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Abstract

Networks-on-chip (NoCs) are used in a growing number of SoCs and multi-core

processors. Because messages compete for the NoC’s shared resources, quality

of service and resource allocation are major concerns for system designers. In

particular, a model for the properties of packet delivery through the network

is desirable. We present a methodology for packet-level static timing analysis

in NoCs. Our methodology quickly and accurately gauges the performance

parameters of a virtual-channel wormhole NoC without simulation. The network

model can handle any topology, link capacities, and buffer sizes. It provides

per-flow delay analysis that is orders-of-magnitude faster than simulation while

being significantly more accurate than prior static modeling techniques. Using a

carefully derived and reduced Markov chain, the model can statically represent

dynamic network state. Usage of the model in a placement optimization problem

is shown as an example application.
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1. Introduction

Networks-on-chip (NoCs) are increasingly used instead of buses and ded-

icated signal wires in large-scale processors and, even more so, in modern

systems-on-chip (SoC) [5]. In NoC-based systems, data transmission takes

the form of multi-packet flows routed through the NoC over multiple links

and routers. Because network resources are shared, per-flow quality of ser-

vice (QoS) becomes a major concern for the system architect. Packet delay and

data throughput are primary metrics of QoS [9].

The purpose of this paper is to rigorously derive a delay and throughput

model for packet-level static timing analysis (STA) for NoC-based SoCs. Static

timing analysis in a shared network is a non-simulation-based technique to esti-

mate the average delay of each flow in the network, given the network topology,

link capacities, router architecture, and the bandwidth requirements and char-

acteristics of all flows.

The motivation for a per-flow STA technique is to enable a range of design

optimizations that can rely on accurate and fast network analysis. Methods

such as module placement and resource allocation [39, 1] require a large number

of iterations, and thus the evaluation of network performance within each iter-

ation must be very efficient. Until now, an accurate and complete modeling of

advanced NoCs has only been possible with detailed and time-consuming sim-

ulations. The main reason is that network resources, including links, routers,

buffers, and ports, are shared between several information flows. Thus, con-

tention can arise inducing statistical uncertainty in the delay of each packet.

Detailed simulation, however, is too slow to be effective within an optimiza-

tion inner loop because all internal buffers and states must be modeled on a

cycle-by-cycle basis.

Contributions

We present a rigorous analytical model that relies on a carefully constructed

and reduced Markov chain to represent network state, including the occupancy
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of all buffers. Our model is inspired by industrial work-flow modeling techniques

and, to the best of our knowledge, is the first that can accurately account for

arbitrary network topology, link capacities, and buffering, when using wormhole

routing with virtual channels. We rely on the well-developed theory of stochastic

processes and show that our technique faithfully predicts network queuing delay

for both synthetic and real-world SoC traffic scenarios. We present results

and validate the model for the delay analysis of flows with fixed-length packets

that are composed of a large number of flits. We discuss extensions to these

assumptions as future work. Note that our model is valid for any interconnection

network, and not just an NoC, but the type of optimizations it enables are

particularly well suited for the tight resource constraints and design flow of

NoCs and SoCs.

To summarize our contributions:

• We present the first rigorous NoC model that is based on stochastic theory

and show how to represent and solve for the network state using a Markov

chain.

• We show how to account for arbitrary and finite buffering, as well as

support wormhole routing and virtual channels. We use network delay

analysis as an illustrative example of the modeling technique

• We validate our model for statistical traffic behavior using synthetic and

real-world scenarios, and discuss why it is more complete and more accu-

rate than prior analytical models.

• We demonstrate that our model can serve at the core of a design optimiza-

tion method by showing that it can faithfully choose between multiple

placement options in a real-world SoC example, and do so while requir-

ing orders of magnitude less time than simulation. We also show that

the most advanced prior-art model fails to make the correct optimization

decision.

The rest of the work is organized as follows. We start by discussing the
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related work in Section 3. Then, in Section 4, we establish a general analytical

model for the average delay of each flow in an arbitrary NoC topology. We

evaluate the delay model in Section 5 by comparing it with accurate simulation

results and with previous delay models. Finally, Section 6 uses the model in a

placement optimization tool and provides more insights and simulation results

for the model.

2. Background and Modeled Network

The methodology we present in this paper is general and can be used with

a wide array of NoC configurations, including arbitrary topology and buffering.

In particular, we target NoCs with efficient Wormhole Routing in conjunction

with Virtual Channels that use deterministic routing algorithms. This section

provides a brief introduction to these techniques. Later in the paper we provide

more details on other assumptions we make (Section 4). We also validate the

model using a specific 4×4 mesh NoC example. The full details of this example

NoC, which are presented in Section 5, are not pertinent to explaining the model

and methodology because it is valid for any topology.

Wormhole Switching, or Wormhole Routing [33], is a flow control technique

that can improve latency while reducing required buffering. In wormhole rout-

ing, large packets are broken into small (constant length) units called flits (flow

control digits) and two control flits are added, a head flit at the beginning and

a tail flit at the end of each packet. The head flit contains all the routing rele-

vant information and establishes a path through the network. The subsequent

flits follow the head flit in a pipelined fashion through the intermediate routers,

which need only buffer a few flits at a time rather than the entire packet. In this

way, the overall routing latency is reduced with pipelining, while intermediate

nodes require smaller buffers. The tail flit is used to signal the end of the mes-

sage and for various bookkeeping purposes. Wormhole routing is used widely in

applications ranging from local computer clusters [31], through SoC NoCs [15],

to SpaceWire [37, 36] chips.
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Wormhole routing has several disadvantages, with the most serious being

the long duration in which a channel in the network is occupied. A particular

channel in the network is occupied from the time a head flit arrives until the time

the corresponding tail is processed, and the link cannot be used for any other

packet. Because flit transmission is pipelined, multiple links in the network

are occupied by a single packet at any given time, detrimentally impacting

performance.

To mitigate this effect, Virtual Channels (VCs) [16] allows a router to serve

several packets simultaneously, by time multiplexing the physical link resource.

This is done by additional logic and buffering in the router that maintains the

status of several flows. Each of these flows is referred to as a virtual channel,

and is allocated when header flit is received by a router. The router can continue

processing other packets as long as virtual channels and buffers are available.

The different VCs arbitrate for the physical link and many arbitration policies

have been studied (e.g., [40]).

3. Related Work

Much of the prior work on analytical delay modeling in wormhole-enabled

networks approximates the mean delay of packets in the entire system rather

than estimating the delay of each source-destination flow separately [35, 30,

26, 24, 3]. Such gross approximations are often inadequate, and in such cases

cannot be used in the NoC design process to efficiently optimize the allocation

of resources.

In addition, while state-of-the-art NoC architectures multiplex multiple pack-

ets on the network links using virtual channels [29, 7, 32, 43, 6], most existing

analytical models do not support virtual channels [18, 12, 45, 14, 34]. Further,

in [44, 22, 27, 41], the authors formulate worst-case latencies of flows in the

NoC. While this approach is suitable for real-time flows with hard deadlines,

the vast majority of communication in typical SoCs has a set of more relaxed

timing requirements, which can be satisfied with statistical guarantees.
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Network calculus was recently proposed for analytical modeling and evalu-

ation of NoC traffic [42, 4, 41]. This technique, however, does not currently

model virtual channels, which are common to practically all state-of-the-art

NoC architectures.

A heuristic approach to estimate the average delay of each flow was taken

in [21]. The authors developed a heuristic delay model (HDM) that takes into

account the capacities of all the links traversed by the modeled flow, as well

as the bandwidth consumed by all other network flows which share some links

with the modeled flow. Their heuristics attempt to estimate the serialization

and head-of-line blocking, which add to the delays of a link because of congestion

further downstream. This approach is useful, providing a closed-formed formula

to estimate the delay for each flow in the network based on traffic parameters of

all the flows. However, the model uses heuristics and its accuracy has not been

confirmed in a rigorous fashion. In addition, [21] does not capture the effects of

finite buffer sizes. In Section 5, we compare this model against ours and show

how its heuristic approach can lead to a wrong optimization decision.

4. Analytical Model

In this section, we derive an analytical approximation of the delay of a

flow in a wormhole network. The model supports any network topology and

arbitrarily-set link capacities, as well as VC buffer sizes. Likewise, we place no

restriction on the routing algorithm except that it be deterministic. To simplify

the analysis, we assume that all packets have a fixed length, and are long enough

so that the time it takes the head flit to arrive at the destination is considerably

shorter than the time it takes the source to inject the packet. We further assume

that there is no blocking in the network due to a lack of virtual channels, and

that the destination node can always receive packets from the network. We also

assume that the system is stable, i.e. that the number of packets in the system

does not grow unbounded.

In the following analysis, we consider the latency induced by routers to be
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only caused by the contention for shared VC buffers and by the time-domain

multiplexing of VCs. Other (fixed-duration) latencies (e.g., routing and switch-

ing latencies) can be easily accounted for with minor modifications to the pre-

sented model. We first derive the model assuming that the packet arrival times

at the injection port of each node can be modeled by a Poisson random process.

Then, in Section 4.3, we generalize the model to any random process for packet

arrival times. In Section 7 we discuss extensions to our model that further relax

the current assumptions on packet length.

Our technique follows three main steps:

1. We focus on the NoC service for a particular flow of interest, which we

generically call flow X, and model it using a Markov chain (MC) [10]. The

Markov chain represents the network state of the routers and buffers on

the path of flow X, as well as the impact of interfering flows, i.e., those

flows that share at least one link with flow X.

2. We derive the flit propagation characteristics by computing the stationary

distribution of the Markov chain. We use discrete time to model the

internals of the NoC (Section 4.1.1).

3. We use the derived properties and standard analysis of M/G/1 (extended

to G/G/1 in Section 4.3) queues to model the expected packet delay and

the throughput of flow X.

4.1. Constructing the Markov Chain

4.1.1. The Reduced Configuration

To fully represent the NoC as a Markov chain, the internal state of each

router (and in particular the buffer occupancies) as well as the characteristics of

all flows need to be expressed as states in the chain. Unfortunately, this naive

approach would result in an enormous and intractable number of states.

As shown in the transition from Figure 1a to Figure 1b, to reduce this

Markov chain to a manageable size, we generate a separate model for each

”isolated” flow, generically represented as flow X. We call this model the reduced
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Table 1: Definition of symbols used in model derivation.

λα packet arrival rate of flow α [packets per unit time]

Mα packet length of flow α [flits]

φ(l) capacity of link l [flits per unit time]

si Markov chain state i

πi stationary distribution probability of state si

γi fraction of packets of a measured flow (X) served while in state si

ρi NoC throughput associated with state si for flow X [packets per unit

time]

ηi head-flit propagation delay of packets in flow X incurred while in state

si [time units]

τα expected time to fully transmit a packet of flow α [time units]

∆(l) buffer capacity on link l for flow X [flits]

δ(l) buffer occupancy on link l for flow X [flits]

ξ error in delay

F total number of flows in the network

R total number of nodes (routers)

Ψα number of interfering flows for flow α

Pα number of hops between the source and the destination for flow α

configuration. In the reduced configuration, we limit the analysis to the routers

on the path of X, and only consider those other flows that share network links

with X, such as flows A and B, but not flow C (this particular reduction method

was also used in [20, 21, 46], and is further analyzed in Section 5.1).

To further simplify the Markov chain, we restrict our analysis to epochs in

which the flits of flow X are waiting to be served by the NoC. This last assump-

tion eliminates the need to model the large buffers at the network injection

points and permits to model them as infinite buffers. Without assuming that

flow X is active, we would need to track the state of the network during periods

of inactivity, which would complicate the MC representation. We discuss the
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implications of this simplification in Section 5.2.
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(a) Full configuration

�

�

(b) Reduced configuration
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(c) Associated MC
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�

(d) Flowline representation

��

��

�

�

(e) Queue representation

Figure 1: Flow X sharing a single link with a single interfering flow.

The reduced configuration for flow X can be viewed as a Markov chain in

which each state is defined by the buffer occupancies and the existence of inter-

fering flows along the links, as shown in Figure 1c and explained in Section 4.1.2.

We construct a specific Markov chain for flow X to model its reduced configu-

ration. This Markov chain representation accounts for both the extra queuing

delay caused by interfering flows, which share links and ports with flow X,

as well as for the delay of serialization and back-pressure within flow X and

between the flits of a single packet (Figure 1e).

This system is equivalent to an open queuing network (Figure 1e) and to a

manufacturing flowline (Figure 1d) with unreliable parallel machines [17]. By

casting our problem in terms of unreliable machines, we can leverage a large

body of works on stochastic theory and modeling methodology. We represent

each hop taken by flow X as a production station consisting of a group of

parallel machines. Likewise, in each cycle, the router is modeled as choosing

a new machine in this group of parallel machines, in a round-robin fashion. A

functioning machine processes flow X and contributes to its throughput, while

a malfunctioning machine is equivalent to the link being used by an interfering

flow.

Although the whole system operates in the continuous time domain, we use
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discrete time to model the internals of the network. This simplifies the analysis

of network properties, such as throughput, which we then apply back to the

continuous domain. In our approximation, let t be the (NoC) cycle time and λ

be the arrival rate of the packets in the continuous Poisson process, then the

probability of packet arrival during a single cycle is λte−λt. Assuming that the

cycle time is very short compared to the inter-arrival times, it can be simplified

to a Bernoulli i.i.d processes for each cycle, making the probability of packet

arrival during a single cycle simply λ.

In the following subsections we show how to construct the Markov chain

for a number of representative interference patterns and conclude the analyt-

ical model section by deriving delay and throughput using the Markov chain

(Section 4.2).

4.1.2. Sharing a Single Link with a Single Flow

In this scenario, measured flow X shares a single link with interfering flow B,

as shown in Figure 1, which also depicts the flow-line and queue representations

and the associated MC. The MC, which represents this single-interferer case,

requires only two states (Figure 1c). State s1 represents a “no interference”

situation, where flow X can use the entire capacity of the shared link. If there

are flits of both flows X and B waiting in the buffers, as illustrated in Figure 1e,

the round robin arbitration mechanism allocates the shared link to each flow on

every other cycle. As a result, each flow can utilize only half of the link capacity.

State s2 represents the situation where flow B interferes with the measured flow

X. The MC does not need to represent a situation where only flow B is active,

because it need only model the network as seen by flow X, and a separate MC

is constructed to model the network properties of flow B.

The MC representation also expresses the probabilities of transitioning be-

tween the states, denoted in Figure 1c by the labels on the arrows connecting

the two states. Starting from state s1, where only flow X is active, the prob-

ability of transitioning to state s2 is simply the probability that a new packet

of flow B arrives. Assuming Poisson arrival times, this probability is simply
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(λB). Conversely, the probability of staying in s1 is (1 − λB). Starting from

state s2, where both flows are active, the probability of transitioning to s1 is

the probability that the current packet of flow B is fully transmitted (fB) and

that no new packet of flow B has arrived during this transmission time. The

time required to transmit a packet is the length of the packet (MB) divided by

the available link capacity φ, which is only half of the total capacity because

flow X is also active:
(

τB = MB

1
2 φ

)

. Thus, the probability of fully transmitting a

packet at any time is 1
τB

. The probability for another packet to appear during

this time, which prevents transitioning back to s1 is (λBτB). Therefore, the

probability for transitioning from state s2 to state s1 is:

fB =
1

τB

max (1 − τBλB , 0) = max

(

φ

2MB

− λB , 0

)

Finally, the probability for flow B to continue being active, and the MC to

remain in state s2 is:

cB = 1 − fB = min

(

(1 −
φ

2MB

) + λB , 1

)

Section 5.2 shows how to use this MC to derive delay and throughput prop-

erties for flow X, validates the results with detailed simulation, and discusses

the implications and comparison to HDM.

4.1.3. Sharing a Single Link with Multiple Flows

A configuration where the measured flow shares a link with two other flows is

shown in Figure 2 along with its flowline/queue equivalence and associated MC.

Here, state s1 represents no interference, states s2 and s3 represent inference

by only flow A or only flow B respectively (i.e., flits of a single flow other than

flow X are being multiplexed on the same link), and s4 represents the state in

which flits of all three flows (A, B and X) are multiplexed on the same link.

With the additional states, the MC is more complex and has a larger number

of possible transitions. The evaluation of the transition probabilities is similar

to the derivation discussed above. For state s1, the probability of staying in

this state of no interference is the probability that no new packets arrive on
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flow A and no new packets arrive on flow B ((1 − λA)(1 − λB)). Conversely, a

transition from s1 to s4 occurs when both flows A and B become active at the

same time (λAλB). The probability of transitioning from s1 to s2 is that of a

packet arriving on flow A and not arriving on flow B, while the opposite is true

for a transition from s1 to s3.
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(a) Reduced configuration
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(b) Queue representation
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(c) Flowline representation
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(d) Associated MC

Figure 2: Flow X sharing a single link with multiple interfering flows.

We now discuss the transition probabilities from state s2. When a packet of

flow A is fully transmitted and no other packets of both flows A and B arrived

during the transmission time, then the MC transitions back from s2 to s1. To

calculate the probability of fully transmitting a packet, marked as fA, we need

to first derive the expected transmission time of a packet from flow A (τA).

When a packet of flow A is being serviced, it can be done while at state s2 at a

rate of φ
2 , or in state s4 with a rate of φ

3 (because all three flows are active in s4

but only two in s2). Therefore, the expected transmission time is given by the

expected fraction of time the packet is in states s2 and s4, which are related to
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the stationary distribution probabilities of these states (π2 and π4 respectively):

τA =
MA

1
2φ

·
π2

π2 + π4
+

MA

1
3φ

·
π4

π2 + π4
=

=
2MA

φ

(

1 +
1

2

π4

π2 + π4

)

Given the expected transmission time, we can now write the probability of fully

transmitting a packet as:

fA =
1

τA

max (1 − τAλA, 0) = max

(

1

τA

− λA, 0

)

Thus, the probability of transitioning from s2 to s1 is (fA(1 − λB)). The proba-

bility for moving from s2 to s3 is that of fully transmitting the packet from flow

A while a packet from flow B arrives at the same time, or (fAλB). The final

two transitions are of remaining in s2 or changing to s4, which occur when flow

A continues and either a packet from flow B does not arrive (stay in s2), or does

arrive (move to s4). As before, we mark the probability of flow A continuing

activity as:

cA = 1 − fA = min

(

(1 −
1

τA

) + λA, 1

)

The transitions out of state s3 are derived in exactly the same way as for

state s2, reversing the roles of flow A and flow B. With respect to state s4,

the probability of transitioning to s1 is the probability that both flows A and B

are fully transmitted, or fAfB . Transitioning from s4 to s2 occurs when flow A

continues and flow B finishes and the probability is cAfB . In symmetric fashion,

the probability of s4 to s3 is cBfA. Finally, the probability of staying in state

s4 is cAcB signifying that all flows remain active.

4.1.4. Sharing Multiple Links

A configuration of interfering flows over multiple links, including the equiv-

alent queuing and flowline representations, is shown in Figure 3. Unlike the

previous cases, this scenario includes a finite buffer that has to be taken into

account. Flow X passes through two routers, each with an interfering flow, and

therefore can experience back-pressure from the intermediate node that does not
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have the infinite buffers assumed on the network injection and ejection packet

queues. We assume that the intermediate flit queue has a depth of ∆ flits, and

will block transmission of an upstream node when it is full (Figure 3b).

�

� �

(a) Simplified configuration

��

��

�

�

����
�	

�


�

�

(b) Queue representation

��

� �

(c) Flowline representation

Figure 3: Flow X sharing multiple links with multiple interfering flows.

We explicitly model the occupancy of the intermediate buffer in the MC,

by dedicating states to each possible buffer occupancy level. We show this in

Figure 4 for the case where all link capacities are equal. The figure has three

parts: Figure 4a shows only those states of the MC that correspond to an

occupancy level of δ; Figure 4b shows a schematic symbol that represents the

partial MC of Figure 4a; and Figure 4c is the entire MC, using the schematic

representation to simplify the figure.

Focusing on Figure 4a, state s1,δ represents the case where only flow X is

active and the buffer has occupancy level δ. State s2,δ represents the case where

flows A and X are active but flow B is inactive and s3,δ is for when flows B

and X are active but flow A is inactive. Finally, s4,δ represents activity on all

three flows and occupancy level δ. Starting from s1,δ the buffer occupancy is

not going to change in any scenario, because both routers are servicing flow X

at the same rate and the buffer is emptied and filled at the same rate. The

transition probabilities out of this state follow the same derivation descried in

Section 4.1.3. Similarly, state s4,δ cannot change the occupancy because the
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(a) MC given that the buffer occupancy is δ
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symbol represent-

ing Figure 4a
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(c) Full MC

Figure 4: Markov chain representing flow X sharing multiple links with multiple

interfering flows (Figure 3a).

service rate for flow X is equal to φ
2 at both routers. Again, the transition

probabilities out of s4,δ follow the reasoning presented in Section 4.1.3. Because

each link has only two multiplexed flows, however, the probability for fully

transmitting a packet of the flow interfering with flow X is derived in the same

manner as in Section 4.1.2:

fα = max

(

φ

2Mα

− λα, 0

)

α ∈ {A, B}

cα = 1 − fα = min

(

(1 −
φ

2Mα

) + λα, 1

)

Note that these probabilities of fully transmitting, or continuing with, an in-

terfering flow are independent of the buffer occupancy. This is true because we

assume that flow X is always active and that the ejection port of the network
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is always available for each flow.

When flows A and X are active and flow B is inactive (state s2,δ), the ser-

vice rate for flow X is higher in the downstream router, which is only servicing

X, than in the upstream router that is servicing two flows. Therefore, the

buffer occupancy decreases, which is represented by the transition from s2,δ to

s2,δ−1. This transition occurs with probability (cA(1 − λB)), which is the prob-

ability that flow A remains active and that flow B remains inactive. The other

transition probabilities of s2,δ represent transitions that do not change buffer

occupancy, either because flow B becomes active or flow A is fully transmitted

and the service rate for flow X becomes equal at both routers. A similar analysis

of state s3,δ shows that if flow B continues and flow A does not become active,

then the buffer occupancy increases and the MC transitions to state s3,δ+1. This

is because the downstream node is now servicing flow X at half the rate of the

upstream node.

The edge states s2,0 and s3,∆ are connected to themselves as shown on Fig-

ure 4c. Essentially, the buffer can never have fewer than zero flits and cannot

exceed ∆ flits. When the buffer is full, flow X is still being serviced by the

downstream buffer and is not stalled (remember that we assume ejection is

always possible). A full buffer causes back-pressure, which reduces the trans-

mission rate in the upstream node. Our model inherently accounts for this

back-pressure through the stationary distribution of the states, which directly

determines the throughput as explained in the following subsection.

Observe that swapping the order of the interfering flows, i.e. swapping flows

A and B in Figure 3a, would result in a symmetrical MC leading to exactly

the same stationary distribution and estimated network properties. This is a

significant improvement over the prior HDM technique, in which the order of

the interfering flows affected the estimated delay. We further discuss this issue

and show an example in Section 5.4.
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4.2. Deriving Throughput and Delay

To derive the expected throughput of the NoC observed by flow X in the

presence of interference we rely on the fact that the Markov chain we construct

is positive recurrent and aperiodic. These properties imply that the random

process corresponding to the state transitions, which represents the NoC, is

ergodic. Using the ergodic theorem [10, 25] the expected throughput is given

by:

TX =
∑

πiρi (1)

π (a vector) is the stationary distribution of the MC, which can be computed

by solving a system of linear equations.

Next, we express the expected delay of packets in flow X as:

LX = WX + HX +
1

TX

(2)

WX is the expected waiting time in the source node input buffer, which we

derive in Equation 3. HX , is the average propagation time of the head flit that

we approximate in Equation 5. The final term, TX , is the expected throughput

observed by flow X as computed earlier and expressed in units of packets per

unit time. Note that 1
TX

includes the serialization latency, which is simply

the ratio of packet length (which is fixed in our model for simplicity) to link

bandwidth (which can vary from link to link).

To express the input delay (WX) we use classic results from the analysis of

M/G/1 queues [25], which the NoC conforms to through the assumptions on

Poisson packet arrival times and continuous service:

WX =
(1 + C2

SX
)λX

2TX(TX − λX)
(3)

Note that we analyze the waiting time of flow X in the continuous domain

using the M/G/1 model to match the continuous nature of the process used to

model the flow. The throughput parameter was derived from a discrete-time

model of the network (Section 4.1.1), which is the more appropriate represen-

tation of the internal NoC buffers and routing decisions.
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The waiting time is dependent on the throughput (TX), arrival rate (λX),

and the coefficient of variation (C2
SX

):

C2
SX

=
σ2

SX

S2
X

(4)

To calculate the average service time (SX) and its variance (σ2
SX

) we first

compute the expected number of packets serviced at each state of the Markov

chain, γ. γ is the fraction of packets at each state, rather than the fraction of

time spent at each state, which is π.

γi

πiρi

=
γj

πjρj

∀i, j

∑

γi = 1

We can now compute the average service time and its variance, and use

the result to compute the coefficient of variation (Equation 4) and finally the

waiting time (Equation 3):

SX =
∑ γi

ρi

≡
1

TX

σ2
SX

=
∑ γi

ρ2
i

− S2
X

The last component of the expected packet delay (Equation 2) is the head-flit

propagation delay:

HX =
∑

γiηi (5)

ηi is the head-flit propagation delay of packets in flow X incurred while in state

si, measured in units of time.

Finally, for SX ≫ HX we can approximate the end-to-end packet delay as:

LX ≈ WX +
1

TX

(6)

4.3. Model Generalization

In the previous section we derived the end-to-end delay assuming a Poisson

arrival process. Therefore, we applied the M/G/1 queuing model. In this sec-

tion, we generalize our method for any arrival process by applying the G/G/1

queuing model [28].
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Let σ2
a be the variance of the inter-arrival time, then the input delay (WX)

(from Equation 3) can be generalized to:

WX
∼=

1 + C2
SX

(

TX

λX

)2

+ C2
SX

·
λX

(

σ2
a + σ2

SX

)

2
(

1 − λX

TX

) (7)

It is easy to show that for Poisson traffic, applying σ2
a = 1

λ2
X

to Equation 7

matches Equation 3 exactly.

5. Model Validation

This section illustrates how to apply the model to compute network prop-

erties such as delay and throughput. We use the scenarios described in Sec-

tions 4.1.2–4.1.4 and, for each case, compare the results of our model with de-

tailed simulations and with HDM [21]. Our cycle-accurate, discrete-event, NoC

simulator uses the OMNET++ framework [47]. The simulator simulates worm-

hole switching with virtual channels [15], deterministic XY/YX routing [8], and

configurable network topology, buffers, and traffic parameters. The simulations

were 8 × 107 cycles long, resulting in a confidence interval of 0.35% on average

for a 95% confidence level. The simulated NoC implements the QNoC architec-

ture, described in [9] using a single QoS level, with virtual channels added to

each router port. The network properties are summarized in Table 2.

5.1. Isolation

In Section 4.1.1 we explained how to isolate the investigated flow X from

the rest of the flows. By doing this we neglect to account for possible indirect

interactions between other flows and flow X in different parts of the NoC, as

illustrated in Figure 5. In this figure, flow C does not interfere with flow X

directly , but flows A and B, which do interfere with flow X, interact through

flow C.

We investigate the potential impact of indirect interference using the config-

uration shown in Figure 6, where flow X is interacting directly only with flow

A, however, flow A might interact with other flows (B,C,D). We simulated
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Table 2: Simulated NoC properties.

Dimensions 4 × 4

Message length 256 flits

Flit length 32 bit

Virtual Channels 4

Buffer size 5 flits

Routing wormhole XY/YX

Node ↔ Router capacity 400Gbps

Router ↔ Router capacity 10Gbps

Router frequency 333MHz

�

�

�

�

Figure 5: Example of possi-

ble neglected interaction be-

tween interfering flows.

� � � �

�

Figure 6: Configuration showing the isolation method

multiple configurations of indirect interference described in Table 3 and varied

the arrival rate of flow X (λX), keeping other arrival rates fixed for simplicity

(λA = λB = λC = λD = 0.2). The results (Figure 7) show that regardless of

whether flows B,C,D are present, the impact on the end-to-end delay for flow

X packets is only affected by flow A. This observation holds since the examined

system is stable, and hence, indirect interference does not change the arrival

properties of flow A as it interacts with flow X. Indirect interference is likely

to impact the delay of flow X in unstable systems, but analysis of such systems

Table 3: Different interference configurations

configuration A B C D configuration A B C D

I X X X X IV X X

II X X X V X X

III X X X VI X
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Figure 7: End-to-end latency for flow X packets in different interference config-

urations.

is beyond the scope of this paper.

5.2. Sharing a Single Link with a Single Flow

The simplest analyzed test case models a single link shared with a single

flow, as shown in Figure 1b. The stationary distribution π of the Markov chain

derived in Section 4.1.2 is the solution of the following set of linear equations:

π1λB = π2fB π1 + π2 = 1

Resulting in:

π1 =
fB

fB + λB

π2 =
λB

fB + λB

Applying Equation 1 for the expected throughput provides:

TX = π1ρ1 + π2ρ2 =
fB

fB + λB

+
1
2λB

fB + λB

=

= max

(

φ

MX

− λB

MB

MX

,
φ

2MX

)
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TB can be calculated in exactly the same way and following the steps in

Section 4.2 LX and LB can be calculated (not shown). An important observa-

tion of this resulting throughput is that the worst-case throughput observed by

flow X is 1
2 of the link capacity, which corresponds to high contention with the

interfering flow B.
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Figure 8: Flow X sharing a single link with a single flow - variable λX .

Figure 8 shows the expected delay of packets in flow X as its throughput

requirement, controlled by the arrival rate (λX) is increased, and where the

arrival rate of the interfering flow B is constant (λB = 0.4). For these parame-

ters, both our model and HDM match the simulation results well. As explained

above, the minimum throughput observed by flow X is half of the link capacity,

and this low throughput is reached when the interfering flow arrival rate exceeds

0.5. This phenomenon is not accounted for in HDM, because its heuristics were

developed and tuned for low arrival rates. This error in delay estimation is

apparent in Figure 9, which shows the case of fixed (λX = 0.4) and variable λB .
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Figure 9: Flow X sharing a single link with a single flow - variable λB .

The HDM allows the interfering flow B to consume more that half of the link

capacity, resulting in a sharp increase of the estimated delay of flow X, which

tends to infinity for (λX → 0.6). Our model, which inherently accounts for the

minimum observed throughput, on the other hand, matches simulations well.

In addition, an interesting observation can be made regarding the degree of

estimation error of our model (see Figure 9). The end-to-end latency of flow X

when (λX = 0.4 < λB) has linear behavior with respect to λB . As can be seen,

our presented model overestimates the end-to-end delay for this case, albeit

with bounded error. The reason is that we assume that flow X is always active

and has flits available for transmission. This assumption, however, partially

fails when the interfering flow B has a higher rate than the investigated flow X.

When flow X is not active, flow B observes higher service rate and is transmitted

more quickly. This reduces the probability that it actually interferes with flow

X and leads to the overestimation error.
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While leaving more in-depth investigation of this phenomenon to future

work, both in terms of curbing it and with respect to providing a tight bound,

we now characterize the error behavior. First, we notice that because of this er-

ror, the end-to-end latency can only be over estimated and not under estimated.

Second, the error can be roughly bounded by:

ξ < LB(λX = 0.5) − LB(λX = λB)

5.3. Sharing a Single Link with Multiple Flows

We now analyze the test case of a single link with multiple interfering flows,

which corresponds to Section 4.1.3. In this scenario, HDM only considers the

sum of the arrival rates of all the competing flows; hence, it cannot distinguish

between a single interfering flow with (λ = 0.4) and two interfering flows with

(λ = 0.2) each, for example.
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Figure 10: Comparison of sharing a single link with three total flows (two in-

terfering flows with (λA = λB = 0.2) (sim-triple and model-triple) and sharing

the link with one interfering flow of equivalent rate (λA = 0.4) (sim-double and

model-double). HDM models both cases as a single interferer with (λ = 0.4).
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As shown in Figure 10, however, these two distinct cases result in very

different throughput/delay characteristics. Our technique faithfully models the

two cases, and closely follows simulation results.

5.4. Sharing Multiple Links

The last example is of sharing multiple links with different flows as shown

in Figure 3a and discussed in Section 4.1.4. In this scenario, there is a finite

buffer in an intermediate node that can back-pressure flow X.
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Figure 11: Flow X sharing multiple links with multiple flows – variable buffer

capacity.

Figure 11 demonstrates the impact of varying the buffer capacity for interfer-

ing flows of fixed rate (λA = λB = 0.2) and varying λX . Simulation results for

buffer capacities of 5 and 300 flits are shown, along with estimates provided by

the proposed model and by HDM. With lower buffer capacity, the peak through-

put drops substantially, which our model accurately predicts. HDM [21], which

25



is oblivious to the buffer capacity, does not match the simulation results.

Finally, another aspect of this multiple interferer scenario relates to the

order in which the interfering flows appear along the path of flow X. Following

the conclusions of the analysis described in Section 4.1.4, our proposed model

estimates the same network performance properties (throughput) regardless of

the order of the interfering flows. HDM, on the other hand, is sensitive to the

order in which the interfering flows are applied, as is evident in Figure 12, which

shows results for two different configurations: Configuration A, where (λA =

0.3) and (λB = 0.1); and Configuration B where (λA = 0.1) and (λB = 0.3).
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Figure 12: Flow X sharing multiple links with multiple flows – varying the order

in which interfering flows interact along the path of flow X.

5.5. Non-Poisson Traffic

In this section we repeat some of the validation experiments for a different

packet arrival time distribution. Results shown to this point use a Poisson
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arrival process, and in this section we use the Uniform arrival time distribution

— Uniform[0.5 · 1
λ
, 1.5 · 1

λ
].
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Figure 13: Uniformly distributed arrival times – Flow X sharing a single link

with a single flow - variable λX .

First we repeat the experiments from Section 5.2, sharing a single link with

a single flow as shown in Figures 13–14. We also show the results of sharing

multiple links with different flows from Section 5.2 with uniformly distributed

arrival times in Figure 15. Although these results are less precise compared to

Poisson traffic, the model still presents a very good approximation for a general

inter-arrival pattern.
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Figure 14: Uniformly distributed arrival times – Flow X sharing a single link

with a single flow - variable λB .
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Figure 15: Uniformly distributed arrival times – Flow X sharing multiple links

with multiple flows.
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Table 4: Audio-video benchmark traffic requirements from [23].

flow src dst rate [kB/s] flow src dst rate [kB/s]

F1 MEM1 ASIC4 1168730 F16 ASIC4 DSP1 338480

F2 ASIC2 ASIC1 800 F17 DSP1 DSP2 338480

F3 MEM1 CPU 752050 F18 DSP8 DSP7 282650

F4 MEM3 CPU 755840 F19 DSP6 ASIC2 282480

F5 ASIC4 CPU 1970 F20 DSP1 CPU 203630

F6 DSP3 DSP6 70610 F21 DSP2 DSP1 203630

F7 ASIC1 ASIC2 250 F22 DSP3 DSP5 70610

F8 DSP3 ASIC4 380160 F23 DSP7 MEM2 70650

F9 DSP8 ASIC1 800 F24 MEM2 ASIC3 77050

F10 DSP5 DSP6 269240 F25 ASIC3 DSP8 6410

F11 CPU MEM1 380160 F26 DSP4 DSP1 36720

F12 CPU MEM3 380160 F27 ASIC2 MEM2 6400

F13 CPU ASIC3 380160 F28 ASIC2 ASIC3 7650

F14 DSP2 ASIC2 338480 F29 ASIC3 DSP4 1440

F15 DSP4 CPU 1970 F30 ASIC1 DSP8 250

6. Benchmark Delay Model and Placement Optimization

In this section we demonstrate how our analytical model can be used in the

inner-loop of many optimization algorithms, such as module placement, buffer

allocation, link capacity allocation, and network topology selection. These inner

loops cannot solely rely on simulations, as simulations take too long to complete,

making analytical models crucial for an efficient design process. Further, the

correctness of the analytical models directly affects the correctness of the opti-

mization algorithm. Therefore, we show that our analytical model is both fast

and accurate in real-world scenarios.

We first analyze the delay of all flows in a SoC using the audio-video bench-

mark presented in [23], with the traffic requirements summarized in Table 4.

Using detailed simulations, Section 6.1 compares the accuracy and computation

time of our proposed model against HDM. In this experiment the used simu-

lations were 8 × 108 cycles long, resulting in a confidence interval of 0.44% on

average for a 95% confidence level.

We then illustrate in Section 6.2 how our analytical model can be used in

a module placement algorithm that attempts to minimize overall flow delay,

whereas HDM fails to make a correct optimization decision.
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6.1. Benchmark Delay Model

We evaluate our analytical delay model for the benchmark system and traffic

requirements shown above assuming Poisson arrival times. We use a 4×4 mesh

topology with the parameters detailed in Table 2, and the module placement

shown in Figure 16, denoted placement A, where arrows indicate the different

flows. For the simulations, we use the simulator described in Section 5, and run

the simulations long enough for all performance characteristics of the different

flows to stabilize.
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Figure 16: Placement A of the components and flows of the audio-video SoC

of [23].

Figure 17 shows the average end-to-end latency of each flow. It compares

the simulation results with our proposed analytical model, as well as the an-

alytical model presented in [21]. The total queuing delay is broken down into

its components: the delay due to the source node queuing and the delay due

to intermediate queuing, as well as the serialization delay (which is the ratio of

packet length to link bandwidth). Due to space limitations, we only present the

eight flows with the greatest relative slowdown, as ranked by simulation results

and presented in Table 4 as (F1, . . . , F8). In addition, we show the two flows

with the longest distances traversed as presented in Table 4: F14 and F25 with

4 and 5 hops respectively.
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Figure 17: End-to-end latency breakdown predicted by detailed simulation, our

model, and HDM for the system requirements of Table 4 and Placement A

(Figure 16).

Figure 17 shows that both the source node queuing delay and the interme-

diate queuing delay can be dominant (and significant) under different circum-

stances. One may observe that the dominance of the source node queuing delay

component is correlated with the bandwidth requirement of the flow (for ex-

ample in flow F1). On the other hand, a low bandwidth flow competing over

resources with other flows would suffer mostly from the second component, the

intermediate queuing delay (for example in flow F5).

As shown in Figure 17, our model approximates the simulation results signif-

icantly more accurately than HDM. In particular, Figure 18 depicts the absolute

error of the queuing delay for each flow for both analytical models. We can see

that the error for each flow is under 15% for our model, while the error of HDM

is often above 50% and can be greater than even a factor of 10 times.

We also note that the time required to compute the results is orders of

magnitude faster using our model than with the detailed simulation, requiring

only 33ms as opposed to over 7 hours of simulation time.
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Figure 18: Relative error in latency estimation between our model and HDM

relative to detailed simulation for the system requirements of Table 4 and Place-

ment A (Figure 16).

6.2. Placement Optimization

A possible use of the analytical delay model is to estimate network and flow

properties within the inner-loop of a module placement optimization algorithm.

As shown above, our model can quickly compute delay with high accuracy and
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Figure 19: Placement B of the components and flows of the audio-video SoC

of [23].
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in this subsection we demonstrate that it also reflects the change in delay as

a result of varying the module placement. Hence, our model can be used to

predict, and correctly and efficiently choose between multiple placement options.

Without loss of generality, we assume that there is a need to choose between

two placements: placement A, illustrated in Figure 16, and placement B, shown

in Figure 19, where modules ASIC4 and DSP5 have been swapped.
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Figure 20: Comparison of estimated latency of placement A (Figure 16) and

placement B (Figure 19) predicted by detailed simulation, the proposed model,

and HDM.

Figure 20 shows the average end-to-end latencies for placements A and B.

We break down the latencies to their components to demonstrate the relative

impact of each latency source. The simulation columns in the figure show that

the average flow delay is lower in placement A. This is accurately reflected

in our analytical model, which closely approximates the simulation delays to

within 3%, and would also have pointed to placement A as having a smaller

overall delay. HDM, on the other hand, can be quite inaccurate, and as a result

leads to an incorrect placement decision, predicting that placement B has lower

overall latency than placement A. An interesting observation is that despite the

fact that the intermediate queuing delay is the least dominant on average, it is
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actually the delay component that changes the most between the placements A

and B. In addition, in the analyzed example, the intermediate queuing delay is

the component that determines the break even point, which makes its precise

modeling important.

7. Discussion and Future Work

Our packet level static timing analysis (STA) model is constructed based on

several important assumptions, which impact its accuracy as discussed below.

We assume that flow X is always active, and is thus always competing for link

capacity with the interfering flows. We discuss the implications in Section 5.2

and show that the resulting error is both bounded and limited to scenarios where

the interfering flows require more throughput than flow X. We plan to extend

our model to reduce this effect in future work, as well as provide a tighter bound

on the possible error.

Unlike most prior modeling work, we show that our model is general and

can apply to any stochastic process for packet inter-arrival times. We derived

our model using the standard Poisson traffic assumption, but then showed how

to apply a G/G/1 queuing model (Equation 7) that is accurate provided the

first two moments of the distribution are known. We demonstrated the model’s

accuracy using both Poisson and Uniform inter-arrival time distributions.

We currently assume that packets are of constant length, and in future work

we plan to investigate non-constant packet lengths. We have initial promising

results for exponentially-distributed packet lengths, but presenting them here is

beyond the scope of the paper. Finally, we approximated the end-to-end delay

by neglecting the header flit propagation delay (Equation 6), which is only

accurate for long packets. During our work, we verified that the queuing delay

is accurately estimated for any arbitrary packet length and will fully validate the

model for header-flit propagation delay (Equation 5) in the future. We will also

test our model using a full-system simulator to validate the model’s accuracy

with real traffic.
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An important aspect of our work is that we carefully reduced the number of

Markov Chain states so that the model can be computed quickly and efficiently.

First, we choose to ignore the network injection queues and assume that they

are not the bottleneck in the system. Without this assumption we would need

to model infinite queues (a common assumption in simulation), which would

require an infinite number of states in the MC. Second, we assume that the flow

under consideration can be isolated (Section 5.1) from all but the directly inter-

fering flows. Without isolation, the MC would need to represent the states of

all the available network flows (F ) along with the occupancy of all intermediate

buffers in all R routers. With a total number of F flows, there are exactly 2F−1

possible combinations of interfering flows. Each intermediate buffer occupancy

can be in the range [0..∆], requiring (∆ + 1) states. Taking into account that

the number of intermediate buffers is O(R), the upper bound on the number

of states in the MC is an intractable O(2F ∗ ∆R). However, with isolation, we

reduce the number of MC states to O(2Ψα ∗ ∆Pα), where Ψα is the number

of flows interfering with the specific flow of interest α) and Pα is the number

of hops between the source and the destination for that flow. For instance, in

the example discussed in Section 6, F = 30, R = 16, ∆ = 5, max(Ψα) = 2,

and max(Pα) = 6. Thus, the number of states required (for each flow analysis)

without isolation is ≈ 1.64 · 1020 and only 20 (for the most complex case) after

isolation is applied.

Our final assumption is that virtual channels are always available for any

flow. Extending the model to account for this type of head-of-line blocking is

left for future work. Additional further research should address more complex

network topologies and routing schemes (e.g. the model may be generalized to

allow adaptive routing ).

Also as part of our future work, we will investigate the possibility of signifi-

cantly simplifying the Markov chain by relying on MC decomposition methods

developed for industrial flowline analysis [19, 11, 2, 38, 13]. This line of work

promises to expedite the solution of complex NoCs by curbing the exponential

growth in the number of states required to model a large number of interfering
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flows.

Finally, while this paper demonstrated the application of our model for es-

timating throughput and end-to-end delay, the model inherently captures other

network phenomena and parameters. For example, estimating buffer occupancy

levels is a straight-forward extension, that uses the MC representation discussed

in Section 4.1.4.

8. Conclusions

In this paper we introduced a packet-level static timing analysis (STA) for

NoCs. We showed how it allows for a quick and precise evaluation of the per-

formance parameters of a virtual-channel wormhole NoC without using any

simulation techniques. It can handle any topology, link capacities, and buffer

capacities — and unlike existing models, is able to evaluate the performance of

a specific flow in a precise manner. Therefore, it enables per-flow QoS for NoCs.

Our new model allows for a per-flow STA that is orders-of-magnitude faster

than simulation. Ultimately, the objective is for this packet-level STA model to

be used in the inner-loop of NoC optimization tools — and become the packet-

level equivalent of gate-level critical path analysis utilized in CAD tools.
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