibits programmatic
divergence.

0Lane-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0TID 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2TID 1,2 2,2 3,2 4,2 5,2 6,2 7,2 0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4TID 1,4 2,4 3,4 4,4 5,4 6,4 7,4 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,6TID 1,6 2,6 3,6 4,6 5,6 6,6 7,6 0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

For W0

For W1

For W2

For W3

0,8TID 1,8 2,8 3,8 4,8 5,8 6,8 7,8 0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9

0,ATID 1,A 2,A 3,A 4,A 5,A 6,A 7,A 0,B 1,B 2,B 3,B 4,B 5,B 6,B 7,B

0,CTID 1,C 2,C 3,C 4,C 5,C 6,C 7,C 0,D 1,D 2,D 3,D 4,D 5,D 6,D 7,D

0,ETID 1,E 2,E 3,E 4,E 5,E 6,E 7,E 0,F 1,F 2,F 3,F 4,F 5,F 6,F 7,F

For W4

For W5

For W6

For W7

* Each CTA is a (8 × 16) array of threads.

* Lane-ID = (threadIdx.y*8 + threadIdx.x) % (SIMDwidth)

* SIMDwidth and warp size are both 16.

Threads that are active when 'power_two' is '2'

0Lane-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0TID 1,0 2,0 3,0 4,0 5,0 6,0 7,0 0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2TID 1,2 2,2 3,2 4,2 5,2 6,2 7,2 0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4TID 1,4 2,4 3,4 4,4 5,4 6,4 7,4 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,6TID 1,6 2,6 3,6 4,6 5,6 6,6 7,6 0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

For W0

For W1

For W2

For W3

0,8TID 1,8 2,8 3,8 4,8 5,8 6,8 7,8 0,9 1,9 2,9 3,9 4,9 5,9 6,9 7,9

0,ATID 1,A 2,A 3,A 4,A 5,A 6,A 7,A 0,B 1,B 2,B 3,B 4,B 5,B 6,B 7,B

0,CTID 1,C 2,C 3,C 4,C 5,C 6,C 7,C 0,D 1,D 2,D 3,D 4,D 5,D 6,D 7,D

0,ETID 1,E 2,E 3,E 4,E 5,E 6,E 7,E 0,F 1,F 2,F 3,F 4,F 5,F 6,F 7,F

For W4

For W5

For W6

For W7

Threads that are active when 'power_two' is '4'

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8

0,C 1,C 2,C 3,C 4,C 5,C 6,C 7,C

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0
0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2
0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4
0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6

0,8 1,8 2,8 3,8 4,8 5,8 6,8 7,8
0,A 1,A 2,A 3,A 4,A 5,A 6,A 7,A
0,C 1,C 2,C 3,C 4,C 5,C 6,C 7,C
0,E 1,E 2,E 3,E 4,E 5,E 6,E 7,E

(b) Active threads with value-dependent lane alignment, corresponding
to the branch at line 9 of (a) (dependent on power two).

0Lane-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0TID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16TID 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32TID 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48TID 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

For W0

For W1

For W2

For W3

Threads that are active when '(j == 1)', having ((ixj > tid) == true)

* Each CTA is a (64 × 1) array of threads.

* Lane-ID = (threadIdx.x) % (SIMDwidth)

0 2 4 6 8 10 12 14
16 18 20 22 24 26 28 30
32 34 36 38 40 42 44 46
48 50 52 54 56 58 60 62

(c) Active threads with programmatic lane alignment, corresponding to
line 7 of Figure 4 (c)

Figure 8: Examples of aligned divergence patterns in Figure 9
(b–c).

threads are shuffled to the second half of each warp. The
permutation algorithm is to XOR the logical thread location
with a mask that is computed differently for each warp us-
ing the warp ID (WID). The Balanced permutation masks
are computed for even warp IDs using the formula in Equa-
tion 2. The masks for odd warp IDs are a bit-wise inverse
of their even warp ID pairs.

XORevenWID =
evenWID

2
(2)

Figure 9 illustrates the functionality of SLP with the pro-
posed Balanced permutation algorithm. Without SLP, lane-
ID 0 is always assigned to physical lane 0, for example. With
Balanced, on the other hand, each physical lane only has
a single instance of each lane-ID. This vertical balance is
unique to the carefully-designed Balanced permutation and
is clearly shown in the highlighted physical lane 7 in Fig-
ure 9. Figure 9 also illustrates the overall construction of
Balanced. Randomized permutations only achieve this bal-
ance on average, while any individual CTA is likely to be
somewhat imbalanced. This imbalance is greater on aver-
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(a) Proposed (Balanced) Algorithm (assuming WarpSize and SIMDwidth of 8).

(b) Example control flow where (Rev_WID) does not compact well.
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Figure 9: Proposed Balanced permutation.

age for CTAs that have a small number of warps. Balanced
works well even for these CTAs, because of the even/odd
complementary masks it uses.

We present a detailed quantitative evaluation of various
permutations in Section 6, but in summary, Balanced is very
robust and is either the most effective permutation, or is
within 99.4% of the best permutation in all our experiments.
Because Balanced tends to outperform other permutations,
is within a small fraction of the best permutation in the
rare cases it is not already the best, and rarely degrades
performance, we propose to always apply Balanced when
allocating a new warp.

4.4 Implementation of SLP
Enabling SLP on top of TBC requires storage for the per-

mutation table and a small amount of logic for permuting
the home SIMD lanes. The storage requirements for Bal-
anced are just 5 bits for each of the 32 unique XOR masks,
totaling 160 bits per SM.

The required logic is just a handful of XOR gates per lane.
Prior work [14, 31] discusses the hardware implementation of
the compaction mechanisms in detail, which concluded that
the overhead is less than 1mm2 for an entire chip in 65nm
technology. In addition, a single control bit is needed to al-
low a programmer to disable SLP for a kernel to maintain
backward compatibility for codes that rely on the undocu-
mented behavior of a single arbitration order between logical
threads within a warp.

4.5 Software-Based Permutation
Zhang et al. [40] propose reference redirection, which is

a software only technique that attempts to provide an al-
ternative to hardware compaction. Reference redirection

0 … 
1 mov %r2, %tid.x // %r2 is tainted by a programmatic value

2 setp.eq %p1, %r2, 0 // Predicate register %p1 tainted from %r2

3 @%p1 bra [JUMP_1] // Branch depends on programmatic value

4 ld.param %r3, [g_data] // Pointer to a data array is loaded to %r3

5 add %r4, %r2, %r3 // %r4 contains the address to load from 

5 ld.global %r5, [%r4] // %r5 is tainted by data array value

6 setp.gt %p6, %r5, 1 // Predicate register %p6 tainted from %r5

7 @%p6 bra [JUMP_2] // Branch depends on data value

8 mov %r2, 100 // Taint is cleared by an immediate value

9 … 

Pseudo PTX Program) Taint analysis

* tid.x : x-index value of a thread-ID 

* g_data : data array allocated at global memory

Figure 10: Pseudo PTX code explaining the methodology of
the taint analysis.

Table 2: Microarchitectural configuration of GPGPU-Sim.

Number of SMs 30
Threads per SM 1024

Threads per warp 32
Width of SIMD pipeline 32

Registers per SM 16384
Shared memory per SM 32KB
Warp scheduling policy Sticky Round-Robin

L1 Cache (size/assoc/line) 32KB/8-way/64B
L2 Cache (size/assoc/line) 1024KB/64-way/64B

Memory controller Out-of-order (FR-FCFS)
Number of memory channels 8

statically rearranges threads with similar control flow into a
common warp to mitigate the impact of control divergence.
This software technique often incurs significant overhead for
two main reasons. First, rearranging the threads has a run-
time component that must be amortized over long-running
threads and kernels. Second, the new thread groups can de-
grade memory coalescing behavior for the entire duration of
the kernel. The key difference from hardware compaction
is that reference redirection is static for the entire kernel,
whereas compaction only dynamically rearranges threads in
those basic blocks where it is effective. Thus, while refer-
ence redirection can degrade the memory performance of
the entire kernel, hardware compaction executes identically
to baseline in basic blocks that do not diverge. A direct
comparison between reference redirection [40] and SLP is
beyond the scope of this paper and we leave it to future
work.

5. EVALUATION METHODOLOGY
We evaluate the effectiveness of SLP using a combina-

tion of GPUOcelot (r1865) [12] and GPGPU-Sim (version
2.1) [1, 7]. GPUOcelot is an open source compiler infras-
tructure supporting NVIDIA’s Parallel Thread Execution
ISA (PTX) version 3.0; we use its PTX emulator to classify
divergent branches into P-/D-branches using taint analysis
(Figure 10). We also leverage the CTA-wide active mask in-
formation in the emulator to analyze compaction rate (Sec-
tion 6.1) and SIMDutil. We ran all benchmarks from those
included in the CUDA-SDK [27], the Rodinia [10] suite,
and those provided with GPGPU-Sim [7, 16, 17, 18, 19,
34], which could be executed by GPUOcelot. Of these 40
benchmarks, we only show and discuss the results of the 18
benchmarks that exhibited branch divergence, excluding 22
benchmarks that have SIMDutil of over 99%. The bench-
marks are summarized in Table 1.

In addition to GPUOcelot, we use GPGPU-Sim to evalu-
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Figure 11: Compaction rate per branch type with different permutations.

ate the impact of SLP on overall performance (Section 6.3).
GPGPU-Sim is a publicly available, cycle-level performance
simulator of a general purpose GPU that supports PTX ver-
sion 1.4. To compare SLP’s effectiveness with the state-of-
the-art compaction mechanisms, we implement CAPRI [31]
in GPGPU-Sim. CAPRI was shown to consistently out-
perform TBC in terms of performance, so we only report
the results of CAPRI in Section 6.3. Other key microar-
chitectural aspects of the simulator are summarized in Ta-
ble 2 [2]. GPGPU-Sim 2.1 does not support some runtime
APIs, such as OpenGL, which are supported by GPUOcelot.
We therefore only report the performance results of the 8 out
of 18 benchmarks that GPGPU-Sim 2.1 can simulate with-
out modification. All CUDA applications were compiled as-
is and with the parameters provided with GPGPU-Sim and
GPUOcelot.

6. EXPERIMENTAL RESULTS
In this section we detail the evaluation results of SLP,

including the enhancements in compactability, SIMD lane
utilization, and performance. We assume TBC as the base-
line compaction mechanism for compactability (Section 6.1)
and SIMDutil (Section 6.2) so that all compactable branches
are considered. For performance (Section 6.3), on the other
hand, we use CAPRI as the baseline compaction architecture
as it consistently outperforms TBC in terms of execution
time, but skips some compaction opportunities by design.

6.1 Compactability
Figure 11 shows the compaction rate of P-branches and

D-branches achieved with different permutations (including
baseline TBC) across our 18 benchmarks. Looking at P-
branches first, 10 of the 15 benchmarks contain compactable
P-branches (see Section 3.3). Despite their heuristic na-
ture, all but one of the permutations significantly improve
P-branch compactability over the 3.2% compaction rate pos-
sible without SLP; SLP with Odd Even cannot compact
FDTD3D and 3DFD. However, only SLP with our care-
fully designed Balanced permutation comes close to ideal
compaction for P-branches, averaging a compaction rate of
71.5% – 98% of the ideal 72.7% average compaction rate.
Balanced precisely matches Ideal in 7 of the 10 benchmarks.
In FDTD and MDBROT, Balanced is within 1.1% of ideal.
SOBFLT is the only benchmark we evaluated in which Bal-
anced failed to to achieve near-ideal compaction rate (38.7%
compared to 50.9%). Balanced was still within 1% of the

best permutation (FLIP odd) even in this benchmark. In
contrast, the previously proposed permutations, Odd Even
and Rev WID, only achieve an average of 28.9% and 52.8%
respectively. Odd Even only works for a very specific pat-
tern and is not robust across the applications. Randomized
permutations do not perform well when there is a large frac-
tion of active threads, which we elaborate on below.

Figure 12 shows a breakdown of the compactability of
P-branches depending on the fraction of threads that are
active in the CTA after the branch point. The randomized
Rev WID [9] permutation is more effective than the naive
Odd Even, but Rev WID still misses significant opportuni-
ties for compaction when half or more of threads are ac-
tive (e.g., in BITONIC, REDUCT, MDBROT, AOSSORT
and QSRDM). In fact, Rev WID even performs worse than
Odd Even for REDUCT and AOSSORT. Balanced does well
even in these challenging cases, missing few or zero opportu-
nities for compaction (small to insignificant yellow, orange,
or red portions in the figure).

Of the 18 benchmarks with divergent branches, 9 have di-
vergent D-branches. As expected, baseline TBC does much
better compacting D-branches than P-branches and has an
average compaction rate of 42.5% compared to the ideal
average of 64.4%. While the average compactability with
the baseline TBC is reasonable overall, it is quite poor in
5 of the 9 benchmarks (BITONIC, MDBROT, AOSSORT,
SORTNW, and SOBFLT), with an average of just 35.3%.
SLP significantly improves compaction in these 5 bench-
marks. Balanced provides the most improvement and shows
its robustness by averaging 59.3% – 86% of the ideal 68.5%
average compaction in these 5 benchmarks. In fact, Bal-
anced always achieve more than 97.9% of the best permu-
tation in all benchmarks except DXTC, for which applying
no permutation is best. The active threads in DXTC are
exhibited in groups of clusters, but the groups themselves
are randomly scattered across the CTA which makes SLP
less effective. As with P-branches, Odd Even was the worst
performer and even trailed the average of baseline TBC.

Figure 13 shows the compactability breakdown depending
on fraction of active threads for D-branches. While the ben-
efits are not as pronounced as with P-branches, Balanced
again demonstrates that random permutations are a poor
choice when a large fraction of threads are active. Note that
with D-branches, SLP does slightly impair compactability in
a few cases, but all are within 1% of baseline TBC. One pos-
sible optimization to prevent degrading baseline is to utilize
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Figure 12: Breakdown of P-branch compaction rate by fraction of active threads across the CTA at the branch point. (XX YY ZZ)
designates whether a branch is compacted or not (XX ) for a particular fraction range of active threads in that path (YY <=
ActiveThreads < ZZ). Note that the full 100% bar is equivalent to the Ideal bar in Figure 11. OdEv, RWID, BALN refers to
Odd Even, Rev WID, and Balanced respectively.
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Figure 13: Breakdown of D-branch compaction rate by fraction of active threads in a path across the CTA.

compiler-support; SLP is disabled when the percentage of
D-branches is above a threshold. We leave the exploration
of such an option to future work.

6.2 SIMD Lane Utilization
Our definition of compaction rate ignores the magnitude

of compaction and focuses solely on whether any reduction
in the number of warps was achieved. In contrast, SIMDutil

ignores how often compaction was successful and instead
represents the overall magnitude of compaction. As shown
in Figure 14, for instance, although there are multiple per-
mutation methods that achieve the full compaction rate for
BITONIC, REDUCT, FDTD3D, and 3DFD, the resulting
SIMDutil using these permutations is highly variable and
only Balanced offers consistently high improvements. Bal-
anced most effectively reduces the number warps overall,
with average increases of 11.3% over the No TBC baseline
and 7.1% (max 34%) over TBC without SLP. Balanced is
also either the permutation with the highest SIMDutil (in
7 benchmarks) or within 99.4% of the best performing per-
mutation in the other benchmarks. Odd Even provides the
smallest benefits, but still increases SIMDutil by 6% and
2.1% (max 18%) compared to No TBC and TBC respec-

tively. Rev WID, which is the second previously discussed
permutation [9], does better than Odd Even with an average
8.8% and 4.8% increase over No TBC and TBC respectively.
However, Rev WID lacks robustness and significantly trails
the best performing permutation by up to 14.3% (e.g., for
BITONIC, REDUCT, AOSSORT, QSRDM). Among the 5
benchmarks that experienced a lowered compaction rate for
their D-branches with SLP compared to baseline, all also
experience a decrease in SIMDutil for a some SLP permuta-
tions but of less than 0.1%.

6.3 Overall Performance
Figure 15 shows the performance of those 8 benchmarks

that can be executed as-is in GPGPU-Sim 2.1. The SLP
mechanisms are implemented on top of CAPRI and the as-
sociated performance results are shown relative to those of
No TBC and CAPRI. Balanced provides the highest average
IPC increase, outperforming baseline by 11.6% and CAPRI
by 7% (both harmonic means). Balanced also exhibits the
maximum speedup observed, improving BITONIC by 25.6%
and BACKP by 15.2%. It is also the best performing SLP
permutation on 4 of the 8 benchmarks and is always within
98.9% of the best permutation. In contrast, the second-best
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Figure 15: Speedup of compaction with different permutations over no-compaction.

permutation, FLIP odd, achieves an average speedup of 5%
over CAPRI and in worst case achieves only 90.5% of the
best performing SLP.

Because SLP degrades the compaction rate and SIMDutil

of MUM, BFS, DXTC, and EIGENVL, performance for
these benchmarks decreased. Balanced and FLIP odd showed
the least degradation in performance (0.3% and 0.4% degra-
dation compared to CAPRI, respectively). Rotate odd 1
caused the greatest average IPC degradation for these bench-
marks (1.1%), but overall, even this permutation improved
performance by 2.1% (harmonic mean). Although we do
not evaluate the performance of the other 10 benchmarks,
we expect the strong correlation between SIMDutil and per-
formance to apply to them as well.

6.4 Impact on Memory System
Compaction involves dynamically rearranging threads from

different warps and scheduling them together at the same
time. While SLP itself does not disturb the memory coa-
lescing capability (as discussed in Section 4.1), the dynamic
formation of warps through compaction can degrade mem-
ory access behavior compared to a pipeline that does not
compact at all. Among the evaluated benchmarks, those ex-
hibiting a substantial increase in SIMDutil and performance
did show a noticeable increase in L1 misses, with an aver-
age increase of 6.9% and a maximum increase of 20% (in
BFS). Although L1 misses were more frequent than without
compaction, the impact on L2 misses and memory traffic is
negligible (1.3% average increase). These results are in line
with the observations from prior work [14, 25, 31]. Because
the benefits of compaction outweigh the increase in L1 traf-
fic, overall performance is increased, as previously discussed.

7. CONCLUSIONS
In this paper we argue that previous SIMT compaction

mechanisms, which seek to alleviate the detrimental impact
of control divergence, fall short because of their limited ap-
plicability. We explain and quantitatively demonstrate that

in many cases, the way threads are associated with SIMD
lanes causes aligned divergence patterns that prevent com-
paction. Our detailed analysis reveals that such alignment
mainly originates from non-data dependent, programmatic,
branches. Although diverging paths from these program-
matic branches do not compact well as-is (an average of 3.2%
compaction rate), there is substantial opportunity (72.7%
compaction rate) if the fixed association of threads to lanes
can be relaxed. Importantly, such programmatic branches
are common in applications with irregular control (11 of the
18 benchmarks we evaluate).

We propose and evaluate SLP, which expands the appli-
cability of compaction by reducing, and even eliminating,
aligned divergence. SLP permutes the mapping of logical
thread locations to physical SIMD lanes when a warp is
launched. This breaks aligned divergence patterns resulting
from conditionals that depend only on programmatic values.
We construct a novel and robust Balanced permutation tech-
nique, which enables an average of 71.5% of programmatic
branches to be compacted – 98% of the ideal 72.7%. As a re-
sult, SLP with Balanced achieves the highest SIMDutil and
performance of all compaction and permutation mechanisms
across the 18 benchmarks we study.

Because the permutation scheme has minimal hardware
overhead and does not directly impact any component other
than determining the association of threads and lanes, we ar-
gue that it should become the default architecture for GPUs
that utilize thread compaction.

8. ACKNOWLEDGEMENTS
We thank the developers of GPGPU-Sim and GPUOcelot.

We also thank the anonymous reviewers, who provided ex-
cellent feedback for preparing the final version of this paper.

9. REFERENCES
[1] GPGPU-Sim. http://www.gpgpu-sim.org.

[2] GPGPU-Sim Manual. http://www.gpgpu-sim.org/manual.



[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Con-
version of control dependence to data dependence. In Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’83, pages
177–189, New York, NY, USA, 1983. ACM.

[4] AMD Corporation. AMD Radeon HD 6900M Series Specifi-
cations, 2010.

[5] AMD Corporation. ATI Stream Computing OpenCL Pro-
gramming Guide, August 2010.

[6] T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High-speed
Switch Scheduling for Local-Area Networks. In ACM Trans-
actions on Computer Systems (TOCS), 1993.

[7] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator.
In IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS-2009), April 2009.

[8] W. Bouknight, S. Denenberg, D. McIntyre, J. Randall,
A. Sameh, and D. Slotnick. The Illiac IV System. In Pro-
ceedings of the IEEE, volume 60, pages 369–388, April 1972.

[9] N. Brunie, S. Collange, and G. Diamos. Simultaneous Branch
and Warp Interweaving for Sustained GPU Performance.
In 39th International Symposium on Computer Architecture
(ISCA-39), June 2012.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for hetero-
geneous computing. In IEEE International Symposium on
Workload Characterization (IISWC-2009), October 2009.

[11] G. Diamos, B. Ashbaugh, S. Maiyuran, A. Kerr, H. Wu,
and S. Yalamanchili. SIMD Re-Convergence At Thread Fron-
tiers. In 44th International Symposium on Microarchitecture
(MICRO-44), December 2011.

[12] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot:
A Dynamic Compiler for Bulk-Synchronous Applications in
Heterogenous Systems. In 19th International Conference on
Parallel Architecture and Compilation Techniques (PACT-
19), September 2010.

[13] D. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic Al-
gorithms for Load Balancing in Distributed Computer Sys-
tems. In 8th International Conference on Distributed Com-
puting Systems, 1988.

[14] W. W. Fung and T. M. Aamodt. Thread Block Com-
paction for Efficient SIMT Control Flow. In 17th Interna-
tional Symposium on High Performance Computer Archi-
tecture (HPCA-17), February 2011.

[15] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic
Warp Formation and Scheduling for Efficient GPU Control
Flow. In 40th International Symposium on Microarchitecture
(MICRO-40), December 2007.

[16] A. Gharaibeh and M. Ripeanu. Size Matters: Space/Time
Tradeoffs to Improve GPGPU Applications Performance.
In 2010 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC-2010),
November 2010.

[17] M. Giles. Jacobi iteration for a Laplace
discretisation on a 3D structured grid.
http://people.maths.ox.ac.uk/g̃ilesm/hpc/NVIDIA/laplace3d.pdf,
2008.

[18] M. Giles and S. Xiaoke. Notes on us-
ing the NVIDIA 8800 GTX graphics card.
http://people.maths.ox.ac.uk/ gilesm/hpc/, 2008.

[19] P. Harish and P. Narayanan. Accelerating Large Graph Al-
gorithms on the GPU Using CUDA. In High Performance
Computing HiPC 2007, volume 4873, pages 197–208. 2007.

[20] U. Kapasi, W. Dally, S. Rixner, P. Mattson, J. Owens, and
B. Khailany. Efficient conditional operations for data-parallel
architectures. In 33th International Symposium on Microar-
chitecture (MICRO-33), December 2000.

[21] B. Li and A. Eryilmaz. Exploring the Throughput Bound-
aries of Randomized Schedulers in Wireless Networks. In
IEEE/ACM Transactions on Networking (TON), 2012.

[22] W. Lin, S. Reinhardt, and D. Burger. Reducing DRAM La-

tencies with an Integrated Memory Hierarchy Design. In 7th
International Symposium on High Performance Computer
Architecture (HPCA-7), February 2001.

[23] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A
Software Memory Partition Approach for Eliminating Bank-
Level Interference in Multicore Systems. In 21st Interna-
tional Conference on Parallel Architecture and Compilation
Techniques (PACT-21), September 2012.

[24] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivi-
sion for integrated branch and memory divergence tolerance.
In 37th International Symposium on Computer Architecture
(ISCA-37), 2010.

[25] V. Narasiman, C. Lee, M. Shebanow, R. Miftakhutdinov,
O. Mutlu, and Y. Patt. Improving GPU Performance via
Large Warps and Two-Level Warp Scheduling. In 44th In-
ternational Symposium on Microarchitecture (MICRO-44),
December 2011.

[26] NVIDIA Corporation. NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi, 2009.

[27] NVIDIA Corporation. CUDA C/C++ SDK CODE Samples,
2011.

[28] NVIDIA Corporation. NVIDIA CUDA Programming Guide,
2011.

[29] O. Pearce, T. Gamblin, B. Supinski, M. Schulz, and N. Am-
ato. Quantifying the Effectiveness of Load Balance Algo-
rithms. In 26th ACM International Conference on Super-
computing, 2012.

[30] B. Rau. Pseudo-Randomly Interleaved Memory. In 18th In-
ternational Symposium on Computer Architecture (ISCA-
18), June 1991.

[31] M. Rhu and M. Erez. CAPRI: Prediction of Compaction-
Adequacy for Handling Control-Divergence in GPGPU Ar-
chitectures. In 39th International Symposium on Computer
Architecture (ISCA-39), June 2012.

[32] M. Rhu and M. Erez. The Dual-Path Execution Model for Ef-
ficient GPU Control Flow. In 19th International Symposium
on High-Performance Computer Architecture (HPCA-19),
February 2013.

[33] R. M. Russell. The CRAY-1 computer system. Commun.
ACM, 21:63–72, January 1978.

[34] M. Schatz, C. Trapnell, A. Delcher, and A. Varshney. High-
throughput sequence alignment using graphics processing
units. BMC Bioinformatics, 8(1):474, 2007.

[35] D. Shah, P. Giaccone, and B. Prabhakar. Efficient Ran-
domized Algorithms for Input-Queued Switch Scheduling. In
IEEE Micro, 2002.

[36] J. E. Smith, G. Faanes, and R. Sugumar. Vector instruction
set support for conditional operations. In 27th International
Symposium on Computer Architecture (ISCA-27), 2000.

[37] Steven Muchnick. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997.

[38] D. Tarjan, J. Meng, and K. Skadron. Increasing memory miss
tolerance for SIMD cores. In Proceedings of the Conference
on High Performance Computing Networking, Storage and
Analysis (SC-09), 2009.

[39] H. Wu, G. Diamos, S. Li, and S. Yalamanchili. Characteri-
zation and Transformation of Unstructured Control Flow in
GPU Applications. In 1st International Workshop on Char-
acterizing Applications for Heterogeneous Exascale Systems,
June 2011.

[40] E. Zhang, Y. Jiang, Z. Guo, and X. Shen. Streamlining GPU
Applications On the Fly. In 24th International Conference
on Supercomputing (ICS’24), June 2010.

[41] Z. Zhang, Z. Zhu, and X. Zhang. A Permutation-Based Page
Interleaving Scheme to Reduce Row-Buffer Conflicts and Ex-
ploit Data Locality. In 33rd International Symposium on Mi-
croarchitecture (MICRO-33), December 2000.


