MERRIMAC - HIGH-PERFORMANCE AND HIGHLY-EFFICIENT
SCIENTIFIC COMPUTING WITH STREAMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Mattan Erez
May 2007

(© Copyright by Mattan Erez 2007
All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully
adequate in scope and quality as a dissertation for the degree of Doctor of
Philosophy.

(William J. Dally) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully
adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Patrick M. Hanrahan)

I certify that I have read this dissertation and that, in my opinion, it is fully
adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Mendel Rosenblum)

Approved for the University Committee on Graduate Studies.

iii

v

Abstract

Advances in VLSI technology have made the raw ingredients for computation plentiful.
Large numbers of fast functional units and large amounts of memory and bandwidth can
be made efficient in terms of chip area, cost, and energy, however, high-performance com-
puters realize only a small fraction of VLSI’s potential. This dissertation describes the
Merrimac streaming supercomputer architecture and system. Merrimac has an integrated
view of the applications, software system, compiler, and architecture. We will show how
this approach leads to over an order of magnitude gains in performance per unit cost, unit
power, and unit floor-space for scientific applications when compared to common scien-
tific computers designed around clusters of commodity general-purpose processors. The
dissertation discusses Merrimac’s stream architecture, the mapping of scientific codes to
effectively run on the stream architecture, and system issues in the Merrimac supercom-
puter.

The stream architecture is designed to take advantage of the properties of modern
semiconductor technology — very high bandwidth over short distances and very high
transistor counts, but limited global on-chip and off-chip bandwidths — and match them
with the characteristics of scientific codes — large amounts of parallelism and access
locality. Organizing the computation into streams and exploiting the resulting locality
using a register hierarchy enables a stream architecture to reduce the memory bandwidth
required by representative computations by an order of magnitude or more. Hence a
processing node with a fixed memory bandwidth (which is expensive) can support an order
of magnitude more arithmetic units (which are inexpensive). Because each node has much
greater performance (128 double-precision GFLOP/s) than a conventional microprocessor,
a streaming supercomputer can achieve a given level of performance with fewer nodes,

reducing costs, simplifying system management, and increasing reliability.

Acknowledgments

During my years in Stanford my technical writing skills developed significantly, unfor-
tunately, the same cannot be said for more sentimental genres. Below is my unworthy
attempt to acknowledge and thank those who have made my time at Stanford possible,
rewarding, exciting, and fun.

First and foremost I would like to thank my adviser Bill Dally. Bill’s tremendous
support and encouragement were only exceeded by the inspiration and opportunities he
gave me. Bill facilitated my studies at Stanford from even before I arrived, let me help plan
and teach two new classes, and always gave me the freedom to pursue both my research
and extra curricular interests while (mostly) keeping me focused on my thesis. Most
importantly, Bill gave me the chance to be deeply involved in the broad and collaborative
Merrimac project.

I was very lucky that I was able to collaborate and interact with several of Stanford’s
remarkable faculty members as part of my thesis and the Merrimac project. I particularly
want to thank Pat Hanrahan and Mendel Rosenblum for the continuous feedback they
have provided on my research and the final thoughtful comments on this dissertation. Pat
and Mendel, as well as Eric Darve and Alex Aiken, taught me much and always offered
fresh perspectives and insight that broadened and deepened my knowledge.

I want to give special thanks to Ronny Ronen, Uri Weiser, and Adi Yoaz. They gave
me a great start in my career in computer architecture and provided careful and extensive
guidance and help over the years.

This dissertation represents a small part of the effort that was put into the Merrimac
project and I would like to acknowledge the amazing students and researchers with whom
I collaborated. The Merrimac team included Jung Ho Ahn, Nuwan Jayasena, Abhishek
Das, Timothy J. Knight, Francois Labonte, Jayanth Gummaraju, Ben Serebrin, Ujval
Kapasi, Binu Mathew, and Tan Buck. I want to particularly thank Jung Ho Ahn, Jayanth

vi

Gummaraju , and Abhishek Das, with whom I worked most closely, for their thoughts and
relentless infrastructure support. Timothy J. Barth, Massimiliano Fatica, Frank Ham, and
Alan Wray of the Center for Integrated Turbulence Research provided priceless expertise

and showed infinite patience while developing applications for Merrimac.

In my time at Stanford, I had the pleasure to work with many other wonderful fellow
students outside the scope of my dissertation research. I especially want to thank the
members of the CVA group and those of the Sequoia project. Recently, I had the pleasure
to participate in the ambitious efforts of Kayvon Fatahlian, Timothy J. Knight, Mike
Houston, Jiyoung Park, Manman Ren, Larkhoon Lim, and Abhishek Das on the Sequoia
project. Earlier, I spent many rewarding and fun hours with Sarah Harris and Kelly Shaw,
learned much about streaming from Ujval Kapasi, Brucek Khailany, John Owens, Peter
Mattson, and Scott Rixner, and got a taste of a wide range of other research topics from
Brian Towles, Patrick Chiang, Andrew Chang, Arjun Singh, Amit Gupta, Paul Hartke,
John Kim, Li-Shiuan Peh, Edward Lee, David Black-Schaffer, Oren Kerem, and James
Balfour.

I am grateful to the assistance I got over the years from Shelley Russell, Pamela Elliott,
Wanda Washington, and Jane Klickman, and to the funding agencies that supported
my graduate career at Stanford, including the Department of Energy (under the ASCI
Alliances Program, contract LLNL-B523583), the Defense Advanced Research Projects
Agency (under the Polymorphous Computing Architectures Project, contract F29601-00-
2-0085), and the Nvidia Fellowship Program.

In addition to the friends I met through research, I also want to deeply thank the rest
of my friends. Those in Israel who made me feel like I I had never left home whenever
I went for visit, and those at Stanford who have gave me a new home and sustained
me with a slew of rituals (Thursday parties, afternoon coffee, Sunday basketball, movie
nights, ...): Wariya Keatpadungkul, Assaf Yeheskelly, Eilon Brenner, Zvi Kons, Dror
Levin, Ido Milstein, Galia Arad-Blum, Eran Barzilai, Shahar Wilner, Dana Porat, Luis
Sentis, Vincent Vanhoucke, Onn Brandman, Ofer Levi, Ulrich Barnhoefer, Ira Wygant, Uri
Lerner, Nurit Jugend, Rachel Kolodny, Saharon Rosset, Eran Segal, Yuval Nov, Matteo
Slanina, Cesar Sanchez, Teresa Madrid, Magnus Sandberg, Adela Ben-Yakar, Laurence
Melloul, Minja Trjkla, Oren Shneorson, Noam Sobel, Guy Peled, Bay Thongthepairot, Mor
Naaman, Tonya Putnam, Relly Brandman, Calist Friedman, Miki Lustig, Yonit Lustig,
Vivian Ganitsky, and Joyce Noah-Vanhoucke.

vii

Above all T thank my family without whom my years at Stanford would have been
both impossible and meaningless. my parents, Lipa and Mia Erez, and my sister, Mor
Peleg, gave me a wonderful education, set me off on the academic path, encouraged me
in all my choices and made my endeavors possible and simple. My brother in law, Alex
Peleg, who introduced me to the field of computer architecture and my nephew and nieces,
Tal, Adi, and Yael Peleg, whom I followed to Stanford. My love for them has without a

doubt been the single most critical contributor to my success.

viii

Contents

Abstract

Acknowledgments

1 Introduction

1.1 Contributions L
1.2 Detailed Thesis Roadmap and Summary
1.2.1 Background
1.2.2 Merrimac Architecture oL
1.2.3 Streaming Scientific Applications
1.2.4 Unstructured and Irregular Algorithms
1.2.5 Fault Tolerance L
1.2.6 Conclusions

2 Background

2.1 Scientific Applications
2.1.1 Numerical Methods o
2.1.2 Parallelism e
2.1.3 Locality and Arithmetic Intensity
2.1.4 Control e
2.1.5 Data Accesso
2.1.6 Scientific Computing Usage Model

2.2 VLSI Technology
2.2.1 LogicScaling
2.2.2 Bandwidth Scaling oL

X

vi

2.2.3 Latency scaling 15

2.2.4 VLSI Reliability o 16
225 Summary . o.o.o. .o e e e 16
2.3 Trends in Supercomputers Lo 17
2.4 Models and Architectures L 19
2.4.1 The von Neumann Model and the General Purpose Processor 20
2.4.2 Vector Processing 24
2.4.3 The Stream Execution Model and Stream Processors 24
2.4.4 Summary and Comparison 28
Merrimac 30
3.1 Instruction Set Architecture L 32
3.1.1 Stream Instructions oL 33
3.1.2 Kernel Instructions oo 38
3.1.3 Memory Model 39
3.1.4 Exception and Floating Point Models 44
3.2 Processor Architecture 47
3.2.1 Scalar Core 47
3.2.2 Stream Controller o 48
3.2.3 Stream Unit Overview 51
3.24 Compute Cluster 53
3.2.5 Stream Register File 60
3.2.6 Inter-Cluster Switch 64
3.2.7 Micro-controller L 67
3.2.8 Memory System 70
3.3 System Architecture 72
3.3.1 Input/Output and Storage 73
3.3.2 Synchronization and Signalso 74
3.3.3 Resource Sharingo 74
3.4 Area, Power, and Cost Estimates 74
3.4.1 Areaand Power 75
3.4.2 Cost Estimate 81
3.0 Discussion 83

3.5.1 Architecture Comparison 83
3.5.2 System Considerations 92
3.5.3 Software Aspects 94

4 Streaming Scientific Applications 96
4.1 Merrimac Benchmark Suite oL 97
4.1.1 CONV2D e 98
4.1.2 MATMUL e e e 99
4.1.3 FFT3D e 103
4.1.4 StreamFLO 105
4.1.5 StreamFEMo 108
4.1.6 StreamCDPo 111
4.1.7 StreamMD 114
4.1.8 StreamSPAS 117

4.2 Merrimac Software Systemo L Lo 118
4.2.1 Macrocode, Microcode, and KernelC 119
422 StreamC 119
423 Brook 120

4.3 Evaluation 123
4.3.1 Arithmetic Intensity o 123
4.3.2 Sustained Performance 125
4.3.3 Locality Hierarchy 0. 128

5 Unstructured and Irregular Algorithms 130
5.1 Framework for Unstructured Applications 131
5.1.1 Application Parameter Space 131

5.2 Exploiting Locality and Parallelism 136
5.2.1 Localization L 136
5.2.2 Parallelization 143

5.3 Evaluation L 147
5.3.1 Compute Evaluation 147
5.3.2 Storage Hierarchy Evaluation 150
5.3.3 Sensitivity Analysis 152
5.3.4 Performance Impact of MIMD Execution 154

x1

5.4 Discussion and Related Work

6 Fault Tolerance

6.1 Overview of Fault Tolerance Techniques

6.1.1 Software Techniques,

6.1.2 Hardware Techniques

6.1.3 Fault Tolerance for Superscalar Architectures

6.2 Merrimac Processor Fault Tolerance

6.2.1 Fault Susceptibility oo L

6.2.2 Fault-Tolerance Scheme
6.2.3 Recovery from Faults

6.3 Evaluation. L
6.3.1 Methodology

6.3.2 Matrix Multiplication

6.3.3 StreamMD
6.3.4 StreamFEM

6.4 DISCUSSION e e e

7 Conclusions

7.1 Future Work e

7.1.1 Computation and Communication Tradeoffs

7.1.2 State and Latency Hiding Tradeoffs

7.1.3 Multi-Processor Merrimac Systems

A Glossary

Bibliography

xii

158
160
160
162
163
164
165
166
174
180
181
182
183
184
185

187
189
189
190
192

193

195

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1
6.2
6.3
6.4

Definition of mesh types. L oo 10
Modern supercomputer processor families 17
Stream register file parameters L. 61
Kernel Software Pipeline Operation Squash Conditions. 70
Summary of area and power estimates 75
Area and power model parameters 77
Rough per-node budgeto 82
Merrimac and Cell performance parameters. 87
Key parameter comparison of three GPP cores and Merrimac 91
Key parameter comparison of special-purpose cores and Merrimac 92
Merrimac evaluation benchmark suite.o 0oL 97
Expected best arithmetic intensity values for StreamFEM 112
Merrimac arithmetic intensity evaluation 125
Merrimac performance evaluation summary 126
FFT3D performance compassion 127
Merrimac evaluation locality summary 128
Properties of the unstructured and irregular Merrimac benchmarks 133
Machine parameters for evaluation of unstructured mapping 147
Area and AVF of Merrimac components 166
Expected SER contribution with no fault tolerance 166
Stream execution unit fault detection performance and overhead 172
Summary of fault-detection schemes. 173

xiii

6.5
6.6
6.7

7.1

Evaluation of MATMUL under the five reliability schemes. 182
Evaluation of StreamMD under the four applicable reliability schemes. . . . 183
Evaluation of StreamFEM under the four applicable reliability schemes. . . 184

Summary of Merrimac advantages over Pentium 4. 188

Xiv

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2

IMustration of mesh types. Lo 10
Computational phases limit TLP and locality 11
Sketch of canonical general-purpose, vector, and stream processors 23
Stream flow graph oL 27
Stream level software controlled latency hiding 32
Example usage of stream instructions 34
Stream memory operation access modeso 36
Kernel VLIW instruction format. 38
Mapping virtual addresses to physical addresses. 41
Components of the Merrimac Processor 47
Stream controller block diagram. o0 49
The locality hierarchy of the Merrimac processor 02
Internal organization of a compute cluster. 54
MULADD local register file organization. 55
Accelerator unit for iterative operations (ITER). 58
Stream register file organizationo 62
Inter-cluster data network o Lo o 65
Micro-controller architecture Lo oo 68
Kernel Software Pipelining State Diagram 70
2PFLOP/s Merrimac system 73
Floorplan of the Merrimac processor 76
Floor-plan of Merrimac’s compute cluster. 80
Numerical algorithm and blocking of CONV2D. 99
Straightforward and optimized CONV2D kernel pseudocode. 100

XV

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2

Numerical algorithm and blocking of MATMUL. 102

Depiction of MATMUL hierarchical blocking 103
Blocking of FFT3D in three dimensions 104
Restriction and relaxation in multigrid acceleration. 105
Stencil operators for AT and flux computations in StreamFLO. 106
Stencil operators for restriction and prolongation in StreamFLO. 107
General structure of StreamFLO code. oo 108
Producer-consumer locality in StreamFLO. 109
Structure of StreemFEM computation. 110
Pseudocode for StreamFEM. L0000 111
Sample CDP mesh 113
Pseudocode for StreamCDP structure., 114
Adaptive mesh refinement on CDPmesh 115
Pseudocode for StreamMD.o 117
StreamSPAS CSR storage format. 118
StreamSPAS algorithm pseudocode. 118
Overall plan for optimizing Brook compiler. 124
Pseudocode for canonical unstructured irregular computation 132
Neighbor per node distributions of irregular unstructured mesh datasets . . 134
Pseudocode for nDR processing 137
Pseudocode for DR processing Lo oo 139
Pseudocode for DR algorithm oo, 140
Locality in the unstructured FEM and CDP datasets 141
Locality in the unstructured CDP and MD datasets 142
Overhead of PAD irregular parallelization scheme 144
Pseudocode for COND parallelization method 146
Computation cycle evaluation of unstructured benchmarks 148
Performance of unstructured codes with realistic memory system 151
Performance impact of localization increasing reordering 153
Computation cycle count for StreamMD PAD technique 154
SER contribution breakdown, before and after ECC on large arrays. 168
SER contribution breakdown, with ECC only and with logic as well. 170

xXvi

6.3
6.4
6.5
6.6
6.7

Mirrored cluster hardware arrangement. 171

0-order piecewise approximation of the reliability function. 177
Expected slowdown sensitivity to the MTBF 179
Expected slowdown sensitivity to the checkpoint interval 180
Expected slowdown due to hard faults. 181

xvil

xviil

Chapter 1

Introduction

Most scientific computers today are designed using general purpose processors . A typical
system is a cluster of general purpose processors (GPPs) and an interconnection network
for communication between the GPPs. The appeal of such designs is that little, if any,
processor architecture development and VLSI chip design are necessary. Examples range
from systems that rely entirely on custom, off the shelf parts (COTS) [147], through sys-
tems with COTS processors and custom interconnect [36, 162], to systems with a custom
processor based on an existing GPP architecture [93]. The downside of the COTS philos-
ophy is that the priority of the GPP architecture and design are not scientific applications
and algorithms, leading to 1 — 2 orders of magnitude gaps in the price/performance, pow-

er /performance, and floor-space/performance of the system compared to the potential of

a tailored architecture and processor, as detailed in Chapters 2—-3.

The potential of VLSI stems from the large number of devices that can be placed on
a single chip. In 90nm technology, for example, over 200 of 64-bit floating point units
(FPUs) fit on an economical 12 x 12mm die. The limit on exploiting this potential for
inexpensive computation is bandwidth. Sustaining operand and instruction throughput
to a very large number of functional units is challenging because bandwidth on modern
technology quickly decreases with the distance information must traverse [38, 67]. This
challenge is not met by current GPP designs, which provide at most 4 — 8 64-bit floating

point units in 90mm [55, 157, 7] and are not even presented with the challenge.

GPPs target the von Neumann execution model, which emphasizes the need for low

2 CHAPTER 1. INTRODUCTION

data access latency. Therefore, GPP architectures dedicate significant resources to opti-
mize the execution of sequential code and focus on reducing latency as opposed to maxi-
mizing throughput. As a result, only a small number of FPUs are feasible within a given
hardware and power budget.

Scientific applications, on the other hand, are, for the most part, inherently parallel at
both the algorithm and the code implementation levels. An architecture that can exploit
these software characteristics and match them with the strengths of modern VLSI stand
to gain a significant advantage over current scientific computing systems.

This dissertation explores the suitability of the stream architecture model for scientific
computing. Stream processors rely on inherent application parallelism and locality and
exploit them with a large number of FPUs and a deep and rich locality hierarchy. We ex-
tend and tune the architecture for the properties and usage models of scientific computing
in general, and physical modeling in particular. We also estimate the cost of the hardware,
develop a methodology and framework for mapping scientific modeling applications onto
our architecture, measure application performance through simulation, and demonstrate
an order of magnitude or more improvement in cost/performance, and nearly two orders

of magnitude improvements in power/performance and floor-space/performance metrics.

1.1 Contributions

The primary contributions of this dissertation to the field of computer architecture are as

follows:

1. We demonstrate the effectiveness of the stream architecture model for scientific com-
puting and physical modeling and show over an order of magnitude or more im-
provement in cost/performance, and nearly two orders of magnitude improvements

in power /performance and floor-space/performance metrics.

2. We develop a streaming scientific computing architecture that is tuned to the us-
age models of scientific applications and is scalable, high-performance, and highly-
efficient. This includes developing a novel high-throughput arithmetic architecture
that accelerates common complex divide and square root computations and can

handle exceptions without compromising performance.

3. We analyze the features and characteristics of a range of representative physical

1.2. DETAILED THESIS ROADMAP AND SUMMARY 3

modeling applications and develop a methodology and framework for mapping them
onto the stream architecture. The constructs span a large range of properties such as
regular and irregular control flow, structured and unstructured data structures, and

varying degree of arithmetic intensity (the ratio of arithmetic to global bandwidth).

4. We explore the implication of utilizing the highly-efficient stream processor as the
core of the design on system issues such as fault tolerance and develop mechanisms
that combine both software and hardware techniques to ensure acceptable correct-

ness of the application execution.

1.2 Detailed Thesis Roadmap and Summary

1.2.1 Background

In Chapter 2 we provide background on scientific computing systems, modern VLSI tech-
nology, scientific applications, and programming and execution models.

We describe the underlying scientific computation that inspired the applications chosen
for Merrimac including the numerical methods and critical application properties. We
discuss the type and amount of parallelism that is common to scientific applications, the
degree of locality and arithmetic intensity they have, the regularity and irregularity of
control, the style of data access, and the typical throughput-oriented usage model.

We then summarize the properties and scaling of modern VLSI fabrication technology
and identify parallelism, locality, and latency tolerance as the critical aspects that must
be addressed for efficient high performance. We follow by exploring recent trends in su-
percomputers, where a vast majority of systems are based on commodity general-purpose
processor architectures.

We conclude the chapter with a detailed discussion of execution and programming
models and how they affect and interact with the hardware architecture. Specifically, we
discuss the von Neumann model and general-purpose processors, the vector extension of

this model, and the stream execution model and stream processor architecture.

1.2.2 Merrimac Architecture

Chapter 3 describes the processor, system, and instruction-set architectures of the Mer-

rimac Streaming Supercomputer, estimates processor area and power costs, and makes

4 CHAPTER 1. INTRODUCTION

comparisons to alternative architectures.

Merrimac is a stream processor that is specifically tuned to the properties and needs
of scientific applications. Merrimac relies on the stream execution model, where a stream
program exposes the large amounts of data parallelism available in scientific algorithms,
as well as multiple levels of locality. The Merrimac processor exploits the parallelism to
operate a large number of functional units and to hide the long latencies of memory op-
erations. The stream architecture also lowers the required memory and global bandwidth
by capturing short term producer-consumer locality, such as the locality present within a
function call, in local register files (LRF) and long term producer-consumer locality in a

large stream register file (SRF), potentially raising the application’s arithmetic intensity.

A single Merrimac chip is organized as an array of 16 data-parallel compute clusters,
a streaming memory system, an integrated network interface, and a scalar processor for
running control code. Each compute cluster consists of a set of 4 fully pipelined 64-bit
multiply-add FPUs, a set of LRF's totaling 768 words per cluster, and a bank of the SRF
with 8KWords, or 1IMB of SRF for the entire chip. The LRFs are connected to individual
arithmetic units over short wires providing very high bandwidth, and the SRF is aligned
with clusters of functional units so that it only requires local communication as well. We
estimate the Merrimac processor chip to be 145mm? in a 90nm CMOS process, achieve a
peak performance of 128GFLOP /s at the planned 1GHz operating frequency, and dissipate
approximately 65 W using a standard-cell tool chain. A Merrimac system is scalable up
to a 2PFLOP /s 16, 384-node supercomputer.

Another important piece enabling Merrimac’s high performance and efficiency is the
streaming memory system. A single stream memory operation transfers an entire stream,
which is typically many thousands of words long, between memory and the SRF. Mer-
rimac supports both strided access patterns and gathers/scatters through the use of the
stream address generators. The memory system provides high-bandwidth access to a sin-
gle global address space for up to 16,384 nodes, including all scalar and stream execution
units. Each Merrimac chip has a 32KWords cache with a bandwidth of 8 words per cy-
cle (64GB/s), and directly interfaces with the node’s external DRAM and network. The
2GB of external DRAM is composed of 8 Rambus XDR-DRAM channels providing a
peak bandwidth of 64GB/s and roughly 16GB/s, or 2 words per cycle, of random access
bandwidth. Remote addresses are translated in hardware to network requests, and single

word accesses are made via the interconnection network. The flexibility of the addressing

1.2. DETAILED THESIS ROADMAP AND SUMMARY 5

modes, and the single-word remote memory access capability simplifies the software and
eliminates the costly pack/unpack routines common to many parallel architectures. The
Merrimac memory system also supports floating-point and integer streaming scatter-add

atomic read-modify-write operations across multiple nodes at full cache bandwidth.

1.2.3 Streaming Scientific Applications

In Chapter 4 we focus on the applications. We explain how to construct a streaming sci-
entific application in general, present the Merrimac benchmark suite and discuss how each
program is mapped to the Merrimac hardware, describe the Merrimac software system,
and evaluate benchmark performance.

The Merrimac benchmark suite is composed of 8 programs that were chosen to rep-
resent the type of complex multi-physics computations performed in the Stanford Center
for Integrated Turbulence Simulation. In addition to being inspired by actual scientific
codes, the benchmarks span a large range of the properties described in Chapter 2.

We discuss the mapping of the codes with regular control in detail in this chapter and
deffer the in-depth discussion of irregular codes to Chapter 5. We describe the numerical
algorithm and properties of each benchmark, including developing models for the expected
arithmetic intensity. We follow up by collecting execution results using the cycle-accurate
Merrimac simulator.

The overall results show that the benchmark programs utilize the Merrimac hardware
features well, and most achieve a significant (greater than 35%) fraction of peak perfor-
mance. When possible, we give a direct comparison of Merrimac to a state of the art
general purpose processor, and show speedup factors greater than 15 over a 3.6GHz Intel

Pentium 4.

1.2.4 Unstructured and Irregular Algorithms

Chapter 5 examines the execution and mapping of unstructured and irregular mesh and
graph codes. Unstructured mesh and graph applications are an important class of numeri-
cal algorithms used in the scientific computing domain, which are particularly challenging
for stream architectures. These codes have irregular structures where nodes have a vari-
able number of neighbors, resulting in irregular memory access patterns and irregular
control. We study four representative sub-classes of irregular algorithms, including finite-

element and finite-volume methods for modeling physical systems, direct methods for

6 CHAPTER 1. INTRODUCTION

n-body problems, and computations involving sparse algebra. We propose a framework
for representing the diverse characteristics of these algorithms, and demonstrate it using
one representative application from each sub-class. We then develop techniques for map-
ping the applications onto a stream processor, placing emphasis on data-localization and

parallelizations.

1.2.5 Fault Tolerance

In Chapter 6 we look at the growing problem of processor reliability. As device scales
shrink, higher transistor counts are available while soft-errors, even in logic, become a
major concern. Stream processors exploit the large number of FPUs possible with modern
VLSI processes and, therefore, their reliability properties differ significantly from control-
intensive general-purpose processors. The main goal of the proposed schemes for Merrimac
is to conserve the critical and costly off-chip bandwidth and on-chip storage resources,
while maintaining high peak and sustained performance. We achieve this by allowing for
reconfigurability and relying on programmer input. The processor is either run at full
peak performance employing software fault-tolerance methods, or reduced performance
with hardware redundancy. We present several methods, analyze the properties and costs

of the methods in general, and examine three case studies in detail.

1.2.6 Conclusions

Finally, Chapter 7 concludes the dissertation and briefly describes avenues of potential

future research based on the new insights gained.

Chapter 2

Background

Since the early days of computing scientific applications have pushed the edge of both
hardware and software technology. This chapter provides background on scientific ap-
plications, properties of modern semi-conductor VLSI processes, and current trends in
scientific computing platforms. The discrepancy between modern VLSI properties and
current platforms motivates a new architecture that takes greater advantage of the char-
acteristics of the applications to achieve orders of magnitude improvements in performance

per unit cost and unit power.

2.1 Scientific Applications

The applications used in this thesis are inspired by the complex physical modeling prob-
lems that are the focus of the Center for Integrated Turbulence Simulations (CITS). CITS
is a multidisciplinary organization established in July 1997 at Stanford University to de-
velop advanced numerical simulation methodologies that will enable a new paradigm for
the design of complex, large-scale systems in which turbulence plays a controlling role.
CITS is supported by the Department of Energy (DOE) under its Advanced Simulation
and Computing (ASC), and is currently concentrating on a comprehensive simulation of
gas turbine engines. The codes being developed span a large range of numerical methods
and execution properties and address problems in computational fluid dynamics (CFD),
molecular dynamics (MD), and linear algebra operations. An introduction to the proper-
ties of this type of application is given below, and a more comprehensive discussion appears

in Chapter 4. We will summarize the numerical methods used and then briefly describe

8 CHAPTER 2. BACKGROUND

four categories of application execution properties that will be important to understand
and motivate the Merrimac architecture. These properties relate to parallelism, control,
data access, and locality. Locality can be expressed as arithmetic intensity, which is the
ratio between the number of floating point operations performed by the application and

the number of words that must be transferred to and from external DRAM.

2.1.1 Numerical Methods

The task of the scientific applications discussed in the context of this thesis relates to
the problem of modeling an evolving physical system. There are two basic ways of rep-
resenting systems: particles and fields. In a particle based system, the forces acting on
each particle due to interactions with the system are directly computed and applied by
solving a system of ordinary differential equations (ODEs). In a system represented with
fields, a set of partial differential equations (PDEs) is solved to determine how the system
evolves. Algorithms that use a combination of both particle and field methods will not
be discussed. An introduction to the various methods discussed here is available in basic

scientific computing and numerical analysis literature (e.g., [62]).

2.1.1.1 Particle Methods

A typical example of a particle method is a m-body simulation, which is a system com-
posed of interacting particles that obey Newton’s laws of motion. The forces that the
particles exert on each other depend on the modeling problem. For example, in molecular
dynamics the forces include long range electrostatic forces, medium range van der Waals
forces, and short range molecular bonds. All forces in a Newtonian system follow the
superposition principle, which states that the contribution of a given particle to the total
force is independent of all other particles. Therefore, particle methods typically follow

three computational phases:

1. Compute partial forces acting on each particle based on the current time step posi-
tions of all interacting particles. Partial forces can be computed in parallel because

of superposition.

2. Perform a reduction of the partial forces into the total force for each particle. Re-

duction operations can also be performed in parallel.

2.1. SCIENTIFIC APPLICATIONS 9

3. Update each particle’s state variables (e.g., position and velocity) based on current

values and computed forces and advance the time step.

2.1.1.2 Field Based Methods

In order to represent and solve the PDEs associated with a system represented as a field,
the space must be discretized. This is done using a geometric mesh that approximates
the system with interpolation performed for values that are not at mesh nodes. The mesh
is formed by polyhedral elements, which share vertices and faces. A mesh can be either
structured, unstructured, or block structured, as well as regqular or irregular as defined in
Table 2.1 and illustrated in Figure 2.1. The formulation of the PDEs on the mesh typically
follows a finite difference method, finite volume method (FVM), or finite element method
(FEM). Two of the applications described in detail in Chapter 4 are FVM and FEM codes.
Regardless of the formulation method used, the solution to the PDEs is computed using
either an explicit or an implicit scheme.

With an explicit scheme, which performs integration forward in time, the solution is
computed iteratively across time steps and only information from a local neighborhood of
each element is used. As with particle methods, the contribution of each element or node
to the field is independent of other elements and the superposition principle applies. A

typical computation proceeds as follows:

1. Process all nodes by gathering values from neighboring nodes and updating the

current node. This can be done in parallel because of superposition.
2. Apply a parallel reduction to the contributions from neighboring nodes.

3. Potentially repeat steps 1 and 2 for multiple variables and to maintain conservation

laws.

4. Update values and advance to next time step. Each node can be processed indepen-

dently and in parallel.

Implicit schemes involve solving the set of PDEs at every time step of the application,
integrating both forward and backward in time simultaneously. This typically enables
coarser time steps, but requires global transformations, such as matrix inversion using
linear algebra operators, spectral schemes, or multi-grid acceleration. Parallel implemen-

tations exist for all the transformations above, and Chapter 4 discusses example codes.

10 CHAPTER 2. BACKGROUND

regular all elements in the mesh are geometrically and topologically identical as
in a Cartesian mesh

irregular element geometry is arbitrary

structured all elements in mesh are topologically identical (structured meshes are

commonly synonymous with regular meshes)

unstructured arbitrary mesh element topology
block structured | mesh is composed out of blocks of structured sub-meshes

Table 2.1: Definition of mesh types.

structured-regular structured-irregular unstructured block unstructured

Figure 2.1: Illustration of mesh types.

2.1.2 Parallelism

As discussed above, scientific modeling applications have a large degree of parallelism as
the bulk of the computation on each element in the dataset can be performed indepen-
dently. This type of parallelism is known as data-level parallelism (DLP) and is inherent
to the data being processed. In the numerical methods used in CITS applications DLP
scales with the size of the dataset and is the dominant form of parallelism in the code.

However, other forms of parallelism can also be exploited.

Instruction-level parallelism (ILP) is fine-grained parallelism between arithmetic op-
erations within the computation of a single data element. Explicit method scientific ap-
plications tend to have 10 — 50 arithmetic instructions that can be executed concurrently
because of the complex functions that implement the physical model. We found that
the building blocks of implicit methods tend to have only minimal amounts of ILP (see
Chapter 4).

Task-level parallelism is coarse-grained parallelism between different types of compu-
tation functions. TLP is most typically exploited as pipeline parallelism, where the output
of one task is used as direct input to a second task. We found TLP to be very limited in
scientific applications and restricted to different phases of computation. A computational
phase is defined as the processing of the entire dataset with a global synchronization point

at the end of the phase (Figure 2.2). Due to the phase restriction on TLP it cannot be

2.1. SCIENTIFIC APPLICATIONS 11

&haseo phase0 phase0

S p—
‘ID

hasel|

b —
G

hase3|

‘E

Figure 2.2: Computational phases limit TLP by requiring a global synchronization point.
Tasks from different phases cannot be run concurrently, limiting TLP to 5, even though
there are 14 different tasks that could have been pipelined. The global communication
required for synchronization also restricts long term producer-consumer locality.

exploited for concurrent operations in the scientific applications we examined. Additional

details are provided in Chapter 4 in the context of the Merrimac benchmark suite.

2.1.3 Locality and Arithmetic Intensity

Locality in computer architecture is classified into spatial and temporal forms. Spatial
locality refers to the likelihood that two pieces of data that are close to one another in the
memory address space will both be accessed within a short period of time. Spatial locality
affects the performance of the memory system and depends on the exact layout of the data
in the virtual memory space as well as the mapping of virtual memory addresses to physical
locations. It is therefore a property of a hardware and software system implementation
more than a characteristic of the numerical algorithm.

An application displays temporal locality if a piece of data is accessed multiple times
within a certain time period. Temporal locality is either a value being reused in multiple
arithmetic operations, or producer-consumer locality in which a value is produced by one
operation and consumed by a second operation within a short time interval.

With the exception of sparse linear algebra (see Section 4.1.8), all applications we
studied display significant temporal locality. Data is reused when computing interactions
between particles and between mesh elements (see Chapter 5) and in dense algebra and

Fourier transform calculations (see Chapter 4). Abundant short term producer-consumer

12 CHAPTER 2. BACKGROUND

locality is available between individual arithmetic operations due to the complex compu-
tation performed on every data element. This short term locality is also referred to as
kernel locality. Long term producer-consumer locality is limited due to the computational
phases, which require a global reduction that breaks locality as depicted in Figure 2.2.
Locality can be increased by using domain decomposition methods, as discussed in Sub-

section 5.2.1.

2.1.3.1 Arithmetic Intensity

Arithmetic intensity is an important property that determines whether the application is
bandwidth bound or compute bound. It is defined as the number of arithmetic operations
that is performed for each data word that must be transferred between any two storage
hierarchy levels (e.g., ratio of operations to loads and stores to registers and ratio of com-
putation to off-chip to on-chip memory data transfers). We typically refer to arithmetic
intensity as the ratio between arithmetic operations and words transferred between on-
chip and off-chip memory. When arithmetic intensity is high the application is compute
bound and is not limited by bandwidth between storage levels.

Arithmetic intensity is closely related to temporal locality. When temporal locality is
high, either due to reuse or producer-consumer locality, a small number of words crosses
hierarchy levels and arithmetic intensity is high as well. As with spatial locality, arithmetic
intensity is a property of the system and depends on the implementation, storage capacity,
and the degree to which temporal locality is exploited. Chapter 3 details how the Merrimac
stream processor provides architectural support for efficient utilization of locality leading

to high arithmetic intensity and area and power efficient high performance.

2.1.4 Control

Control flow in scientific applications is structured and composed of conditional statements
and loops. These control structures can be classified into regular control, which depends
on the algorithm structure and is independent of the data being processed, and irreqular
control that depends on the data being processed.

We observe that conditional structures are regular or can be treated as regular due to
their granularity. In our applications, conditional IF statements tend to be either very
fine grained and govern a few arithmetic operations, or very coarse grained and affect

the execution of entire computational phases. Fine-grained statements can be if converted

2.2. VLSI TECHNOLOGY 13

(predicated) to non-conditional code that follows both execution paths, and coarse-grained
control can simply be treated dynamically with little affect on the software and hardware
systems (see Chapter 4).

With regard to loops, structured mesh codes and dense linear operators rely entirely
on FOR loops and exhibit regular control. Unstructured mesh codes and complex particle
methods, on the other hand, feature WHILE loops and irregular control. A detailed discus-

sion of regular and irregular looping appears in Chapter 4 and Chapter 5 respectively.

2.1.5 Data Access

Similarly to the control aspects, data access can be structured or unstructured. Structured
data access patterns are determined by the algorithm and are independent of the data
being processed, while unstructured data access is data dependent. Chapter 3 details
Merrimac’s hardware mechanisms for dealing with both access types, and Chapters 4 and

5 show how applications utilize the hardware mechanisms.

2.1.6 Scientific Computing Usage Model

Scientific computing, for the most part, relies on expert programmers that write throughput-
oriented codes. A user running a scientific application is typically guaranteed exclusive
use of physical resources encompassing hundreds or thousands of compute nodes for a long
duration (hours to weeks). Therefore, correctness of execution is critical and strong fault
tolerance, as well as efficient exception handling are a must. Additionally, most scien-
tific algorithms rely on high precision arithmetic of at least a double 64-bit floating point
operations with denormalization support as specified by the IEEE 754 standard [72].
Because expert programmers are involved system designers have some freedom in
choosing memory consistency models and some form of relaxed consistency is assumed.
However, emphasis is still placed on programmer productivity and hardware support for
communication, synchronization, and memory namespace management is important and

will be discussed in greater detail in Chapter 3.

2.2 VLSI Technology

Modern VLSI fabrication processes continue to scale at a steady rate, allowing for large

increases in potential arithmetic performance. For example, within a span of less about 15

14 CHAPTER 2. BACKGROUND

years the size of a 64-bit floating point unit (FPU) has decreased from ~ 20mm? in the 1989
custom designed, state of the art Intel i860 processor to ~ 0.5mm? in today’s commodity
90nm technology with a standard cell ASIC design. Instead of a single FPU consuming
much of the die area, hundreds of FPUs can be placed on a 12mm x 12mm chip that can be
economically manufactured for $100. Even at a conservative operating frequency of 1GHz
a 90nm processor can achieve a cost of 64-bit floating-point arithmetic of less than $0.50
per GFLOP/s. The challenges is maintaining the operand and instruction throughput
required to keep such a large number of FPUs busy, in the face of smaller logic and a

growing number of functional units, decreasing global bandwidth, and increasing latency.

2.2.1 Logic Scaling

The already low cost of arithmetic is decreasing rapidly as technology improves. We
characterize VLSI CMOS technology by its minimum feature size, or the minimal drawn
gate length of transistors — L. Historical trends and future projections show that L
decreases at about 14% per year [148]. The cost of a GFLOP/s of arithmetic scales as L3
and hence decreases at a rate of about 35% per year [38]. Every five years, L is halved,
four times as many FPUs fit on a chip of a given area, and they operate twice as fast,
giving a total of eight times the performance for the same cost. Of equal importance, the
switching energy also scales as L3 so every five years, we get eight times the arithmetic
performance for the same power. In order to utilize the increase in potential performance,
the applications that run on the system must display enough parallelism to keep the FPUs
In order to keep the large number of FPUs busy. As explained above in Subsection 2.1,
demanding scientific applications have significant parallelism that scales with the dataset

being processed.

2.2.2 Bandwidth Scaling

Global bandwidth, not arithmetic is the factor limiting the performance and dominating
the power of modern processors. The cost of bandwidth grows at least linearly with
distance in terms of both availability and power [38, 67]. To explain the reasons, we use
a technology insensitive measure for wire length and express distances in units of tracks.
One track (or 1x) is the minimum distance between two minimum width wires on a chip.
In 90nm technology, 1x ~ 315nm, and x scales at roughly the same rate at L. Because

wires and logic change together, the performance improvement, in terms of both energy

2.2. VLSI TECHNOLOGY 15

and bandwidth, of a scaled local wire (fixed x) is equivalent to the improvements in logic
performance. However, when looking at a fixed physical wire length (growing in terms
of x), available relative bandwidth decreases and power consumption increases. Stated
differently, we can put ten times as many 10"y wires on a chip as we can 10"y wires,
mainly because of routing and repeater constraints. Just as importantly, moving a bit of
information over a 10"y wire takes only lioth the energy as moving a bit over a 10" 1y wire,
as energy requirements are proportional to wire capacitance and grows roughly linearly
with length. In a 90nm technology, for example, transporting the three 64-bit operands for
a 50pJ floating point operation over global 3 x 10%y wires consumes about 320pJ, 6 times
the energy required to perform the operation. In contrast, transporting these operands
on local wires with an average length of 3 x 10%y takes only 3pJ, and the movement is
dominated by the energy cost of the arithmetic operation. In a future 45nm technology,
the local wire will still be 3 x 10%y, but the same physical length of global wires will grow
by a factor of two increasing its relative energy cost and reducing its relative bandwidth.
The disparity in power and bandwidth is even greater for off-chip communication, because
the number of pins available on a chip does not scale with VLSI technology and the power
required for transmission scales slower than on-chip power. As a result of the relative
decrease in global and off-chip bandwidth, locality in the application must be extensively
exploited to increase arithmetic intensity and limit the global communication required to

perform the arithmetic computation.

2.2.3 Latency scaling

Another important scaling trend is the increase in latency for global communication when
measured in clock cycles. Processor clock frequency also scales with technology at 17% per
year, but the delay of long wires, both on-chip and off-chip is roughly constant. Therefore,
longer and longer latencies must be tolerated in order to maintain peak performance. This
problem is particularly taxing for DRAM latencies, which today measure hundreds of clock
cycles for direct accesses, and thousands of cycles for remote accesses across a multi-node
system. Tolerating latency is thus a critical part of any modern architecture and can be
achieved through a combination of exploiting locality and parallelism. Locality can be
utilized to decrease the distance operands travel and reduce latency, while parallelism can

be used to hide data access time with useful arithmetic work.

16 CHAPTER 2. BACKGROUND

2.2.4 VLSI Reliability

While the advances and scaling of VLSI technology described above allow for much higher
performance levels on a single chip, the same physical trends lead to an increase in the sus-
ceptibility of the chips to faults and failures. In particular, soft errors, which are transient
faults caused by noise or radiation are of increasing concern. The higher susceptibility
to soft errors is the result of an increase in the number of devices on each chip that can
be affected and the likelihood that radiation or noise can cause a change in the intended
processor state. As the dimensions of the devices shrink, the charge required to change a
state decreases quadratically, significantly increasing the chance of an error to occur. As
reported in [149] this phenomenon is particularly visible in logic circuits with suscepti-
bility rates increasing exponentially over the last few VLSI technology generations. The
growing problem of soft errors in logic circuits on a chip is compounded in the case of
compute-intensive processors such as Merrimac by the fact that a large portion of the die

area is dedicated to functional units.

2.2.5 Summary

Modern VLSI technology enables unprecedented levels of performance on a single chip, but
places strong demands on exploiting locality and parallelism available at the application

level:

e Parallelism is necessary to provide operations for tens to hundreds of FPUs on a

single chip and many thousands of FPUs on a large scale supercomputer.

e Locality is critical to raise the arithmetic intensity and bridge the gap between the
large operand and instruction throughput required by the many functional units
(=~ 10TB/s today) with available global on-chip and off-chip bandwidth (~ 10 —
100GBytes/s).

e A combination of locality and parallelism is needed to tolerate long data access

latencies and maintain high utilization of the FPUs.

When an architecture is designed to exploit these characteristics of the application
domain it targets, it can achieve very high absolute performance with efficiency. For
example, the modern R580 graphic processor of the ATI 1900XTX [10] relies on the
characteristics of the rendering applications to achieve over 370GFLOP /s (32-bit non

2.3. TRENDS IN SUPERCOMPUTERS 17

Processor Top | Top | Best Peak $ per W per VLSI
Family Arch | 500 | 20 | Rank | GFLOP/s | GFLOP/s | GFLOP/s Node
Intel P4 Xeon GPP | 265 1 6 6.8 22 13 90nm
AMD Opteron | GPP | 80 4 7 9.6 23 11 90nm
Intel Itanium 2 | GPP | 37 3 4 6.4 62 16 130nm
IBM Powerbh GPP 35 2 3 4.4 15 11 90nm
IBM BG/L GPP | 25 9 1 5.6 22 2 130nm
NEC SX-6 / VP 4 1 10 8/ 50 / 150 /
SX-8 16 25 90nm
Cray X1E VP 4 0 22 4.5 67 27 110nm
ATI R580 GPU — — 370 1 0.3 90nm
(32-bit) | (32-bit) (32-bit)
Merrimac SP — — 128 1.1 0.3 90nm
IBM Cell SP — — 230 1 0.2 90nm
(32-bit) | (32-bit) (32-bit)

Table 2.2: Modern processor families in use by supercomputers based on the June 2006
“Top 500” list. Numbers are reported for peak performance and do not reflect various
features that improve sustained performance. Additional experimental processors for com-
parison.

IEEE compliant) costing less than $1 per GFLOP /s and 0.3W per GFLOP/s. The area
and power estimates for Merrimac place it at even higher efficiencies and performance

levels as will be discussed in Chapter 3.

2.3 Trends in Supercomputers

Modern scientific computing platforms (supercomputers) are orders of magnitude less ef-
ficient than the commodity VLSI architectures mentioned above. The reason is that they
rely on processor architectures that are not yet tuned to the developing VLSI constraints.
Table 2.2 lists modern processors used in current supercomputers based on the June 2006
“Top 500” supercomputer list [163] along with their peak performance, efficiency numbers,
and popularity as a scientific processing core. The table only reports peak performance
numbers and does not take into account features and capabilities designed to improve sus-
tained performance. Such features, including large caches and on-chip memory systems,
make a significant difference to cost and power. The estimate for the monetary cost is
based on an estimate of $1 per mm? of die area. We can observe three important trends
in current supercomputing systems.

First, today’s supercomputers are predominantly designed around commodity general

purpose processors (GPPs) that target desktop and server applications. Over 75% of all

18 CHAPTER 2. BACKGROUND

systems use an Intel Xeon [73, 145], AMD Opteron [7, 145], or IBM Power5/PPC970
processor [71]. Contemporary GPP architectures are unable to use more than a few
arithmetic units because they are designed for applications with limited parallelism and
are hindered by a low bandwidth memory system. Their main goal is to provide high
performance for mostly serial code that is highly sensitive to memory latency and not
bandwidth. This is in contrast to the need to exploit parallelism and locality as discussed

above in Section 2.2.

Second, vector processors are not very popular in supercomputers and only the NEC
Earth Simulator, which is based on the 0.15um SX-6 processor [90], breaks into the top 20
fastest systems at number 10. The main reason is that vector processors have not adapted
to the shifts in VLSI costs similarly to GPPs. The SX-6 and SX-8 processors [116] still pro-
vide formidable memory bandwidth (32GBytes/s) enabling high sustained performance.
The Cray X1E [35, 127] is only used in 4 of the Top500 systems.

Third, power consumption is starting to play a dominant role in supercomputer de-
sign. The custom BlueGene/L processor [21], which is based on the embedded low-power
PowerPC-440 core, is used in nine of the twenty fastest systems including numbers one
and two. As shown in Table 2.2, this processor is 5 times more efficient in performance
per unit power than its competitors. However, its power consumption still exceeds that

of architectures that are tuned for today’s VLSI characteristics by an order of magnitude.

Because current supercomputers under-utilize VLSI resources, many thousands of
nodes are required to achieve the desired performance levels. For example, the fastest
computer today is a IBM BlueGene/L system with 65,536 processing nodes with a peak
of only 367TFLOP /s, whereas a more effective use of VLSI can yield similar performance
with only about 2,048 nodes. A high node count places pressure on power, cooling, and
system engineering. These factors dominate system cost today and significantly increase
cost of ownership. Therefore, tailoring the architecture to the scientific computing do-
main and utilizing VLSI resources effectively can yield orders of magnitude improvement
in cost. The next chapter explore one such design, the Merrimac Streaming Supercom-
puter, and provides estimates of Merrimac’s cost and a discussion of cost of ownership

and comparisons to alternative architectures.

2.4. MODELS AND ARCHITECTURES 19

2.4 Execution Models, Programming Models, and Archi-

tectures

To sustain high performance on current VLSI processor technology an architecture must
be able to utilize multiple FPUs concurrently and maintain a high operand bandwidth
to the FPUs by exploiting parallelism and locality (locality refers to spatial, temporal,
and producer-consumer reuse). Parallelism is used to ensure enough operations can be
concurrently executed on the FPUs and also to tolerate data transfer and operation laten-
cies by overlapping computations and communication. Locality is needed to enable high
bandwidth data supply by allowing efficient wire placement and to reduce latencies and
power consumption by communicating over short distances as much as possible.

GPPs, vector processor (VP), and stream processors (SP) are high-performance archi-
tectures, but each is tuned for a different execution model. The execution model defines
an abstract interface between software and hardware, including control over operation ex-
ecution and placement and movement of operands and state. The GPPs support the von
Neumann execution model, which is ideal for control-intensive codes. VPs use a vector
extension of the von Neumann execution model and put greater emphasis on DLP. SPs
are optimized for stream processing and require large amounts of DLP.

Note that many processors can execute more than one execution model, yet their
hardware is particularly well suited for one specific model. Additionally, the choice of
programming model can be independent of the target execution model and the compiler
is responsible for appropriate output. However, current compiler technology limits the
flexibility of matching a programming model to multiple execution models. Similarly to
an execution model, a programming model is an abstract interface between the programmer
and the software system and allows the user to communicate information on data, control,
locality, and parallelism.

All three, von Neumann, vector, and stream execution models can support multiple
threads of control. A discussion of the implications of multiple control threads on the
architectures is left for future work. An execution model that does not require a control
thread is the dataflow execution model [13, 126]. No system today uses the dataflow
model, but the WaveScalar [159] academic project is attempting to apply dataflow to
conventional programming models.

In the rest of the section we present the three programming models and describe the

20 CHAPTER 2. BACKGROUND

general traits of the main architectures designed specifically for each execution model, the
GPP (Subsection 2.4.1), vector processor (Subsection 2.4.2), and the Stream Processor

(Subsection 2.4.3). We also summarize the similarities and differences in Subsection 2.4.4.

2.4.1 The von Neumann Model and the General Purpose Processor

The von Neumann execution model is interpreted today as a sequence of state-transition
operations that process single words of data [13]. The implications are that each opera-
tion must wait for all previous operations to complete before it can semantically execute
and that single-word granularity accesses are prevalent leading to the von Neumann bot-
tleneck. This execution model is ideal for control-intensive code and has been adopted
and optimized for by GPP hardware. To achieve high performance, GPPs have complex
and expensive hardware structures to dynamically overcome this bottleneck and allow for
concurrent operations and multi-word accesses. In addition, because of the state-changing
semantics, GPPs dedicate hardware resources to maintaining low-latency data access in
the form of multi-level cache hierarchies.

Common examples of GPPs are the x86 architecture from Intel [73] and AMD [7],
PowerPC from IBM [71], and Intel’s Itanium [157] (see Table 2.2).

2.4.1.1 General Purpose Processor Software

GPPs most typically execute code expressed in a single-word imperative language such
as C or Java following the von Neumann style and compiled to a general-purpose scalar
instruction set architecture (scalar ISA) implementing the von Neumann execution model.
Modern scalar ISAs includes two mechanisms for naming data: a small number of registers
allocated by the compiler for arithmetic instruction operands, and a single global memory
addressed with single words or bytes. Because of the fine granularity of operations ex-
pressed in the source language the compiler operates on single instructions within a data
flow graph (DFG) or basic blocks of instructions in a control flow graph (CFG) This style
of programming and compilation is well suited to codes with arbitrary control structures,
and is a natural way to represent general-purpose control-intensive code. However, the
resulting low-level abstraction, lack of structure, and most importantly the narrow scope
of the scalar ISA, limits current commercial compilers to produce executables that contain
only small amounts of parallelism and locality. For the most part, hardware has to extract

additional locality and parallelism dynamically.

2.4. MODELS AND ARCHITECTURES 21

Two recent trends in GPP architectures are extending the scalar ISA with wide words
for short-vector arithmetic [129, 6, 113, 160] and allowing software to control some hard-
ware caching mechanisms through prefetch, allocation, and invalidation hints. These new
features, aimed at compute-intensive codes, are a small step towards alleviating the bot-
tlenecks through software by increasing granularity to a few words (typically 16-byte short
vectors, or two double-precision floating point numbers, for arithmetic and 64-byte cache
line control). However, taking advantage of these features is limited to a relatively small
number of applications, due to the limitations of the imperative programming model. Au-
tomatic analysis is currently limited to for loops that have compile-time constant bounds
and where all memory accesses are an affine expression of loop induction variables [102].

Alternative programming models for GPPs that can, to a degree, take advantage
of the coarser-grained ISA operations include cache oblivious algorithms [53, 54] that
better utilize the cache hierarchy, and domain specific libraries. Libraries may either be
specialized to a specific processor (e.g., Intel Math Kernel Library [74]) or automatically
tuned via a domain-specific heuristic search (e.g., ATLAS [169] and FFTW [52]).

A more flexible and extensive methodology to delegate more responsibility to software

is the stream execution model, which can also be applied to GPPs [58].

2.4.1.2 General Purpose Processor Hardware

A canonical GPP hardware architecture consisting of an execution core with a control
unit, multiple FPUs, a central register file, and a memory hierarchy with multiple levels
of cache and a performance enhancing hardware prefetcher is depicted in Figure 2.3(a).
Modern GPPs contain numerous other support structures, which are described in detail
in [64].

The controller is responsible for sequentially fetching instructions according to the or-
der encoded in the executable. The controller then extracts parallelism from the sequence
of instructions by forming and analyzing a data flow graph (DFG) in hardware. This is
done by dynamically allocating hardware registers' to data items named by the compiler
using the instruction set registers, and tracking and resolving dependencies between in-
structions. The register renaming and dynamic scheduling hardware significantly increase

the processor’s complexity and instruction execution overheads. Moreover, a typical basic

!Compiler based register allocation is used mostly as an efficient way to communicate the DFG to the
hardware

22 CHAPTER 2. BACKGROUND

block does not contain enough parallelism to utilize all the FPUs and tolerate the pipeline
and data access latencies, requiring the control to fetch instruction beyond branch points
in the code. Often, instructions being fetched are dependent on a conditional branch whose
condition has not yet been determined requiring the processor to speculate on the value
of the conditional [153]. Supporting speculative execution leads to complex and expensive
hardware structures, such as a branch predictor and reorder buffer, and achieves greater
performance at the expense of lower area and power efficiencies. Additional complexity is
added to the controller to enable multiple instruction fetches on every cycle even though
the von Neumann model allows for any instruction to affect the instruction flow follow-
ing it [34, 128]. Speculative execution and dynamic scheduling also allow the hardware
to tolerate moderate data access and pipeline parallelism with the minimal parallelism

exported by the scalar ISA and compiler.

Because the hardware can only hide moderate latencies with useful dynamically ex-
tracted parallel computation and because global memory accesses can have immediate
affect on subsequent instructions, great emphasis is placed on hardware structures that
minimize data access latencies. The storage hierarchy of the GPP is designed to achieve
exactly this latency minimization goal. At the lowest level of the storage hierarchy are
the central register file and the complex pipeline bypass networks. While hardware dy-
namically allocates the physical registers, it can currently only rename registers already
allocated by the compiler. Due to scalar ISA encoding restrictions, the compiler is only
able to name a small number of registers, leading to an increased pressure on the memory
system to reduce latency. To do this, the memory system is composed of multiple levels of
cache memories where latency increases as the cache size grows larger. Caches rely on the
empirical property of applications that values that have been recently accessed in mem-
ory will be accessed again with high probability (temporal locality), and that consecutive
memory addresses tend to be accessed together (spatial locality). Therefore, a small cache
memory can provide data for a majority of the memory operations in the application with
low latency. When an access misses in the low-latency first level cache, additional, larger,
on-chip caches are used to bridge the latency gap to memory even further. These empirical
locality properties are true for most control intensive code that accesses a limited working
set of data. For compute and data intensive applications additional hardware mechanisms
and software techniques are often used. A hardware prefetcher attempts to predict what

memory locations will be accessed before the memory instruction is actually executed. The

2.4. MODELS AND ARCHITECTURES 23

prefetcher requests the predicted locations from off-chip memory and places the values in
the on-chip cache. If the prediction is both timely and correct, the memory access latency
is completely hidden from the load instruction. A typical hardware prefetcher consists of
a state machine to track recent memory requests and to control a simple functional unit
that computes future predicted addresses, the functional unit, and miss status holding

registers (MSHRs) [93] for efficiently communicating with the off-chip memory controller.

inst. cache

controller
<P =
=

o
=
D
L
D
—+
o
=r
(0]
=

a1

SENRIETEY

inst. store

Ill=>
S (> 3 | gll>
(c) SP

Figure 2.3: Sketch of canonical general-purpose, vector, and stream processors highlighting
their similarities and differences. Each hardware component is shaded according to the
degree of hardware control complexity (darker indicates greater hardware involvement),

as summarized in Subsection 2.4.4.

24 CHAPTER 2. BACKGROUND

Modern processors often contain multiple cores on the same die, but the discussion
above holds for each individual core. Another trend in GPPs is the support of multiple

concurrent threads on a single core, which also does not alter the basic description above.

2.4.2 Vector Processing

In addition to having capabilities similar to GPPs, vector processors can execute long-
vector instructions that apply the same primitive operation to a sequence of values, which
have been packed into a single very wide data word (typically 32 or 64 double-precision
floating point numbers) [141, 35, 90, 116, 92]. The primitive operations include integer
and floating point arithmetic, as well as memory loads and stores. Thus, the vector
execution model is a simple extension to the von Neumann model with the granularity of
an operation extended from acting on a single numerical value to a fixed-length vector.
As shown in Table 2.2, the Cray X1 [35] and NEC SX-6 [90] and SX-8 [116] are in use
today.

However, with memory latencies reaching hundreds of cycles and with single chip
processing capabilities of hundreds of concurrent FPUs, the control granularity of a 32—64
element vector is insufficient to overcome the von Neumann bottleneck leading to increased
hardware complexity as with the scalar GPP. Figure 2.3(b) depicts the major components
of a vector processor and shows the similarity with a GPP (Figure 2.3(a)). Just like GPPs,
VPs today devote significant hardware resources to dynamically extract parallelism and
to increase the architectural register space by hardware register renaming. To keep the
FPUs busy, the controller must run ahead and issue vector memory instructions to keep
the memory pipeline full, while at the same time providing enough state for the vectors in
the form of physical vector registers. Much of the complication is the result of the limits
of the execution model and the ISA.

The programming model for a vector processor is also similar to a GPP with short-
vector and prefetch extensions. A vectorizing compiler [170] is typically employed, re-
quiring the affine restrictions on the code, or a specialized domain-specific library can be

used.

2.4.3 The Stream Execution Model and Stream Processors

The stream execution model, in its generalized form, executes complex kernel operations

on collections of data elements referred to as streams. Increasing the granularity of control

2.4. MODELS AND ARCHITECTURES 25

and data transfer allows for less complex and more power and area efficient hardware, but

requires more effort from the software system and programmer.

Stream processors were first introduced with the Imagine processor [136] in 1998.
As common with such a relatively new architecture, several architectures with differing
characteristics have emerged, including the Sony/Toshiba/IBM Cell Broadband Engine
(Cell) [130], the ClearSpeed CSX600 [31], as well as Imagine and Merrimac. Addition-
ally, programmable graphics processors (GPUs) can also be classified as a type of stream
processor based on their execution model. This section discusses characteristics common
to all the processors above that stem from the stream execution model, while Section 3.5

provides specific comparisons with Merrimac.

2.4.3.1 Stream Processing Software

Stream processors are specifically designed to run compute-intensive applications with
limited and structured control and large amounts of data level parallelism (DLP). To
make efficient use of on-chip resources and limited power envelopes, SPs rely on software
to provide coarse-grained bulk operations and eliminate the need to dynamically extract
fine-grained parallelism and locality with complex hardware. In contrast to von Neumann
style programs which are represented by a CFG of basic blocks, a stream program is
expressed as a stream flow graph (SFG) and compiled at this higher granularity of complex
kernel operations (nodes) and structured data transfers (edges) as shown in Figure 2.4.
The figure describes the SFG of an n-body particle method, which interacts each of the
n particles in the system (a central particle) with particles that are close enough to affect
its trajectory (the neighbor particles). Kernels expose a level of locality (kernel locality)
as all accesses made by a kernel refer to data that is local to the kernel or that is passed
to the kernel in the form of a stream. The streams that connect kernels express producer-
consumer locality, as one kernel consumes the output of a kernel it is connected to, shown

by the time-stepping kernel consuming the forces produced by the interaction kernel.

In its strict form, a stream program is limited to a synchronous data flow graph [19].
An SDF is a restricted form of data flow where all rates of production, consumption,
and computation are known statically and where nodes represent complex kernel compu-
tations and edges represent sequences of data elements flowing between the kernels. A

compiler can perform rigorous analysis on an SDF graph to automatically generate code

26 CHAPTER 2. BACKGROUND

that explicitly expresses parallelism and locality and statically manages concurrency, la-
tency tolerance, and state allocation [25, 161]. The key properties of the strict stream
code represented by an SDF are large amounts of parallelism, structured and predictable
control, and data transfers that can be determined well in advance of actual data con-
sumption. A simple SDF version of the n-body method example of Figure 2.4 assumes
that all particles are close enough to interact and the interaction kernel reads the position
of all (n — 1) neighbor particles for each central particle position to produce a single force
value. Its rates are therefore (incentrai = 1, iMneighbor = 1 — 1,0ut = 1). The rate of all

streams of the timestep kernel are 1.

The same properties can be expressed and exploited through a more flexible and general
stream programming style that essentially treats a stream as a sequence of blocks as
opposed to a sequence of elements and relies on the programmer to explicitly express
parallelism [38]. In the n-body example, instead of the kernel computing the interaction
of a single particle with all other particles, the kernel now processes an entire block of
central particles and a block of neighbor particles. The kernel has the flexibility to reuse
position values if they appear in the neighbor lists of multiple central particles. In addition,
the read and write rates of the streams need not be fixed and each particle may have a
different number of neighbors. This variable rate property is impossible to express in
strict SDF. The greater flexibility and expressiveness of this gather, compute, scatter
style of generalized stream programming is not based on a solid theoretical foundation as
SDF, but experimental compilation and hardware systems have successfully implemented

it [107, 83, 37).

The stream ISA for the generalized stream execution model consists of coarse- and
medium-grained stream (block) instruction for bulk data transfers and kernels, as well
as fine-grained instructions within kernels that express ILP. Additionally, the stream ISA
provides a rich set of namespaces to support a hierarchy of storage and locality (locality
hierarchy) composed of at least two levels including on-chip local memory namespace
and off-chip memory addresses. Additionally, for efficiency and performance reasons a
namespace of kernel registers is desirable. In this way, the stream execution model allows
software to explicitly express parallelism, latency tolerance, and locality and alleviate
hardware from the responsibility of discovering them. Section 4.1 discusses how streaming

scientific applications utilize the stream model to express these critical properties.

2.4. MODELS AND ARCHITECTURES 27

particle
velocities
in -
DRAM particle
: velocities
time (n) central in
) central velocities
particle |neighbor velocities 'DRAM
positions [Positions (" . _ time (n+1)
in ‘ interaction | central timestep
kernel forces kernel
_DRAM \ particle
time (n) central positions
N positions i
central in
positions . DRAM
time (n+1)

Figure 2.4: Stream flow graph of a n? n-body particle method. Shaded nodes repre-
sent computational kernels, clear boxes represent locations in off-chip memory, and edges
are streams representing stream load/store operations and producer-consumer locality
between kernels.

2.4.3.2 Stream Processing Hardware

A stream processor, in contrast to a modern GPP, contains much more efficient and less
complex structures. Relying on large amounts of parallel computation, structured and
predictable control, and memory accesses performed in coarse granularity, the software
system is able to bear much of the complexity required to manage concurrency, locality,
and latency tolerance as discussed in the previous subsection. The canonical architecture
presented in Figure 2.3(c), includes minimal control consisting of fetching medium- and
coarse-grained instructions and executing them directly on the many FPUs. For efficiency
and increased locality, the FPUs are partitioned into multiple processing elements (PEs),
also referred to as execution clusters, and the register files are distributed amongst the
FPUs within a PE. Static scheduling is used whenever possible in order to limit dynamic
control to a minimum. To enable a static compiler to deal with the intricacies of scheduling
the execution pipeline, execution latencies of all instructions must be, to a large degree,
analyzable at compile time. To achieve this, a SP decouples the nondeterministic off-
chip accesses from the execution pipeline by only allowing the FPUs to access explicitly
software managed on-chip local memory. This local memory (commonly referred to as a
local store or stream register file) serves as a staging area for the bulk stream memory

operations, making all FPU memory reference latencies predictable. External memory

28 CHAPTER 2. BACKGROUND

accesses are performed by stream load/store units, which asynchronously execute the
coarse-grained bulk memory operations of the stream model. The stream load/store units
are analogous to asynchronous direct memory access (DMA) units. Delegating memory
accesses to the stream load/store units significantly simplifies the memory system when
compared to a GPP. Using the local memories as a buffer for the asynchronous bulk
memory operations, transfers the responsibility of latency tolerance from hardware to
software. As a result, the hardware structures are designed to maximize bandwidth rather
than minimize latencies. For example, deeper DRAM command scheduling windows can
be used to better utilize DRAM bandwidth at the expense of increased DRAM access
latency [137]. Additionally, the local memory increases the compiler managed on-chip
namespace allowing for greater static control over locality and register allocation and
reducing off-chip bandwidth demands.

Chapter 3 presents the Merrimac architecture and discusses streaming hardware in

greater detail.

2.4.4 Summary and Comparison

The main differences between the GPP, VP, and SP architectures stem from the granular-
ity of operation and degree of structure present in the von Neumann and stream execution
models, where the vector execution model as seen as an extension to von Neumann. The
fine granularity and immediate causality of the state changing von Neumann operations
lead to architectures that must be able to extract parallelism and locality dynamically
as well as minimize latencies. The stream model, in contrast, deals with coarse-grained,
and possibly hierarchical bulk block transfers and kernel operations leading to hardware
optimized for throughput processing. The GPP contains complex control units includ-
ing speculative execution support with large branch predictors and dynamic scheduling,
while the SP relies on static compiler scheduling and minimal hardware control. A VP is
somewhere in between the two with some, but not enough, parallelism exposed in DLP
vectors. A GPP implicitly maps off-chip memory addresses to on-chip cache locations
requiring complex associative structures and limiting the degree of software control. A
VP uses the implicit mapping into caches, but can additionally rely on vector memory
operations to gather vectors of words. However, a large number of vector operations is
required to load the data leading to hardware control complexity. A SP, on the other

hand, provides a hierarchy of explicit namespaces and delegates allocation and scheduling

2.4. MODELS AND ARCHITECTURES 29

to software. Both GPPs and SPs rely on asynchronous DMAs for hiding long DRAM
latencies on compute and data intensive codes, but the GPP uses a predictive hardware
prefetcher as opposed to the software controlled stream load/store units of the SP. A VP
has limited architectural asynchronous transfers in the form of vector loads and stores,
but requires hardware control to be able to cover long memory latencies. Finally, there are
large differences in terms of the software systems. The GPP handles arbitrarily complex
code and can strives to execute minimally optimized code well. Conversely, SPs and VPs,
rely on algorithm and program restructuring by the programmer and highly optimizing

compilers.

Chapter 3

Merrimac

Merrimac is a scientific supercomputer designed to deliver high performance in a cost
effective manner scaling efficiently from a $2K 128GFLOP/s workstation configuration
to a $20M 2PFLOP/s configuration with 16K nodes. The high level of performance
and economy are achieved by matching the strengths of modern VLSI technology to the
properties and characteristics of scientific applications. Merrimac relies on the stream
execution model, which places greater responsibility on software than the conventional
von Neumann model, allowing efficient and high-performance hardware.

As discussed in Section 2.2, hundreds of FPUs can be placed on an economically sized
chip making arithmetic almost free. Device scaling of future fabrication processes will
make the relative cost of arithmetic even lower. On the other hand, the number of in-
put/output pins available on a chip does not scale with fabrication technology making
bandwidth the critical resource. Thus, the problem faced by architects is supplying a
large number of functional units with data to perform useful computation. Merrimac
employs a stream processor architecture to achieve this goal. The Merrimac processor
architecture is heavily influenced by the Imagine processor [136], and a comparison of the
two is provided in Subsection 3.5.1.1. The Merrimac processor uses a hierarchy of locality
and storage resources of increasing bandwidth including a stream cache, stream register
file (SRF) and clustered execution units fed by local register files (LRFs) to simultane-
ously improve data parallelism while conserving bandwidth. The resultant architecture
has a peak performance of 128GFLOP/s per node at 1GHz in a 90nm process and can
execute both coarse-grained stream instructions and fine-grained scalar operations and

kernel arithmetic. The Merrimac processor integrates the 128GFLOP/s stream unit, a

30

31

scalar core to execute scalar instructions and control, and a throughput oriented stream
memory subsystem that directly interfaces with local DRAM and the global intercon-
nection network. The Merrimac system contains up to 16K nodes, where each node is
composed of a Merrimac processor, local node DRAM memory, and a port to the global

interconnection network.

Applications for Merrimac are written in a high-level language and compiled to the
stream execution model. The current Merrimac software system is described in Section 4.2.
The compiler performs two different decompositions. In the domain decomposition step,
data streams are partitioned into pieces that are assigned to the local memory on individual
nodes. However, all nodes share a single global address space and can access memory
anywhere in the system. Thus domain decomposition is an optimization for improving
locality and bandwidth and any reasonable decomposition is possible as long as the data
fits in node memory and the workload is balanced. The second decomposition involves
partitioning the application code into a scalar program with stream instructions and a
set of kernels according to the stream execution model. The scalar code is compiled
into a scalar processor binary with embedded coarse-grained stream instructions and each
of the stream kernels is compiled into microcode. The domain decomposed data and
program binaries are loaded into node local memories and the scalar processors at each

node commence execution.

Coarse-grained stream loads and stores in the scalar program initiate data transfer be-
tween global memory and a node’s stream register file. The memory system is optimized
for throughput and can handle both strided loads and stores and indexed gathers and
scatters in hardware. The memory system is designed for parallel execution and supports
atomic read-modify-write stream operations including the scatter-add primitive for super-
position type reductions [2]. Additionally, if the data is not resident in the node’s local
DRAM, the memory system hardware autonomously transfers the data over the global
interconnection network. Kernel instructions in the scalar program cause the stream
execution unit to start running a previously loaded kernel binary. Kernel execution is
controlled by a micro-controller unit and proceeds in a SIMD manner with all clusters in
the same node progressing in lockstep. Data transfers between various levels of the on-chip
memory hierarchy including the stream register file, stream buffers and local register files
are controlled from the microcode. As kernel execution progresses, the scalar program

continues to load more data into the stream register file and save output streams to main

32 CHAPTER 3. MERRIMAC

memory, hiding memory access latencies with useful computation (Figure 3.1). The scalar
core also handles global synchronization primitives such as barriers. Multiprogramming
is supported by the use of segment registers which protect memory regions of individual

programs from each other.

< o 5 &' 1. o o o ST R
g 5 |8 g 5 |8[<lel A = 1 Lle
[a E= [a = S5 S s = IS
E= “—
g < 3 = = 8l gla g 5 g 3] ---
o D it [} 2 =|| |7) = = (]
o Q o o 9] 0|l ol 2 o @ @l | o ©
5 c > = c >CD — c > o
< e o < S ol 5|2 < S el 5|2
o I © o I ol 2| & o I3 8l
= o |8 = oS |L||lv& = 9 2 A RZ R
g g g g g
a D o D g
8 o 8 o I3
S S E € E
— -

Figure 3.1: Stream level software controlled latency hiding. The software pipeline of the
stream instructions corresponding to the blocked n-body SFG of Figure 2.4.

Section 3.1 summarizes Merrimac’s instruction set architecture (ISA) and philosophy,
Section 3.2 details the Merrimac processor architecture, and Section 3.3 describes the
Merrimac system. Details of the fault tolerance and reliability schemes will be described
in Chapter 6. We estimate Merrimac’s die area, power consumption, and cost in Sec-
tion 3.4 and discuss related architectures and the implications of Merrimac’s design on

the hardware and software systems in Section 3.5.

3.1 Instruction Set Architecture

The Merrimac processor and system are designed specifically for the stream execution
model. This is reflected in the instruction set architecture (ISA), which stresses through-
put and a hierarchy of control and locality. The hierarchical nature of the stream execution
model and its coarse-grained stream instructions are also central to the memory and ex-
ception models, which are described in Subsection 3.1.3 and Subsection 3.1.4 respectively.

The Merrimac ISA has three types of instructions corresponding to the stream execu-

tion model:

3.1. INSTRUCTION SET ARCHITECTURE 33

e Scalar instructions that execute on the scalar core and are used for non-streaming
portions of the application code and for flow control. These instructions include the

standard scalar ISA, as well as instructions for interfacing with the stream unit.

e Stream instructions that include setting stream related architectural registers and

state, invoking kernels, and executing stream memory operations.

e Kernel instructions that are executed while running a kernel on the compute
clusters and micro-controller. Kernel instructions are at a lower level of the con-
trol hierarchy than stream instructions, and a single stream kernel instruction, for

example, may control the execution of many thousands of kernel instructions.

Any standard scalar ISA (MIPS, PowerPC, x86) is suitable for Merrimac’s scalar ISA

with the addition of instructions to interface with the stream unit (Subsection 3.2.1).

3.1.1 Stream Instructions

Stream instructions are embedded within the scalar instruction stream and are used to
control the stream unit, issue stream memory operations, initiate and control kernel ex-
ecution, and manipulate stream unit state. The stream instructions are communicated
by the scalar core to the stream controller to allow their execution to be decoupled from
scalar execution. The stream controller accepts instructions from the scalar core interface
and autonomously schedules them to the appropriate streaming resource. Along with the
instruction, the scalar core also sends encoded dependency information of the instruction
on preceding stream instructions, alleviating the need to dynamically track dependencies
in hardware. The stream controller uses the dependencies and a scoreboard mechanism to
dynamically schedule the out of order execution of stream instructions on 4 resources it
controls: an address generators (AG) in the memory subsystem for running stream mem-
ory instructions, the micro-controller which sequences kernels, a cache controller, and the
stream controller itself.

The stream instructions fall into three categories: operations that control the stream
controller, stream memory operations, and kernel control operations. Figure 3.2 shows
how to use the stream instructions to implement the n-body example of Figure 2.4 with
the software pipeline depicted in Figure 3.1, and the paragraphs below describe the in-

structions in detail.

34

0 ~NO U WN P O

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

CHAPTER 3. MERRIMAC

setMAR (centrals [0]->MARO); // set up memory transfer

setSDR(S\ _cntrals[0]->SDRO); // set up SRF space for transfer

setMAR (neighbors [0] ->MAR1);

setSDR(S\ _neighbors [0] ->SDR1);

addDep(0,1); // adds dependencies to the next stream instruction

streamLoad (MARO ,SDR0O); // assume a simple load in this ezample

addDep (2,3);

streamLoad (MAR1,SDR1);

setMAR (interactKernel_text->MAR2); // prepare to load kernel text

setSDR(S_interactKernel_text->SDR2);

addDep (8,9);

streamLoad (MAR2,S8DR2); // load kernel text from memory to SRF

addDep (11);

loadCode (S_interactKernel_text,interactKernel); // load code from
// SRF to micro-code store

setSDR(S\ _forces [0]1->SDR3); // reserve SRF space for kernel output

addDep (14);

setSCR(SDRO->SCRO); // sets up SCR corresponding to a stream in the SRF

addDep (16) ;

setSCR (SDR1->SCR1);

addDep (18) ;

setSCR (SDR3->SCR2) ;

addDep (13);

setPC(interactKernel); // sets up microcode PC to start of kernel

addDep(5,7,16,18,20,22);

runKernel (PC, SCRO, SCR1, SCR2);

setMAR(velocities [0] ->MAR3);

setSDR(S_velocities [0]->SDR4);

addDep (25,26) ;

streamLoad (MAR3 ,SDR4) ;

setMAR (centrals [0] ->MAR4);

setSDR(S_centrals [0]->SDR5);

setMAR (neighbors [0] ->MAR5) ;

setSDR(S\ _neighbors [0] ->SDR6) ;

addDep (29,30);

streamLoad (MAR4 ,SDR5);

addDep (31,32);

streamLoad (MAR5, SDR6) ;

Figure 3.2: First 36 stream instructions of the software pipelined n-body stream program
of Figure 2.4 and Figure 3.1. For simplicity, all loads are generically assumed to be non-

indexed.

3.1. INSTRUCTION SET ARCHITECTURE 35

Stream Controller Operations

The instructions in this category do not actually perform a stream operation, but rather

control the way the stream controller handles other stream instructions:

1. Instructions for setting dependencies between stream instructions. The addDep
instruction sets scoreboard state for the immediately following stream instruction to

be dependent on the scoreboard locations specified in the addDep operation.

2. Instructions for removing stream instructions that have not yet started. These in-
structions are not common and are only used when stream-level software speculation

is used. This case does not appear in the example of Figure 3.2.

Stream Memory Operations

Merrimac can issue strided memory reads and writes, indexed reads and writes, and
various flavors of these operations which include one of the following operations: integer
increment, integer add, and floating-point addition. All access modes are record based
and the hardware aligns individual records to be contiguous in a SRF lane. A SRF lane
is a portion of the SRF that is aligned with an execution cluster. Figure 3.3 depicts the

access modes and alignment:

Strided Access

A strided access is a systematic memory reference pattern. The strided access is described
by four parameters, the base virtual address (base), the record length (recLen), and the
stride (stride), which is the distance in words between consecutive records in the stream.
A strided load, for example, reads recLen consecutive words starting at virtual memory
address base and writes the words to the first lane of the SRF. The second lane also
receives recLen consecutive words, but the starting address is base + stride. This process

repeats, appending records to each lane for the entire stream length.

Gather/Scatter Access

The gather/scatter access mode uses an stream of indices to generate record accesses as

opposed to the systematic pattern of a strided access. The indices are read from the SRF,

36 CHAPTER 3. MERRIMAC

external memory
lol1]2]3]4]5]6]7]8]9frolr1f12}13}14]15]16]17}18]19]20]21)22]23]24]25]26]27]28]

SRF SRF SRF SRF
lane0 lanel lane2 lane3

data
(a) Strided access with 2-word records and a stride of 5 words

external memory
lol1]2]3]4]5]6]7]8]9 Jrolr1}12}13}14]15]16]17|18]19]20]21)22]23]24]25]26]27]28]

SRF SRF SRF SRF
lane0 lanel lane2 lane3

index data

(b) Gather/scatter access with 3-word records and indices
{0,9,20,12, 5,24}

external memory
[ol9]o]o]o]3]3]o]oiaialofofolsls]olofofofi2fizjo]o]o]o]s]1]o]

SRF SRF SRF SRF
lane0 lanel lane2 lane3

index data

(c) Scatter-add access with 2-word records and indices
{0,9,9,20,5,5,14,0, 26, 14, 20,9}

Figure 3.3: Stream memory operation access modes. Data transfer depicted between
linear memory and 4 SRF lanes with record alignment. Indexed accesses require an index
stream in the SRF, given in word addresses for record start positions.

3.1. INSTRUCTION SET ARCHITECTURE 37

and each index corresponds to recLen consecutive words in memory starting at the index

and recLen consecutive words in the SRF lane to which the index belongs.

Scatter-add Access

A scatter-add access performs an atomic summation of data addressed to a particular
location instead of simply replacing the current value as new values arrive, which is the
operation performed by a scatter. Scatter-add is used for super-position type updates and
is described in detail in [2].

The memory operations are dynamically scheduled by the stream controller to the AG
of the memory subsystem. Before a memory operation can execute, the state describing
the mapping of the stream to memory and to the SRF must be written. This state includes
a memory access register (MAR) that controls the mapping of the stream to memory and
specifies the access mode and the base address in memory (setMAR). In addition, up to
three stream descriptor registers (SDRs) are used to specify the source of a write or a
destination of a read, the stream containing the indices of a gather or scatter operation,
and a stream containing the data values in case the memory instruction includes an atomic
memory operation (setSDR). The programming system also specifies whether a stream
memory operation should utilize Merrimac’s stream cache. The stream cache is used as a
bandwidth amplifier for gathers and scatters that can benefit from the added locality (see
Section 5.2.1).

In addition to stream memory operations, Merrimac also provides coarse-grained in-
structions for manipulating the stream cache. The cache can be fully flushed or invalidated

and supports a gang invalidation mechanism (Subsection 3.1.3).

Kernel Control Operations

The kernel control operations are executed on the micro-controller resource and allow the

stream program to set up kernel state for execution and initiate micro-controller execution:

1. The stream controller initiates the data transfer corresponding to the binary mi-
crocode of a kernel from the SRF into the microcode store (loadCode). The mi-

crocode must first be read into the SRF from memory.

2. An instruction to start the micro-controller and begin execution of a kernel from the

current program counter PC (setPC).

38 CHAPTER 3. MERRIMAC

3. Several stream instructions are used to set up the required state, including the
stream control registers that control cluster access to the SRF and setting the PC
(setSCR). Both the SCRs and PC can be rewritten as long as the micro-controller
is in a paused state. This allows for efficient double-buffering, as with Imagine’s

restartable streams mechanism.

3.1.2 Kernel Instructions

A Merrimac processor uses all 16 compute clusters and the micro-controller to run a single
kernel at a time. On every cycle the micro-controller sequences the next instruction to be
executed according to the current program counter (PC). Each of these VLIW instructions
has two main parts. The first part is issued to the micro-controller, and the second part
is broadcast to all 16 clusters to be operated on in parallel in SIMD fashion. The VLIW

instruction is 448 bits wide, and its format appears in Figure 3.4.

447 330

381 279
382 331 280
| pcontroller | MULADD, | MULADDO, | MULADD, }rerssssen..,
66 51 51 51

228
229

B 228 177 158 108 82 61 40 19 5
e, 178 159 104 83 62 41 20 60

e { MuLADD, |TER comm |10,] 10, |10, | 10, |3B]
51 21 55 21 21 21 21 146

Figure 3.4: Kernel VLIW instruction format.

Each field of the VLIW is in fact an instruction for controlling one of the functional
units. We will refer to each of these instructions as a sub-instruction. As in most archi-
tectures, a Merrimac sub-instruction contains an opcode, for determining the operation
to be performed by the functional unit, and the input registers or an immediate-constant
required for the operation. Unlike a traditional architecture which specifies the output
register for each operation in the same instruction with the opcode and input operands,
in Merrimac, the destination register is specified independently. Sub-instructions contain
a field corresponding to each register file write port. Each field specifies a register index
and a bus from which the write port receives data. The reason for this instruction format
is two-fold: first, most instructions have multi-cycle latencies and this format exposes this

property to the kernel scheduler; second, Merrimac’s clusters use a distributed register

3.1. INSTRUCTION SET ARCHITECTURE 39

file architecture to lower area and power overheads. Each of the 13 register file write
ports, 4 SRF data words, and 4 SRF addresses can be written to by 15 producers on the
intra-cluster switch: 4 MULADD units, 1 ITER unit, 1 COMM unit, 1 JB unit, and 4
data-words and 4 valid flags returned by the INOUT units for SRF data. For a detailed
description of the register file organization, please see Subsection 3.2.4.

Merrimac provides hardware support for efficient software-pipelined (SWP) loops within
kernels. The micro-controller, which is responsible for instruction issue, squashes oper-
ations that affect state changes while priming or draining the software pipeline. This is
done by tagging register writes and INOUT operations with the stage of the software
pipeline they are scheduled in. The micro-controller tracks the iteration number of the
loop and combines this information with the stage tag of each state-changing operation in
order to potentially suppress the instructions effect. In each LRF, register 0 is hard coded
to the value 0 and writes to it are ignored. The micro-controller squashes register writes
by converting the destination register to 0. INOUT operations are squashed by replacing
the opcode with a NOP.

3.1.3 Memory Model

Merrimac supports a flat memory space with hardware assisted software coherency. In line
with the stream execution model, the memory model and architecture take advantage of
the coarse granularity of the stream memory operations to efficiently implement the global
address space. Instead of dynamic and fine-grained demand-paging common to GPPs,
Merrimac utilizes a coarse-grained control segmentation scheme to map virtual addresses
to physical node addresses enabling high-throughput translation of memory addresses into
network requests by the memory unit. Merrimac’s consistency and coherency models also
rely on the stream granularity of memory operations, permitting high throughput without
the need of costly fine-grained hardware coherence. Thus, Merrimac can be economically

scaled up to a 16K node configuration.

Memory Segmentation

Merrimac uses a segment level protection scheme to allow multiple jobs to be run simulta-
neously without the overhead associated with TLBs and paged memory. The segmentation
system also interleaves addresses across nodes in a programmable manner. Segments can

be interleaved with a granularity ranging from one word to the entire segment in powers

40 CHAPTER 3. MERRIMAC

of two. The system translates 64-bit virtual addresses into 64-bit physical addresses via a
set of segment registers. Each segment register specifies the segment length, the subset of
nodes over which the segment is mapped, the interleave (striping) factor for the segment,
and the cache state of the segment. The segmentation translation is performed within the
memory unit using the five most significant bits of a virtual address.

Figure 3.5 illustrates the mapping process. The process is summarized below and is

followed by an example.

e The SegNum field of the virtual address is used to index into the segment register

file and select the segment register for performing the translation.

e The SegAddr field of the virtual address is simply the contiguous virtual address

within the segment.

e The ng and n fields of the segment register determine the striping of the SegAddr
virtual address across the nodes in the segment. ng is the starting bit of SegAddr
that determines the mapping onto nodes, such that the nodes are interleaved in a
granularity of 2™, nj is the ending bit. Therefore, there are 2170 nodes in the
segment. Note that ng > 2 to ensure that cache lines are not split between node
stripes. Bits 0 — (ng — 1) of SegAddr determine the least significant bits of the offset
within a node in the segment, bits ng — (n; — 1) are the node number within the
segment, and bits n; — (35 + n; — ng) correspond to the most significant bits of the

address offset.

e The node to which the virtual address is referring is calculated by adding NodeBase,

the start of the contiguous range of nodes in the segment, to NodeOff.

e The absolute physical address (PhysAddr) within the determined node (Node) is
computed by adding PhysOff to PhysBase.

e The physical address must fall within the segment memory range in the node, namely
PhysBase to PhysBase + 2sken _ 1 Note that the base physical address (Phys-

Base) must be an integer multiple of the segment size.

Within each segment, the virtual addresses (SegAddr) are contiguous and run from 0 up
to 2FPhyslente _ 1 where x = ny —ng and 2% is the number of nodes in the segment. Phys-

ically, however, due to the way the virtual addresses are converted to physical addresses,

3.1. INSTRUCTION SET ARCHITECTURE 41

the segment data may be interleaved across a number of nodes. For example, a segment
register could specify that a segment over 16 nodes, starting at node 32 (NodeBase = 32),
is 4GB in size (total) and hence uses 256 MB from each node (PhysLen = 28), starts at
physical address 1GB within each node (PhysBase = 23°), and is striped across the nodes

in 1MB increments (ng = 20 and n; = 24).

63 59 (36+n1-n0) 0
VA SegNum | reserved SegAddr

PhysBase

nl v no v O

[(=]
™
N
-
Nl e
0 Q
S 3
fos} >
) >
e}
(]
P4
5 §
2
>
e —_
a | €
2
Bl o | B
< (3]
c | &, 63
Sl
(®]
N 0 PA Node reserved PhysAddr

Figure 3.5: Mapping virtual addresses to physical addresses.

3.1.3.1 Coherency and Consistency Model

Stream memory operations follow a relaxed consistency model, where the ordering of words
stored to memory is undefined within a stream operation. This enables high throughput
in a data parallel and multi-node memory system without the need for costly fine-grained
hardware coherence protocols [64, 1]. Ordering between stream operations is controlled by
software and is determined by the dependencies communicated in the stream instructions
and multi-node barriers.

Consistency across the stream caches also takes advantage of the coarse-grained stream

execution model. The stream cache mechanism utilizes the fact that scientific applications

42 CHAPTER 3. MERRIMAC

operate in computational phases (Chapter 4). Hence, each memory location serves as
either an input, an output, or as a reduction target within a given phase and is read-only,
write-only, or uses an atomic read-modify-write stream memory operation. Therefore, the
stream cache does not perform any fine-grained hardware coherence operations. Instead,
the cache can distinguish between cacheable and uncacheable properties associated with a
segment or stream memory operation; it is up to the software system to use these cacheable

properties in a safe manner utilizing explicit bulk invalidate and flush operations.

The stream cache supports explicit flush and invalidate instructions at a stream gran-
ularity. This is implemented via 4 valid bits in each stream cache line (the line is valid
if any of the valid bits are set). Because the stream cache serves as a bandwidth ampli-
fier for a typically small number of stream operations with irregular locality properties, 4
valid bits are sufficient. In each MAR there is an entry specifying whether the stream is
memory-uncacheable or network-uncacheable (or both/neither), and another entry speci-
fying which stream cache valid bit to use. If the memory-uncacheable flag is set, then any
data whose address is in the node’s local memory will not be cached, and if the network-
uncacheable flag is set, then any data whose address is in a remote node (i.e., over the
network) will not be cached. The stream cache is placed in front of the local memory and
the network interface and satisfies requests from the local stream units, the local scalar
core, and remote nodes (via the network interface). The source of the memory requests is

not a factor in the stream-uncacheable properties.

An invalidate operation on a cached stream is cheap as it simply sets the associated
valid bit line to zero, while a flush is expensive (as is usually the case) because the cache

must be traversed to write dirty data back to memory.

When the stream unit requests a memory word, the request is first checked in the local
node’s stream cache and satisfied from there in the case of a cache hit. In the case of a
stream cache miss, the request is sent to the home node of the memory word determined
by the segment mapping. That node, in turn, will check its stream cache before reading

the word from its main memory.

For example, consider data that is initially private on a node and later becomes read-
only from multiple nodes. In the first phase, the node on which the data resides will mark
the address range memory-cacheable and all other nodes will set the range to network-
uncacheable. This ensures that the node on which the data is private will have exclusive

cached access and all other nodes will not cache stale data. In the second phase, all

3.1. INSTRUCTION SET ARCHITECTURE 43

nodes mark the range as network-cacheable and are free to make cached copies of the data

because it will not be modified by any node.

Scalar Cache Coherency and Consistency

The Merrimac design minimizes modifications to off-the-shelf scalar core architectures.
Therefore, the L1 cache (and L2 cache, if there is one) are accessible to the scalar processor
alone, and not accessible to the stream units or other nodes. Hence, unlike the stream
cache, the scalar cache does not need bits for segment or stream identification. The scalar
memory consistency and coherence models are as relaxed and inexpensive as possible. The
only additional requirement of the scalar cache hierarchy is that the scalar core support
uncacheable memory segments defined by the segment registers. This may be achieved
by adding logic to check segment registers or by using the non-cacheable bit found in the
page table and TLB of modern GPPs.

The scalar cache needs to support an explicit flush command, but it is not required to
perform any coherence operations. It is up to software to use the cacheable/uncacheable
segment properties in a safe manner. The scalar cache does not see remote memory
requests to its node since these go directly to the stream memory system. If multiple
scalar processors use shared variables to communicate, then these variables should be
placed in segments that are both memory- and network-uncacheable, and the memory
addresses corresponding to the variables must be explicitly flushed before the first shared
use. This guarantees that the node to which the variable is local in memory does not
cache a stale copy (memory-uncacheable), as well as no stale copies on nodes that must
traverse the network to access the variable (network-uncacheable).

Even though the stream units cannot see the scalar cache, the converse is not true.
The scalar processor can see the stream caches, and if a local reference misses in the scalar
cache then it may be satisfied by the stream cache rather than accessing main memory.
However, scalar references which miss in the stream cache will not cause a line to be read
into it.

The scalar processor should have a node memory barrier or fence instruction similar
to the SYNC instruction of the MIPS II ISA [80]. The compiler may use this instruc-
tion when it needs to guarantee the order of scalar memory instructions. The memory
barrier instruction prevents new loads and stores from being issued until all the currently

outstanding memory references from the scalar processor have completed.

44 CHAPTER 3. MERRIMAC

The scalar processor is required to provide the following two consistency guarantees.

1. After a node memory barrier, all outstanding scalar accesses from that node will

have been committed.

2. Multiple scalar accesses from a given scalar processor to the same memory address
in its home node will exhibit sequential consistency. There are no guarantees with
respect to the ordering of accesses to different addresses or to/from different proces-

SOTS.

3.1.4 Exception and Floating Point Models

Merrimac’s exception and floating point models are designed to economically support
high-throughput execution while meeting user requirements based on the IEEE 754 stan-
dard [72] and common GPP exception models. Merrimac follows the lead of high-performa-
nce short-vector extensions of GPPs (e.g., SSE [160] and Altivec [113]) in terms of floating
point precision and rounding and exceptions in scalar and control code. However, the
floating point and memory exception model leverages the stream execution model and

does not require fine-grained interrupts.

3.1.4.1 Floating Point Model

Merrimac supports double-precision IEEE 754 numbers including denormalized numbers,
infinities, zeros, and NaNs. Extended double-precision is only used within the MULADD
pipeline between the multiply and addition of a fused multiply-add.

Merrimac does not follow the standard regarding divide and square-root operations, as
it does not provide dedicated hardware for these functions. Binary to decimal conversions
and remainders are supported in software only, and are not guaranteed to be exactly
rounded.

IEEE 754 specifies 4 rounding modes: round to nearest even, round to zero, round
to 400, and round to —oco. Moreover, the standard permits the program to change the
rounding mode at run-time. Merrimac only provides rounding to nearest even, as this
is the most commonly used mode and also because this mode offers superior numerical

precision [65].

3.1. INSTRUCTION SET ARCHITECTURE 45

3.1.4.2 Exception Model

Merrimac’s control unit is responsible for handling all exceptions. The scalar core follows
current GPP exception and interrupt models for non-streaming scalar portions of the
code and control operations it executes. Exceptions from the stream and memory units
are reported to the stream controller and can communicated to the scalar core via polling
or maskable interrupts.

Merrimac may perform over 161 operations that can raise an exception every cycle
(128 FP operations on the 4 MULADD units, 16 ITER FP operations, 1 micro-controller
operation, 8 address translations, 8 atomic read-modify-write FP additions, and fault-
detection exceptions as discussed in Chapter 6). Implementing a precise exception model
that may interrupt kernel and program execution on each of these operations is infeasible
and will degrade performance, particularly if the controller masks the particular exception
raised. Merrimac takes advantage of the stream execution model and treats all stream op-
erations as atomic operations with regards to exceptions. Thus, exception related control
is coarse-grained and scalable.

The exception model meets user requirements for exception handling and recovery
without the need of precise exceptions. For example, precise exceptions are not a require-
ment of the IEEE 754 standard. Instead, the standard specifies that each instruction with
an exception raise a flag, and suggests that software should be able to trap on it and
recover. In Merrimac, the exception unit tracks exceptions raised by the individual func-
tional units and records the first occurrence of each exception type for a running stream
instruction (kernel or memory). Before a stream operation completes, the exception unit
raises an exception interrupt flag to the scalar core if an exception occurred. The scalar
core retrieves the exception information, which contains the precise point during execu-
tion that caused the exception. Since software controls all inputs to stream instructions,
the kernel or memory operation can be immediately re-executed up to the point of the

exception to emulate precise exception handling with hardware and software cooperation.

Exceptions in Kernels

Kernels may raise exceptions related to the micro-controller or the FPUs. The micro-
controller may encounter ill-formed VLIW instructions or branches and will pause its

execution and signal the exception unit. The FPUs may raise FP exceptions based on

46 CHAPTER 3. MERRIMAC

IEEE 754 as follows:

Invalid — This flag is raised when an invalid result is generated producing a NaN.

e Divide by Zero (DVBZ) —raised when § is executed on the ITER unit (SFINV(0)).
The result returned by the ITER unit in this case is always a 4o00.

e Overflow — raised when an addition, subtraction, multiplication, or fused multiply-
add results in a number that is larger than the maximum representable using double-

precision. In addition to raising the overflow flag, the result returned is +oo.

e Underflow — raised when a computation result is smaller than the minimum repre-
sentable number using denormalized form of double-precision. The result returned
is a £0. Merrimac only raises the underflow exception flag when a denormalized

number underflows, not when gradual underflow begins.

The inezact exception type of IEEE 754 is not supported. Similar to the case of the
less common rounding modes, it is most often used for interval arithmetic.

Also, the Merrimac hardware does not pass any parameters to the trap handler as
specified by IEEE 754, and software must recover based on the exact exception point
information in the exception unit. This information consists of the exception type, PC,
uCR values, and FPU ID of the first occurrence of the exception and allows for precise

reconstruction of the exception instruction based on the unchanged kernel input streams.

Exceptions in Memory Operations

Memory operations may raise exception flags under two conditions: a) an address is
requested that is outside the specified segment (segment violation) or b) a floating-point
exception occurs. When exceptions occur, the stream element number of the first address
that caused the exception is stored in the exception unit for the appropriate exception
type. In the case of an FP exception, the ID of the FPU that faulted (one of the 8 FPUs in
the atomic-memory-operation units) is also recorded. Once the memory operation finishes
execution, software can check the exception register and recover the precise state prior to

the exception.

3.2. PROCESSOR ARCHITECTURE 47

3.2 Processor Architecture

The Merrimac processor is a stream processor that is specifically designed to take ad-
vantage of the high arithmetic-intensity and parallelism of many scientific applications.
Figure 3.6 shows the components of the single-chip Merrimac processor, which will be ex-
plained in the subsections below: a control unit with a scalar core for performing control
code and issuing stream instructions to the stream processing unit through the stream
controller; the stream unit with its compute clusters, locality hierarchy, and kernel con-
trol unit (micro-controller); and the data parallel memory system, including the banked

stream cache, memory switch, stream load/store units, DRAM interfaces, and the network

Merrimac node ala stream
ore controller

interface.

micro-
controller

cluster

RF ba cluster

< AG

Router — ofs cluster

Figure 3.6: Components of the Merrimac Processor, including the compute clusters with
their 64 FPUs and locality hierarchy.

3.2.1 Scalar Core

The scalar core runs the stream application, directly executing all scalar instructions for
non-streaming portions of the code and stream execution control. The scalar core also
processes the coarse-grained stream instructions and directs them to the stream controller.
The stream controller coordinates the execution of kernels and memory operations, and
reports exceptions generated by the stream unit to the scalar core.

Merrimac can use any GPP as its scalar core, as long as the following requirements

are met:

1. An efficient communication path with the stream unit.

48 CHAPTER 3. MERRIMAC

2. Relaxed memory consistency with a mechanism for implementing a single-processor

memory barrier.

3. A way to specify certain memory sections as uncacheable, such as through page table

definitions.
4. 64-bit support along with 64-bit memory addresses.

The MIPS20Kc core [110] meets all the above requirements, with the COP2 interface
used for communicating with the stream controller and stream unit.
The scalar core execution is decoupled from the stream unit by the stream controller

to allow for maximal concurrency.

3.2.2 Stream Controller

The stream controller unit in Merrimac is responsible for accepting stream instructions
from the scalar processor, and issuing them to the stream functional units (address gen-
erators and compute clusters) satisfying dependencies among the instructions. Its goal
is to decouple the execution of stream instructions from scalar instructions. To achieve
this goal the main element of the stream controller is the instruction queue which holds
stream instructions and issues them once the resources they require are free and their
dependencies have cleared. Since many of the dependencies among stream instructions
require analysis of memory ranges and the knowledge of the stream schedule (including
SRF allocation), the dependencies are explicitly expressed by the scalar processor. As a
result the stream scheduler need not perform complex dynamic dependency tracking as in

a GPP. The architecture of the stream controller is shown in Figure 3.7.

3.2.2.1 Scalar/Stream Interface Registers

These registers constitute the interface between the scalar processor and the stream pro-
cessor. This document uses the MIPS COP2 interface as an example and the scalar/stream
interface registers are implemented as COP2 registers, but the actual interface that will
be used depends on what the selected scalar core supports. Only the STRINST register is
writable from the scalar core and is used to send a stream instruction to the stream unit.
The other registers are read-only from the scalar core and supply status information: The

uCR register is used to hold a value read from the micro-controller within the stream unit;

3.2.

PROCESSOR ARCHITECTURE

Scalar Processor
£

Stream Controller

Scalar/Stream Interface Registers

Exception N
Unit T Exception Registers SCRBRDS SCRBRDC AGID STRINST UCR
(15)) (€} @) 1) @
° E
iz £
g g
Instruction Queue)]
and e o
Scoreboard Q e}
_ ~ ~
B3
ES
8o
=
12
v
Issue Unit
MAR SDR
(16) (64)
[1 5 [
> o o
q 4 o v &] © x O &
¢ g 3 g 3 £ £ £ 8 39
L Ee] s C 2 H) £ 8
g3 0 g5 @ g + g g 32
= £ =
R s s [0 2 = %3
* A_'r o %
1 i | il
AG 0 AG 1 Stream Cluster Cluster Microcontroller
Cache 0 15
MSCR E wer | [CPc_]
(€] @) SCR SCR (64)
aw |[|*®*°| @@
uCode
SCR SCR SCR SCR
(©)] @3) (12) (1)
- < : < <
£ 2 2
g g g g
3 2
3 8 2 @
: 3 2
5

Figure 3.7: Stream controller block diagram.

49

50 CHAPTER 3. MERRIMAC

SCRBRDS and SCRBRDC convey the instruction queue and scoreboard described below;

and the exception registers hold exception information as discussed in Section 3.1.

3.2.2.2 Instruction Queue and Scoreboard

The stream controller sequences stream instructions according to two criteria: the avail-
ability of resources on the Merrimac chip, and the program dependencies which must be
obeyed between the instructions, as specified by the scalar core. Thus, an instruction can
be issued once all of its program dependencies have been satisfied and all of its required
resources are free. The main part of this out-of-order queue is the dynamic instruction
scoreboard, which both holds the stream instructions and dynamically resolves dependen-
cies for issue. Each of the 64 entries of the scoreboard holds a 128-bit stream instruction,
its resource requirements (5 bits), and the start-dependency and completion-dependency
bit-masks, which are 64 bits each, one bit for each scoreboard entry. The hardware also
maintains the completed and issued registers, which have a bit corresponding to the com-
pletion and start of each of the 64 instructions in the scoreboard. The scoreboard also has
several buses used to broadcast start and completion status of instructions, as well as the
priority encoder which selects among all instructions ready to issue.

The out-of-order issue logic dynamically resolves all dependencies by way of the score-
board mechanism. The scoreboard tracks all instruction issue and completion and updates
the ready-status of each remaining instruction in the scoreboard. In order to perform
the status update the scoreboard must know which other instructions each instruction
is dependent on; this is done using the slot number in the scoreboard, by which de-
pendencies between instructions are explicit based on the instructions’ slots within the
scoreboard. FEach scoreboard entry has two dependency fields associated with it, one
for start-dependencies and the second for completion-dependencies. All dependencies are

explicitly expressed by the scalar unit using the instruction queue slot number.

3.2.2.3 Issue Unit

This unit accepts a single stream instruction that is ready to be issued from the scoreboard.
It is responsible for executing all stream instructions except those that deal with the
scoreboard, which are executed directly by the scoreboard unit. At most one stream

instruction is in issue at any time, and the issue unit takes several cycles to issue a stream

3.2. PROCESSOR ARCHITECTURE 51

instruction. It implements a state machine which sets the appropriate control signals on
consecutive cycles.

Issuing a stream instruction entails writing the appropriate values into the control
registers of the stream or memory units. To issue a kernel to the stream unit, the stream
controller must set all the stream control registers (SCRs) to specify the kernel input and
output streams in the SRF and the program counter (PC) register in the micro-controller
to determine the kernel starting instruction. For memory operations, the DMA SCR
and memory stream control register (MSCR, which contains information for the DMA
instruction) must be set. Once all information has been communicated, the GO signal to
a block kicks off the operation in that block.

When a stream instruction completes, the unit on which it executed asserts the READY
signal updating the scoreboard and instruction queue and releasing any dependent in-

structions for execution.

3.2.2.4 Exception Unit

This unit, is actually distributed over the chip despite the fact that it is shown as a single
box in the diagram. It collects exception information from the various blocks and makes
it available to the scalar core via the scalar/stream interface registers. The exception

information is discussed in Section 3.1.

3.2.3 Stream Unit Overview

Figure 3.8 shows the locality hierarchy of the Merrimac processor, which is mostly imple-
mented within the stream unit and described in detail below. The stream unit consists of
an array of 16 clusters, each with a set of 4 64-bit multiply-accumulate (MADD) FPUs
and supporting functional units. The FPUs are directly connected to a set of local reg-
ister files (LRFs) totaling 768 words per cluster connected with the intra-cluster switch.
Each cluster also contains a bank of the stream register file (SRF) of 8KWords, or 1MB of
SRF for the entire chip. The clusters are connected to one another with the inter-cluster
switch and to the data parallel memory system with the memory switch. Note that with
each level of the locality hierarchy the capacity and wire length increases while bandwidth
drops. For example, the LRFs use 100y wires and can supply nearly 4TBytes/s of band-
width from ~ 64KB of storage, while the SRF can hold 1MB but requires 1000y wires
and can only sustain 512GBytes/s.

52 CHAPTER 3. MERRIMAC

sue| 44S

o
9 8
> >
= D

o
S)
= =
5SS ~

° :
<64 GB/s :
® E

°
64 GB/s
°

"o
512 GBI/s : 3,840 GB/s :

suid o/l

SOUOUMS AIOWaW pue J81snjo-Ialul

Jueq AVHA
)ueq ayoeo
aue| 44S

Figure 3.8: The locality hierarchy of the Merrimac processor includes the LRFs that are
directly connected to the FPUs, the cluster switch connecting the LRFs within a cluster,
the SRF partitioned among the clusters, the inter-cluster and memory switches, and the
data parallel banked memory system. The distances covered by the wires (measured in
x) grow with the level of the locality hierarchy while the bandwidth provided drops.

At the bottom of the locality hierarchy, each FPU in a cluster reads its operands out of
an adjacent LRF over very short and dense wires. Therefore the LRF can provide operands
at a very high bandwidth and low latency, sustaining 3 reads per cycle to each FPU. FPU
results are distributed to the other LRFs in a cluster via the cluster switch over short
wires, maintaining the high bandwidth required (1 operand per FPU every cycle). The
combined LRFs of a single cluster, or possibly the entire chip, capture the kernel locality of
the application. This short-term producer-consumer locality arises from the fact that the
results of most operations are almost immediately consumed by subsequent operations,
and can live entirely within the LRF. In order to provide instructions to the FPUs at a
high rate, all clusters are run in single instruction multiple data (SIMD) fashion. Each
cluster executes the same very long instruction word (VLIW) instruction, which supplies a
unique instruction to each of the cluster’s FPUs. Instructions are fetched from the on-chip

micro-code store.

The second level of the locality hierarchy is the stream register file (SRF), which is a
software managed on-chip memory. The SRF provides higher capacity than the LRF, but

at a reduced bandwidth of only 4 words per cycle for a cluster (compared to over 16 words

3.2. PROCESSOR ARCHITECTURE 53

per cycle on the LRFs). The SRF serves two purposes: capturing inter-kernel, long-term
producer-consumer locality and serving as a data staging area for memory. Long-term
producer-consumer locality is similar to kernel locality but cannot be captured within the
limited capacity LRF. The second, and perhaps more important, role of the SRF is to
serve as a staging area for memory data transfers and allow the software to hide long
memory latencies. An entire stream is transferred between the SRF and the memory with
a single instruction. These stream memory operations generate a large number of memory
references to fill the very deep pipeline between processor and memory, allowing memory
bandwidth to be maintained in the presence of latency. FPUs are kept busy by overlapping
the execution of arithmetic kernels with these stream memory operations. In addition,
the SRF serves as a buffer between the unpredictable latencies of the memory system and
interconnect, and the deterministic scheduling of the execution clusters. While the SRF
is similar in size to a cache, SRF accesses are much less expensive than cache accesses
because they are aligned and do not require a tag lookup. Each cluster accesses its own
bank of the SRF over the short wires of the cluster switch. In contrast, accessing a cache
requires a global communication over long wires that span the entire chip.

The final level of the locality hierarchy is the inter-cluster switch which provides a
mechanism for communication between the clusters, and interfaces with the memory sys-

tem which is described in the following subsection.

3.2.4 Compute Cluster

The compute engine of the Merrimac stream processor consists of a set of 16 arithmetic
clusters operated in a SIMD manner by a micro-controller unit. The same wide instruction
word is broadcast to each of the 16 clusters. Individual functional units within a cluster
have their own slots within the instruction word and thus may execute different operations,
but, corresponding functional units in all clusters execute the same operation. Clusters
receive data from the stream register file, apply a kernel to the data and send results back
to the stream register file. It is possible to transfer data between clusters via an inter-
cluster switch. Clusters are not connected directly to the stream register file. Rather,
they are decoupled from the stream register file by means of stream buffers which act
as intermediaries that perform rate matching and help arbitrate and automate stream
transfers. Both the stream register file and the stream buffers are distributed structures

composed of 16 banks each. Each bank is paired with a cluster. Remember, that

54 CHAPTER 3. MERRIMAC

cluster along with its associated stream register file and stream buffer banks is referred
to as a lane. Details of stream transfers may be found in Subsection 3.2.5. This section
concentrates on the architecture of a cluster and its connections to its lane. Figure 3.9

shows the internal organization of a cluster.

Cond
sb_fifos ~ Network

AR A& (A

Cond
LRF_0 LRF_1 LRF_2 LRF_3 LRF_4 state

Inter-cluster
Switch

[crar]
[cmam]
[(Smo]

I 64 641

In/Out_0 In/Out_1 In/Out_2 In/Out_3 Addr 0 Addr 1 Addr_2 Addr_3

Figure 3.9: Internal organization of a compute cluster.

A cluster consists of four fused multiply-add (MULADD) units, an iterative unit
(ITER), a communication unit (COMM) and a jukebox (JB) unit. The JB unit is log-
ically a single unit shared by all clusters. For performance, it is physically distributed
across all the clusters. Each port on each local register file has a corresponding slot in
the VLIW micro-instruction that is supplied by the micro-controller (Subsection 3.2.7).
Thus, reads and writes to every port are statically controlled on a cycle by cycle basis by

the micro-code compiler.

3.2.4.1 MULADD Units

Each MULADD unit is a fully pipelined, 3-input, l-output, 64-bit floating point and
integer unit that performs variations of fused multiply-add as well as logic and comparison
operations. The MULADD unit has the ability to compute the quantities: A x B 4+ C,
Ax B—C,and —A x B+ C. The operands may be in IEEE 754 floating-point format or
in signed or unsigned integer formats. Other than fused multiply-add, the third operand
is also used in conditional selects for predicated execution.

The local register file of a MULADD unit is depicted in Figure 3.9 as logically having

two write and three read ports. For reasons of area efficiency this register file is internally

3.2. PROCESSOR ARCHITECTURE 25

composed of three register files each with 32 64-bit words, one read port and one write
port. The organization of a MULADD unit’s LRF is shown in Figure 3.10. The three read
ports supply operands to the MULADD unit through a 3 x 3 switch, thus reading operands
from any of the three register files. Because of the LRF organization, no two operands
for any instruction may be stored in the same single-ported register file. During register
allocation, the compiler ensures that the three operands of an instruction are stored in
separate internal register files. Some variables may need to be duplicated for this purpose.
Similarly, the write ports are attached to the intra-cluster switch via a 2 x 3 switch. We
found that 2 write ports are sufficient for efficient VLIW scheduling and allow us to keep
the VLIW micro-instruction to 448 bits. While adding a third write port to each register
file does not have significant area overhead on the cluster area, an additional machine

word (64 bits) will be added to each VLIW micro-instruction.

LRF a
64 g
64
LRF a %)
o g
(@]
64
LRF a =
64

Figure 3.10: MULADD local register file organization.

3.2.4.2 ITER Functional Unit

The iterative function acceleration unit is a fully pipelined unit designed to accelerate the
iterative computation of floating-point reciprocal and reciprocal square-root. The oper-
ation of the ITER unit consists of looking up an 8-bit approximation of the function to
be computed in a dedicated ROM and expanding it to a 27 bit approximation which can
then be used to compute a full precision result in a single Newton-Raphson iteration per-
formed on the regular MULADD units. The foundation for this unit is Albert Liddicoat’s
work [101, 100].

The basis for accelerating the iterative operation are the generalization of the Newton
Raphson iteration method and the utilization of low-precision multipliers. For example,

to calculate a reciprocal value #, the (i+ 1) iteration is computed by Xj 1 = X;(2—bX;)

56 CHAPTER 3. MERRIMAC

and Xy is an initial approximation, typically from a lookup table. Equations 3.1-3.4 show
the effect of chaining two iterations into a single expression. Looking at the form of this
equation, we can generalize the Newton Raphson method to a k* order approximation
as: Xiy1 = X; (1 +(1=bX) + (1 —bX)* 4+ -+ (1 — in)k). We use a second order
Newton Raphson to take an approximate 8-bit seed to a roughly 27-bit precision value.

The sizes of the tables and precision are based on the reported values in [100].

Xivo = Xip1(2-0Xi41) (3
= (X;(2-0X;) (2 - X (2-0X5))) (3.
= X, (4- 26X+ 4(bX)" - (bX,)°) (3
= X (14 (1= bX) + (1 - bX,)%) (3

Because X is an approximation of the inverse of b, the first 7 bits of their products are
guaranteed to be 0, which reduces the size of the multiplier. The squaring and cubing units
are much smaller than full multipliers because of the fact that the same two numbers are
multiplied by each other. Also because we are multiplying fractions, the least significant
bits are not very important. Of course they could potentially all be ones and generate a
carry that would cause an additional bit, but we can tolerate up to 0.5 bits of error. We
will use that to cut off whole columns from the partial products that we have to calculate
in the squaring and cubing units. A full explanation of the cost saving due to the low

precision multipliers is given in [101, 100].

1
\/B?
can be written as Y = Yp (1 +3(1-bXo)+2(1— bXo)? + 2 (1- bX0)3), with Yp the
initial approximation of % and X, the approximation of ;. Please see [100] for a detailed

Similarly to the calculation of the inverse, the second order approximation of

derivation. The final Newton Raphson iteration for calculating the full double precision
number is given by Y; 11 = %Yz(?) —bY).

The internal structure of the unit is shown in Figure 3.11 and is described below. The
sign of the output is carried over from the input . The path of the exponent is simple, in
the case of an inverse square root operation, it is shifted right by one to divide it by 2.
Then for both cases this result is negated.

The lookup table uses the 8 most significant bits of the fraction (not the implicit leading

1). The table provides the approximates of both the inverse and inverse square root with

3.2. PROCESSOR ARCHITECTURE o7

8 bits of precision. The inverse square root is only used in the final multiplication if the
function is inverse square root.

Depending on the operation, inverse or inverse square root the results are multiplied
by fractions of power of 2 (shifts and additional partial products). In the case of an inverse
square root operation, there are 6 partial products to be added by the adder just before
the end.

The Final multiplier multiplies the result of the addition with an 8 bit number from
the lookup table. The 27 bit precise result will be padded with zeroes to be given to the
register file of a MULADD unit.

The local register file (LRF4 in Figure 3.9) of the ITER unit has 32 words of 64-bits
each. A single write port attaches to the intra-cluster bus and a single read port supplies

an operand to the functional unit.

3.2.4.3 COMM Functional Unit

The COMM unit is a 3-input, l-output, fully pipelined unit that handles inter-cluster
communication. It is the only functional unit that is connected to both the intra-cluster
and the inter-cluster switches. On every cycle it is capable of receiving a value from
the inter-cluster switch and sending a value onto the inter-cluster switch. The SEND
operation looks up a value in the LRF and sends it on the inter-cluster switch. It also
looks up a second value in the LRF, and uses this permutation (perm) value to select a
port on the inter-cluster switch belonging to sending cluster ID perm. This is done by
sending the port number along the vertical wires of the inter-cluster switch. More details
can be found in Subsection 3.2.6. The COMM unit then reads the value sent by the remote
cluster from the switch and places it on the COMM unit’s output bus. The 1-bit operand
of the COMM unit is a condition code used for conditional select operations.

The condition code operand is provided by a 32-entry, 1-bit register file with 1 read
port and 1 write port (LRF5 in Figure 3.9). The other two register files (LRF6 and LRF7
in Figure 3.9) each have 32 64-bit words, 1 read port and 1 write port. Their output is

applied to a 2 x 2 switch before operands are supplied to the functional unit.

3.2.4.4 JUKEBOX Functional Unit

A jukebox represents the state registers and control logic required to implement conditional

streams. The JB broadcasts and collects condition information to and from the other

58 CHAPTER 3. MERRIMAC

Figure 3.11: Accelerator unit for iterative operations (ITER).

B_exp B_sig 8
Lookup table
in: 8
out: 2x 8 bits Function
| approximate
W12 X, 1B
N
N53 8 \\8
h J
Op == 1/sqrt Y
| >>
*
1-B*X,
y \] 46 (first 7 bits garanteed to be 0,
because X)
0-x l
h J
Truncated Truncated
squaring unit cubing unit
h J i ¢
Op 1/x: *1 Op 1/x: *1 Op 1/x: *1
Op 1/sqrt: *1/2 Op 1/sqrt: *3/8 Op 1/sqrt: *5/16
Out_exp N12
Out_sig N\27
\4

3.2. PROCESSOR ARCHITECTURE 29

arithmetic clusters and based on this information computes whether the cluster it is on
must access its SRF and what port of the inter-cluster network to use to obtain the data.

Details on the JB unit can be found in [81, 86].

3.2.4.5 INOUT Functional Units

The INOUT units are not physical function units, rather, they represent the interface
between the clusters and the SRF. Each cluster has four INOUT units that connect intra-
cluster switch ports to the SRF. There are two kinds of ports from the intra-cluster switch
to the SRF: data input/output ports (DINOUTSs) and address output ports (AOUTS).
A DINOUT port consists of an input port from the SRF to the intra-cluster switch
and an output port from the intra-cluster switch to the SRF. The Merrimac architecture

supports several types of stream accesses from the clusters:

1. Sequential streams: these are typically setup by the stream controller before kernel
execution starts, and require only data read/writes over the DINOUTS. No AOUT

ops are required.

2. Cluster-indexed streams: these are explicitly indexed by the clusters, and require

AOUT ops to be issued prior to the corresponding DINOUT ops.

3. Conditional streams: these streams allow clusters to selectively inhibit stream access

at the level of individual records based on dynamically computed conditions.

A kernel may contain up to 12 concurrently active streams, and the SRF is capable of
managing as many streams. However, intra-cluster switch bandwidth limitations constrain
the number of DINOUTs and AOUTs per cluster to 4 of each. DINOUT 0 interfaces with
streams 0, 4, and 8. Similarly, DINOUT 1, 2, and 3 interface with streams (1, 5, and 9),
(2, 6, and 10), and (3, 7, and 11). The 4 AOUTSs correspond to the 12 streams in the same
manner. In addition, all 4 AOUT ports also connect to a special address port in the SRF
sub-block used for cross-lane stream accesses. While each DINOUT and each AOUT may
perform an operation every cycle, only one of the streams connected to each unit may be
accessed at a time.

The next subsection provides further details about the cluster/SRF interface, stream

operations, stream types, and other SRF-related resources.

60 CHAPTER 3. MERRIMAC

3.2.4.6 Intra-cluster Switch and Register Files

The intra-cluster switch enables communications between the various functional units
within a cluster. It connects 15 data producers (7 functional units and 4 DINOUT data
words along with 4 valid flags from the stream-buffers) to 21 data consumers (13 LRF
write ports, 4 DINOUT links to stream buffers, and 4 AOUT links to address FIFOs). It
is input-switched, meaning that the output from each functional unit goes on a dedicated
bus. The consumers of data then select one of the dedicated buses. The micro-instruction
word contains slots for every write port on every LRF. Each slot specifies a register index
and a source for the input. The register writes are predicated in hardware depending
on the state of a software pipelined loop and based on which stage of the loop the write
belongs to. Based on this information, the micro-controller is able to squash writes during

the priming and draining of the software pipeline (Subsection 3.2.7).

3.2.5 Stream Register File

The Merrimac architecture is designed around the concept of streaming, and data trans-
fers are grouped into sequences of data records called streams. The stream register file
(SRF) serves as the source or destination for all stream transfers. Input data streams
are transferred from memory to the SRF. Compu