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Abstract—Today, larger memory capacity and higher memory
bandwidth are required for better performance and energy
efficiency for many important client and datacenter applications.
Hardware memory compression provides a promising direction
to achieve this without increasing system cost. Unfortunately,
current memory compression solutions face two significant
challenges. First, keeping memory compressed requires
additional memory accesses, sometimes on the critical path, which
can cause performance overheads. Second, they require changing
the operating system to take advantage of the increased capacity,
and to handle incompressible data, which delays deployment.
We propose Compresso, a hardware memory compression archi-
tecture that minimizes memory overheads due to compression,
with no changes to the OS. We identify new data-movement
trade-offs and propose optimizations that reduce additional
memory movement to improve system efficiency. We propose a
holistic evaluation for compressed systems. Our results show that
Compresso achieves a 1.85x compression for main memory on aver-
age, with a 24% speedup over a competitive hardware compressed
system for single-core systems and 27% for multi-core systems. As
compared to competitive compressed systems, Compresso not
only reduces performance overhead of compression, but also
increases performance gain from higher memory capacity.

I . I N T RO D U C T I O N

Memory compression can improve performance and
reduce cost for systems with high memory demands, such as
those used for machine learning, graph analytics, databases,
gaming, and autonomous driving. We present Compresso,
the first compressed main-memory architecture that: (1)
explicitly optimizes for new trade-offs between compression
mechanisms and the additional data movement required
for their implementation, and (2) can be used without any
modifications to either applications or the operating system.

Compressing data in main memory increases its effective
capacity, resulting in fewer accesses to secondary storage,
thereby boosting performance. Fewer I/O accesses also
improve tail latency [1] and decrease the need to partition tasks
across nodes just to reduce I/O accesses [2, 3]. Additionally,
transferring compressed cache lines from memory requires
fewer bytes, thereby reducing memory bandwidth usage. The
saved bytes may be used to prefetch other data [4, 5], or may
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even directly increase effective bandwidth [6, 7].
Hardware memory compression solutions like IBM

MXT [8], LCP [4], RMC [9], Buri [10], DMC [11], and
CMH [12] have been proposed to enable larger capacity,
and higher bandwidth, with low overhead. Unfortunately,
hardware memory compression faces major challenges that
prevent its wide-spread adoption. First, compressed memory
management results in additional data movement, which can
lead to performance overheads, and has been left widely
unacknowledged in previous work. Second, to take advantage
of larger memory capacity, hardware memory compression
techniques need support from the operating system to
dynamically change system memory capacity and address
scenarios where memory data is incompressible. Such support
limits adoptive potential of the solutions. On the other hand,
if compression is implemented without OS support, hardware
needs innovative solutions for dealing with incompressible data.

Additional data movement in a compressed system is caused
due to metadata accesses for additional translation, change
in compressibility of the data, and compression across cache
line boundaries in memory. We demonstrate and analyze the
magnitude of the data movement challenge, and identify novel
trade-offs. We then use allocation, data-packing and prediction
based optimizations to alleviate this challenge. Using these
optimizations, we propose a new, efficient compressed memory
system, Compresso, that provides high compression ratios
with low overhead, maximizing performance gain.

In addition, Compresso is OS-transparent and can run any
standard modern OS (e.g., Linux), with no OS or software
modifications. Unlike prior approaches that sacrifice OS
transparency for situations when the system is running out of
promised memory [8, 10], Compresso utilizes existing features
of modern operating systems to reclaim memory without
needing the OS to be compression-aware.

We also propose a novel methodology to evaluate the
performance impact of increased effective memory capacity
due to compression. The main contributions of this paper are:

• We identify, demonstrate, and analyze the data movement-
related overheads of main memory compression, and
present new trade-offs that need to be considered when
designing a main memory compression architecture.

• We propose Compresso, with optimizations to reduce
compressed data movement in a hardware compressed
memory, while maintaining high compression ratio by



(a) Compressed address spaces (OS-Transparent) (b) Ways to allocate a page in compressed space (c) Cache line overflow

Fig. 1: Overview of data organization in compressed memory systems.

repacking data at the right time. Compresso exhibits only
15% compressed data movement accesses, as compared
to 63% in an enhanced LCP-based competitive baseline
(Section 4).

• We propose the first approach where the OS is completely
agnostic to main memory compression, and all hardware
changes are limited to the memory controller (Section 5).

• We devise a novel methodology for holistic evaluation that
takes into account the capacity benefits from compression,
in addition to its overheads (Section 6).

• We evaluate Compresso and compare it to an uncom-
pressed memory baseline. When memory is constrained,
Compresso increases the effective memory capacity by
85% and achieves a 29% speedup, as opposed to an 11%
speedup achieved by the best prior work. When memory
is unconstrained, Compresso matches the performance
of the uncompressed system, while the best prior work
degrades performance by 6%. Overall, Compresso
outperforms best prior work by 24% (Section 7).

I I . OV E RV I E W

In this paper, we assume that the main memory stores com-
pressed data, while the caches store uncompressed data (cache
compression is orthogonal to memory compression). In this
section, we discuss important design parameters for compressed
memory architectures, and Compresso design choices.

A. Compression Algorithm and Granularity

The aim of memory compression is to increase memory
capacity and lower bandwidth demand, which requires a
sufficiently high compression ratio to make an observable
difference. However, since the core uses uncompressed data,
the decompression latency lies on the critical path. Several
compression algorithms have been proposed and used in this
domain: Frequent Pattern Compression (FPC) [13], Lempel-Ziv
(LZ) [14], C-Pack [15], Base-Delta-Immediate (BDI) [16], Bit-
Plane Compression (BPC) [6] and others [17, 18]. Although LZ
results in the highest compression, its dictionary-based approach
results in high energy overhead. We chose BPC due to its higher
average compression ratio compared to other algorithms. BPC
is a context-based compressor that transforms the data using its
Delta-Bitplane-Xor transform to increase data compressibility,
and then encodes the data. Kim et al. [6] describe BPC in
the context of memory bandwidth optimization of a GPU. We

adapt it for CPU memory-capacity compression by decreasing
the compression granularity from 128 bytes to 64 bytes to
match the cache lines in CPUs. We also observe that always
applying BPC’s transform is suboptimal. We add a module that
compresses data with and without the transform, in parallel,
and chooses the best option. Our optimizations save an average
of 13% more memory, compared to baseline BPC. Compresso
uses the modified BPC compression algorithm, achieving
1.85x average compression on a wide range of applications.

Compression Granularity. A larger compression
granularity, i.e., compressing larger blocks of data, allows a
higher compression ratio at the cost of higher latency and data
movement requirements, due to different access granularities
between core and memory. Compresso uses the compression
granularity of 64B.

B. Address Translation Boundaries

Since different data compress to different sizes, cache lines
and pages are variable-sized in compressed memory systems.
As shown in Fig. 1a, the memory space available to the OS
for allocating to the applications is greater than the actual
installed memory. In any compressed memory system, there
are two levels of translation. (i) Virtual Address (VA) to OS
Physical Address (OSPA), the traditional virtual-to-physical
address translation, occurring before accessing the caches to
avoid aliasing problems and (ii) OSPA to Machine Physical
Address (MPA), occurring before accessing main memory.

Fixed-size pages and cache lines from the VA need to
be translated to variable-sized ones in MPA. OS-transparent
compression translates both the page and cache line levels
in the OSPA-to-MPA layer in the memory controller. On the
other hand, compression-aware OS has variable-sized pages in
OSPA space itself, and the memory controller only translates
addresses into the variable cache line sizes for the MPA space.

Bus transactions in the system happen in the OSPA space.
Since OS-aware solutions have different page sizes as per com-
pressibility, in OSPA, their bus transactions do not follow current
architectural specifications. Hence, all hardware, including all
peripheral devices and associated drivers, must be modified to
accommodate the change. Compresso, being OS-transparent,
has the same, fixed-page size in VA and OSPA spaces, for
example, only 4KB pages. Larger OS page sizes (2MB, 1GB
etc.) can be broken into their 4KB building blocks in the MPA.
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Fig. 2: Compression ratio with BPC and BDI with LCP-Packing vs LinePack.

C. Packing Compressed Cache Lines

Compressed cachelines are variable-sized, thus requiring a
scheme for their placement within a page. The tradeoff lies
between a high compression ratio and the ease of calculating
the offset of the cacheline. There are two main ways of packing
the cachelines. (i) LinePack: Storing the encoded sizes of each
cacheline within the page, and calculating the offset by sum-
ming the line-sizes before it. For example, we could compress
cache lines to 4 allowed sizes, thereby requiring 2 bits of meta-
data per cacheline. (ii) LCP-Packing: Linearly Compressed
Pages (LCP) [4] proposed a smart way to reduce translation
overhead, by compressing all the cache lines within a page to
the same target size. Exceptions, i.e., cache lines that do not com-
press to the target size, are stored uncompressed and handled
with explicit pointers in the metadata. Recent work [19] shows
that these exceptions can be frequent for some benchmarks.

There are two main motivations for using LCP-packing
compared to LinePack. (i) Simpler line-offset calculation.
However, this calculation is required only when accessing main
memory. In our evaluation, we describe a circuit that computes
the cacheline offset for LinePack in effectively one additional
memory cycle. (ii) LCP-packing allows a speculative main
memory request in parallel with the metadata request. For
exceptions, this leads to extra memory accesses. Additionally,
this assumes the TLB to be aware of target line-size per page,
which is not feasible in an OS-transparent system.

LCP-packing trades away high compression for simpler
translation. Given its lower packing flexibility, it can match
LinePack’s compression only for those pages that have similar
data across most cache lines; but underperforms when data
is more variable. We find that due to this, LCP-packing works
well with simpler compression algorithms. As shown in Fig. 2,
while LCP loses only 2.3% in compression ratio compared to
LinePack when used with BDI, it reduces the compression ratio
by 13% when used for the more-aggressive BPC. Compresso
uses LinePack with 4 possible cache line sizes.

D. Page Packing and Allocation

Fig. 1b shows the two ways a system can allocate
variable-sized pages. (i) Variable-sized chunks. The drawback
of this method is that it causes fragmentation and requires
sophisticated management. (ii) Incremental allocation in
fixed-sized chunks. These are trivial to manage, but need more
pointers in the metadata.

A smaller base unit allows for better maximum compression.
We choose 512B to be the base unit in order to balance metadata
with compression. Both schemes have a 512B minimum MPA
allocation for non-zero OSPA pages, however, chunk-based pack-
ing supports 8 MPA page sizes. For variable-sized chunks, more
sizes lead to more fragmentation. Additionally, more page sizes
can lead to more compressed data movement as discussed later,
in Section IV-A1. Hence, we choose to evaluate the scheme
with only 4 variable-sized chunks. We compare variable-sized
chunks (512B, 1KB, 2KB and 4KB) with 512B fixed-sized
chunks. Compresso uses incremental allocation in 512B chunks,
thereby allowing 8 page sizes (512B, 1KB, 1.5KB and so on).

I I I . C O M P R E S S O M E TA DATA

In both OS-aware or OS-transparent compressed systems,
each main-memory access (an LLC fill or writeback) requires
OSPA to MPA translation. This translation uses metadata for
identifying the offset within a page that corresponds to the
OSPA cacheline. In an OS-transparent system, the translation
from OSPA to MPA page number also happens using this
metadata. To perform translation, Compresso maintains
metadata for each OSPA page in a dedicated MPA space.
The total number of OSPA pages is fixed and is equal to the
memory capacity Compresso advertises to the OS during boot.
Compresso uses 64B per OSPA page as metadata, similar to
LCP [4], amounting to a storage overhead of 1.6% of the main
memory capacity. This metadata is stored in main memory, not
exposed to the OS, and has one entry per OSPA page, making
the metadata address computation just a bitwise shift and add.

Fig. 3 shows a metadata entry in Compresso. The control
section includes the page size and valid, zero, and compressed-
page flags. The valid bit is set if the OSPA page has been
mapped in MPA; the zero bit is set if the page contains all zeros;
and the compressed bit is cleared if the page is uncompressed.
Compresso also tracks the free space in each page to dynami-
cally identify opportunities for repacking for better compression.

The second part of metadata entry is the machine page
frame numbers (MPFNs). Up to 8 MPFNs are stored for
pointing to the 512B chunks that comprise a compressed

Fig. 3: Metadata entry organization.
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Left Bar: Fixed-sized chunks (512B)
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Split Cache-line Accesses
Overflow Handling Accesses

Metadata Cache Misses

Fig. 4: Additional compression-related data movement memory traffic relative to uncompressed baseline.

OSPA page. Each cacheline can be compressed to one of 4
possible sizes and Compresso needs 16B to store the encoded
line sizes (2 bits X 64, 64 cache lines in a 4KB page).

Inflation Room.Writebacks to a cacheline in the memory
can lead to overflows when its compressed size grows. In
a naive system, such an overflow would lead to multiple
memory accesses, as the rest of the page would have to be
moved to make more space. Instead, Compresso allows some
number of such inflated cachelines to be stored uncompressed
in the inflation room at the end of an MPA page, provided
that there is space in that page (Fig. 5a). This is similar to the
exception region in LCP, but is used for an entirely different
reason—to reduce compression-related data movement, rather
than to support a specific packing scheme. The cacheline
sequence numbers corresponding to such inflated lines, along
with the total number of inflated lines per page, are kept in
the metadata. A cache line size (64B) aligned metadata is
optimal for reducing extra data accesses. We use the leftover
bytes to store 17 inflation pointers (6 bits each), and a counter
for the number of inflated cachelines (6 bits).

I V. A D D I T I O NA L DATA M OV E M E N T

Addressing and managing compressed data in the main
memory can lead to significant data movement overhead,
an average of 63% additional accesses compared to an
uncompressed memory, and remains unevaluated in the previous
work. The additional memory accesses due to compression can
be from three sources: (i) Split-access cache lines: As the
cache lines are variable-sized in a compressed memory system,
they might be stored across the regular cache line boundaries
in the memory, thereby leading to multiple memory accesses
on the critical path (Fig. 5a). (ii) Change in compressibility
(overflows): As a cache line is written back from the LLC
to the memory, its compressibility could have been decreased,
meaning that it no longer fits in the space allocated to it. As
shown in Fig. 1c, such a cache line overflow can lead to
movement of the cache lines underneath the changed line. This
happens on average 4 times per 1000 instructions. Moreover,
if such incompressible data is streamed to a page, as its cache
lines grow one by one in size, the page can eventually overflow
its current allocation, for example, a 1KB page overflows to the
next possible page size, say, 2KB. Such a page overflow occurs
once every million instructions, and can require the relocation
of the complete page, leading to a lot of additional memory

reads and writes. (iii) Metadata accesses: As discussed earlier,
every memory access needs an OSPA to MPA translation.
Despite caching the relevant metadata, there can be misses,
leading to additional memory accesses on the critical path.

Fig. 4 shows additional memory accesses from compression
in a competitive baseline (based on LCP), relative to original
memory accesses by each benchmark. These additional accesses
amount to a high average of 63%, with a maximum of 180%.

A. Data Movement Related Trade-offs

A major contribution of Compresso is identifying new data
movement related trade-offs.

1) Possible Sizes for Cache Lines and Pages

There exists a trade-off between compression ratio and
the frequency of compressed data movement while choosing
the possible number of sizes for pages and cache lines. Here,
a possible size indicates one of the permissible sizes for a
compressed page or a compressed cache line. Prior work only
tries to maximize the compression ratio. More sizes lead to
better compression. However, more bins are likely to cause
more overflows, and trigger data movement. With respect to
cache line packing, using 8 or 4 compressed cache line sizes
offers 1.82 or 1.59 average compression ratio, respectively,
when coupled with 8 possible page sizes. However, 17.5% more
cache line overflows occur with 8 cache line sizes than with 4
cache line sizes. Supporting 8 size bins requires more metadata,
due to larger encoded cache-block sizes, and complicates the
offset-calculation circuit. Compresso uses 4 cache line bins.

A similar tradeoff exists with page size bins. 8 page
sizes can achieve an average compression ratio of 1.85, but
4 page sizes only reach 1.59. On the other hand, using 8
page sizes leads to upto 53% more page resizing accesses
compared to 4 page sizes. Compresso uses 8 page sizes with
incremental fixed-sized chunks of 512B. This choice enables
some important data movement optimizations that we discuss
later. However, without those data movement optimizations,
the better choice would be to have only 4 page sizes.

2) Cache Line Alignment

Split-access cache lines that cross cache line boundaries
in memory lead to 30.9% extra memory accesses on average
(Fig. 4), and yet have not been discussed in the previous work.
In order to avoid such split-accesses, the system can choose to
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keep holes in the page to make sure that the lines are aligned.
This leads to loss in compression (23% loss on average with
BPC) and complex calculations for cache line offsets. The
other possible solution is to have alignment-friendly cache
line sizes, as we discuss later.

B. Data-Movement Optimizations

We now describe the optimizations we use in Compresso in
order to alleviate the problem of compressed data movement.
Fig. 6 shows how these optimizations reduce data movement.
Without the full set of optimizations, our choice of incremental
allocation of 512B chunks does not outperform using 4
variable page size allocation. However, with all optimizations,
Compresso saves significant data movement compared to other
configurations, reducing the average relative extra accesses to
15% compared to 63% in a competitive compressed memory
system that uses 4 page sizes. We describe and analyze the
mechanisms below.

1) Alignment-Friendly Cache Line Sizes

Previous work [4, 9] selected the possible sizes for cache
lines as an optimization problem, maximizing the compression
ratio. This led them to use the cache line sizes of 0, 22, 44
and 64B. This choice leads to an average of 30.9% of cache
lines stored split across cache line boundaries. Accessing any
of these cache lines would require an extra memory access on
the critical path. We redo this search in order to maintain high
compression ratio while decreasing the alignment problem,
arriving at cache line sizes of 0, 8, 32 and 64B. The decrease
in compression is just 0.25%, while at the same time bringing
down the split-access cache lines from 30.9% to 3.2%. This
decrease in split-access cache lines is intuitive, given that the
cache line boundaries are at 64B. We note that if changes
are made to the cache line packing algorithm such that it
introduces holes in the pages to avoid split-access cache lines,
we can completely avoid extra accesses from misalignment.
However, that leads to higher complexity in the line-packing
algorithm, as well as the offset calculation of a line in a page.
Hence, we skip that optimization. Alignment-friendly cache
line sizes bring down the extra accesses from 63% to 36%.

2) Page-Overflow Prediction

One of the major contributors to compression data movement
is frequent cache line overflows. This often occurs in scenarios
of streaming incompressible data. For example, it is common
for applications to initialize their variables with zeros, and
then write back incompressible values to them. If a zero page,
which offers the maximum compressibility, is being written
back with incompressible data, its cache lines will overflow
one by one, causing the complete page to overflow multiple
times, as it jumps the possible page sizes one by one. In such
cases, we use a predictor to keep the page uncompressed to
avoid the data movement due to compression. A repacking
mechanism later restores the overall compression ratio.

We associate a 2-bit saturating counter with each entry
in the metadata cache (Fig. 5b). The counter is incremented

when any writeback to the associated page results in a cache
line overflow and is decremented upon cache line underflows
(i.e., new data being more compressible). Another 3-bit global
predictor changes state based on page overflows in the system.
We speculatively increase a page’s size to the maximum (4KB)
when the local as well as global predictors have the higher
bit set. Hence, a page is stored uncompressed if it receives
multiple streaming cache line overflows during a phase when
the overall system is experiencing page overflows.

False negatives of this predictor lose the opportunity to save
data-movement, while false positives squander compression
without any reduction in data-movement. We incur 22.5% false
negatives and 19% false positives on an average. This optimiza-
tion reduces the remaining extra accesses from 36% to 26%.

3) Dynamic Inflation Room Expansion

As discussed earlier, we use inflation room to store the cache
lines that have overflown their initial compressed size. However,
frequently, when a cache line overflows, it cannot be placed
in the inflation room because of insufficient space in the MPA
page, despite having available inflation pointers in the metadata.
As shown in Option 1 in Fig. 5c, prior work would recompress
the complete page, involving up to 64 cache line reads and 64
writes. Instead, we go for the optimized Option 2 ( Fig. 5c) and
allocate an additional 512B chunk, expanding the inflation room,
requiring only 1 cache line write. Due to metadata constraints,
this can be done only till the page has fewer than 8 allocations
of 512B chunks, and fewer than 17 inflated lines. With this, we
have reduced the remaining extra accesses from 26% to 19%.

4) Dynamic Page Repacking

Previous work [4, 9] in this field does not consider or
evaluate repacking (recompressing) a page while it is in main
memory. It is widely assumed that a page only grows in
size from its allocation, till it is freed (which then leads to
zero storage for OS-aware compression). However, we note
that even for OS-aware compressed systems, repacking is
important for long running applications. Fig. 7 shows the
loss in compression ratio if no repacking is performed (24%
storage benefits are squandered on average).

So far we have only focussed on dealing with decreasing
compressibility, and not increase in compressibility, or
underflows. However, as the cache lines within a page become
more compressible, the page should be repacked. Additionally,
we have proposed data-movement optimizations that leave
compressible pages uncompressed in order to save on
data-movement. Such poor packing will squander potentially
high compressibility. On the other hand, repacking requires
data movement, potentially moving many cache lines within
the page. If a page is repacked on each writeback that improves
compression ratio, it may lead to significant data movement.

The compression-squandering optimizations mostly affect
the entries that are hot in the metadata cache, since they
target the pages with streaming incompressible data, that get
evicted from LLC with high locality. Using this insight, we
choose metadata cache eviction of a page’s entry as a trigger

5



(a) Inflation Room (b) Page-Overflow Predictor (c) Dynamic Inflation Room Expansion

Fig. 5: Illustrations for data-movement optimizations.
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Dynamic IR Expansion 
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Final Extra accesses

Fig. 6: Reduction in additional compression-related data movement memory traffic as optimizations are applied one by one.

to check for its repacking. Compresso dynamically tracks the
potential free space within each page, as part of its metadata
entry. This is novel to Compresso and important to keep the
overheads of repacking low. Repacking is only triggered if
enough space is available to positively impact actual effective
memory use (i.e., deallocate at least one 512B chunk).

Dynamic Page Repacking reduces the compression
squandered from 24% to 2.6%, while amounting to only 1.8%
extra accesses. The small memory access overhead of repacking
is attributed to a reasonable choice of trigger for repacking.

5) Metadata Cache Optimization

A metadata cache of at least the same size as the second-
level TLB should be used in order to keep the common case
of a TLB hit fast. For most applications, this is a large-enough
size for capturing the metadata of its hot pages. However,
some benchmarks, like Forestfire and omnetpp, have high
miss rates, as shown in Fig. 4. A multi-core scenario with
such applications is particularly problematic.

We identify an optimization that expands metadata cache
coverage with low cost. We exploit the fact that all cache lines
in an uncompressed OSPA page are exactly 64B, and only
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Fig. 7: Loss in compression ratio from no repacking.

Challenge to deal with OS-Aware OS-Transparent

Translation from OSPA to MPA Yes Yes
Data movement due to size change Yes Yes
Metadata access overheads Yes Yes
No knowledge of free pages in OSPA No Yes
Overcommitment of memory by the OS No Yes

Tab. I: OS-aware vs. OS-transparent compression.

cache the first 32B of metadata for such pages (Fig. 3). The
saved cache space from these half-sized entries is used for
additional metadata entries, at the cost of a small amount of
extra logic and tag area. This optimization allows us to double
the effective cache size for incompressible data. Fig. 6 shows
that this optimization exhibits crucial increase in hit rates for
omnetpp, Forestfire, Pagerank and Graph500, despite using
the same area as a regular cache. This optimization brings
down the remaining extra accesses from 19% to 15%.

Fig. 6 shows, after applying all the data-movement
optimizations, the extra accesses are down to 15% on average,
of which 3.2% are due to split-access cache lines, 2.1% due
to change in compression, and 9.7% due to metadata cache
misses. Note that these optimizations are orthogonal and can
be applied separately, with the exception of Dynamic Inflation
Room Expansion, which needs to be used in combination
with a fixed-size chunk-based allocation.

V. O S - T R A N S PA R E N C Y C H A L L E N G E S

There are a few challenges of compressed memory that are
specific to OS-transparent systems (Tab. I).
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A. Keeping Memory Compressed

It is important to keep the memory highly compressed to
avoid running out of memory. For this, compression-aware
OS banks on using zero bytes for free pages. Even partially
OS-aware solutions like IBM MXT [8] require the OS to zero
out a page upon freeing it, which breaks OS transparency and
has high performance overheads. None of the previous work
actively repacks pages for better compression. Compresso keeps
memory compressed by aggressively re-compressing pages to
a smaller size when possible, as explained in Section IV-B4.

B. Running Out Of Main Memory

In a compressed system, the OS is promised an address
space larger than what is physically available. In cases
where the data in main memory is less compressible than
initially assumed, this can lead to an out-of-memory scenario
in the MPA space. When this happens, solutions prior to
Compresso raise an exception to the OS, thereby breaking the
OS transparency and requiring OS modifications. Compresso,
on the other hand, maintains complete OS transparency
by leveraging existing OS features developed for use by
virtual machines. Our challenge is very similar to the
over-commitment of memory in a virtualized environment,
where the total memory of all running virtual machines
exceeds the memory capacity of the host. Any modern OS that
can run as a virtual machine, including Linux, Windows, and
MacOS, uses memory ballooning [20]. Ballooning helps safely
overcommit memory in a virtualized environment without
substantial performance degradation due to paging on the host
(Fig. 8). When the memory pressure increases in one of the
virtual machines (e.g., VM0), the hypervisor uses a ballooning
driver, which is run within each guest, to reclaim memory
from another guest VM (e.g., VM1) and allocate it to the
memory-hogging virtual machine (VM0). To reclaim space,
the ballooning driver “inflates” by demanding pages from the
guest OS using system calls. With more memory required for
the balloon, the guest uses its regular paging mechanism to
provide that space, possibly paging out used pages. This means
that only free pages or cold pages are freed up. The page
numbers claimed by the balloon driver are communicated to
the hypervisor, which then unmaps them in physical memory.

We propose to use the same OS facility to solve the problem
of memory pressure resulting from poorly-compressed data.
The Compresso driver can inflate and inform the hardware
about the freed pages. Hardware then marks these pages
as invalid in its metadata, requiring no storage in the MPA
space. In case of Linux, the Compresso driver uses the APIs
around the core function __alloc_pages(). We recently
discovered similar OS-transparency ideas in a patent [21] with
little detail and no evaluation. Liu et al [22] evaluate the
performance overheads of ballooning on Linux. They show that
in a 2GB RAM system, 1GB can be reclaimed in under 500ms
without fragmentation and 1s for highly fragmented systems.

Fig. 8: Ballooning for OS-transparent handling of out-of-memory.

Memory % LCP Compresso Unconstrained

1-Core 4-Core 1-Core 4-Core 1-Core 4-Core

80%* 1.04 1.54 1.15 1.78 1.24 2.1
70%* 1.11 1.97 1.29 2.33 1.39 2.51
60%* 1.28 2.45 1.56 2.81 1.72 3.23

All performance relative to uncompressed constrained memory baseline.
*Not all benchmarks finish execution.

Tab. II: Speedup Results from Memory-capacity impact
evaluation with different constrained memory baselines.

V I . M E T H O D O L O G Y

A. Novel Dual-Simulation Methodology

In order to evaluate a compressed system in a holistic fashion,
it is imperative to understand all its aspects: (i) Overheads
due to compression latency and additional data movement,
(ii) Bandwidth impact of compression due to inherent
prefetching benefits and zero cache lines, and (iii) Impact of
memory capacity increase on the application. The first two
aspects of a compressed system have been evaluated in most
previous work using cycle-based simulations. However, we
observe that the memory capacity impact evaluation is missing,
without which, a compressed system’s evaluation is incomplete.

For a more complete evaluation of the system, we use
two performance evaluation mechanisms: (i) cycle-based
simulations to evaluate the latency overheads and bandwidth
benefits of compression; and (ii) memory-capacity impact runs
to evaluate the performance benefits of reduced OS paging when
more effective capacity is made available through compression.

Memory-Capacity Impact Evaluation. Memory capacity
impact evaluation requires complete runs of benchmarks, since
compression ratio does not generally exhibit a recurring phase
behavior. Since complete runs in simulators are highly time-
consuming, we run benchmarks on a real HW (Intel Xeon E5
v3 CPU) and OS (Linux: Kernel 3.16). The idea is to change
the memory available to the benchmark dynamically according
to its real-time compressibility. We use a profiling stage, in
which we run the applications and pause them every 200M
instructions to dump the memory they have allocated in the
physical address space and save vectors of the compression
ratio over instruction intervals. We then run the benchmark
using taskset on a fixed core, and use the hardware counters to
calculate the number of retired instructions in that core. This
instruction number is used to look up the saved vectors to get the
compression ratio and accordingly change the memory budget.

We use the cgroups feature of Linux to budget the memory,

7



either statically or dynamically. Static budgeting of the
memory replicates a regular system. Dynamically changing the
memory available to the system based on the compressibility
of the data in the memory allows us to emulate a compressed
system. The OS uses the swap area to page out the pages that
do not fit in the limited memory provided for the runs.

We evaluate the impact of compression on a system with
memory constrained to different fractions of the footprint
of the running benchmark or workload (Tab. II). As the
system becomes more memory constrained, the benefits of
compression generally increase, but at 60% of the footprint,
several benchmarks stall because of frequent paging. We
illustrate the results with 70% constrained memory in Fig. 10
and Fig. 11. Note that if the system is not memory-capacity
constrained, then the cycle-based evaluation alone captures
the performance impact of Compresso.

B. CompressPoints for Representative Regions

Cycle-based simulation requires representative regions of a
benchmark whose simulation results can be extrapolated for the
complete benchmark. SimPoints [24] uses just the basic-block
vectors (basic-block execution counts) to characterize the
intervals of a benchmark and has been shown to correlate well
with pipeline and caching behavior. However, while evaluating
a compressed system, representativeness of data is crucial,
leading us to use CompressPoints [23] instead.

CompressPoints extends basic-block vectors with memory
compression metrics, including the compression ratio, rate
of page overflows and underflows, and memory usage within
each interval. This leads to much better representativeness
of compression ratio. Consider GemsFDTD (Fig. 9), which
exhibits remarkably different compressibility between the
SimPoint and the CompressPoint. The performance simulation
results presented in this paper use 10 CompressPoints of
length 200 million instructions each.

C. Accuracy of Virtual Address Translation

Modern operating systems map all zero-initialized pages
in the system to a single page frame, marking it as a
copy-on-write. Therefore, if the virtual address space of
the benchmark is used to take the memory snapshots, the
compression ratios can be misleadingly high. In order to have
a realistic compression ratio, we follow the approach used
in [19] and [23], and use Linux proc filesystem. We use the
pagemap to get the physical addresses and the kpageflags file
to check whether a page is resident in main memory.

0 200 400 600 800 1000 1200
Billion Instructions

1 1
3 3
5 5
7 7
9 9

11 11
13 13

Co
m

pr
es

si
on
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GemsFDTD
Astar
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Compresspoint

Fig. 9: Difference between the compressibility representativeness
of SimPoint and CompressPoint for GemsFDTD and astar [23].

Core 3GHz OOO core × 1-4
Issue Width = 4
ROB = 192 entries
64KB L1D, 512KB L2
16-way 2MB L3 for 1-core, 8MB shared L3 for 4-core
64B cachelines
TLB miss overhead = 0

DRAM
8GB
DDR4-2666MHz (Capacity varied in Memory capacity evaluation)
BL=8, tCL=18, tRCD=18, tRP=18
Decompression/Compression overhead = 12
Metadata cache hit latency = 2
Compression related accesses added to regular RD/WR Queues
Compressed line sizes : 0/8/32/64 B
Compressed page sizes :

Basic Compressed System : 0/512B/1K/2K/4K
Compresso : 0/512B/1K/1.5K/2K/2.5K/3K/3.5K/4K

Tab. III: Performance simulation parameters.

D. Simulator and Benchmarks

We use SPECcpu2006, Graph500, Forestfire [25], and Pager-
ank (centrality) [25] benchmarks. For cycle-based simulation,
we extend zsim [26]. For energy estimation, we use McPAT [27]
and CACTI [28]. For BPC energy estimate, we use 40nm TSMC
standard cells. The evaluation parameters are detailed in Tab. III.
We add a 12-cycle latency for compression/decompression
with BPC. The model is similar to what is proposed by Kim
et al. [6] for BPC in GPGPUs. Extending it to CPUs, we use
8 cycles for buffering the cache line from DDR4, 2 cycles
to process 17 bit-planes, and 2 cycles for the concatenation.

E. Multi-Core Simulations

We divide the benchmarks into groups (high and low) based
on their single-core speedup, metadata cache hit rate, and
sensitivity to limited memory. The mixes are created by
selecting benchmarks such that there is equal representation
from each group, as shown in Tab. IV. Mix10 represents a
worst case scenario for compression overhead.

We use 10 multi-core CompressPoints, each of 200M
instructions found from the methodology described in [23].
We use the syncedFastForward feature of zsim for multicore
simulations, which fast-forwards the execution of all the cores
till they reach their CompressPoints, and then simulates their
run together, such that they are always under contention. For
memory capacity impact evaluation, the workload consists
of benchmarks rerunning under contention till the longest
running benchmark completes execution on the unconstrained
memory system. The same workload is then run on the
constrained memory system and the percentage progress of
each benchmark is measured after the elapsed time equals
to the total runtime on the unconstrained memory system.
The average progress across the individual benchmarks in the
workload is chosen as the metric for comparison.

F. Evaluated Systems and Baselines

In order to get a competitive baseline, we compare
Compresso to an optimized version of the system described
in the LCP [4] paper. It uses 4 different compressed page
sizes with an inflation room, and same size metadata cache

8
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(a) Cycle-based and Memory-capacity impact evaluation.
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(b) Overall performance (combining cycle-based and memory-capacity impact evaluations).
Mcf, GemsFDTD, and lbm are excluded, since they stall due to excessive paging if memory is constrained. Further discussion in text.

Fig. 10: Performance results for single-core system

as Compresso. It uses the OS-aware LCP with our optimized
BPC compression algorithm. The compression benefits of
zero-line accesses and free prefetch are simulated. This
forms the most competitive baseline based on prior work,
only lacking Compresso’s data movement optimizations.
Another related work, DMC [11], reports high compression
ratios, which are achieved by opportunistically changing
the granularity of compression – this involves substantial
additional data movement. Buri [10] is another compressed
memory system optimized for large databases, which also uses
LCP. Therefore, LCP with an OS-aware behavior, is the most
competitive baseline for Compresso. In addition, we separate
the impact of Alignment-friendly cache lines by evaluating
an LCP+Align version of LCP-system. We also evaluated
Compresso with LCP-packing (instead of LinePack), but
since the results were inferior across all benchmarks (average
slowdown of 11.8%), we do not report them in the paper.

Overall Performance is calculated as a multiplication of the
performance numbers from the cycle-based simulation and the
memory-capacity impact evaluation, since the two speedups
are mutually independent. This overall performance metric rep-
resents our best effort to estimate performance by combining re-
sults from the memory-capacity impact and cycle-based simula-
tions. Unfortunately, this metric does not take into account appli-
cation phase changes and more complex interactions where ca-
pacity and latency do not have a uniform impact on performance.
The unconstrained memory system provides an upper bound on
the performance gains possible with a larger memory capacity.

V I I . E VA L UAT I O N

Fig. 6 shows the impact of each data-movement optimization
on the additional memory accesses. In this section, we present
the results from performance simulations, and energy-area
overheads.

A. Single-Core Performance

Cycle-Based Simulation. Fig. 10a shows the relative
performance with respect to an uncompressed system. The
geomeans are 0.938 for LCP-system, 0.961 for LCP-system
with Alignment-friendly cache lines, and 0.998 for Compresso.
These results only show slowdowns due to compression
overheads or improvements due to bandwidth benefits, and
not the impact of increased memory capacity.

The applications gcc, Graph500, cactusADM, libquantum,
leslie3d, and soplex gain more than 2% performance over the
baseline uncompressed system. This happens because of two
reasons. First, fills (and writebacks) of all-zero cache lines
do not require memory access and are handled by accessing
(cached) compression metadata alone. Benchmarks like leslie3d
and soplex exhibit high zero-line accesses of 43% and 25%,
respectively. Among these, soplex, having the highest bandwidth
requirements, exhibits an overall relative performance of
6%. Second, a single 64B access to compressed memory
returns multiple compressed cache lines and acts as a free
prefetch. The libquantum benchmark, which also exhibits high
bandwidth demand, requires 12% fewer memory accesses in a
compressed system because of this prefetching. Compression
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(a) Cycle-based and Memory-capacity impact evaluation results.
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(b) Overall performance.

Fig. 11: Performance results for multi-core system

also increases the row buffer locality of libquantum and other
high spatial-locality benchmarks. The overall speedup for
libquantum with Compresso is 2% above baseline.

LCP-system (baseline), being OS-aware, requires a page fault
upon every page overflow. Being OS-transparent, Compresso
has a cheaper page overflow handling mechanism in addition
to having a lower number of page overflows overall, as a result
of the data movement optimizations we implement. This results
in the high incremental speedup benefits of Compresso over
LCP-system for benchmarks like gcc, cactusADM, libquantum,
astar, and soplex. These numbers can be directly explained
with Fig. 6. For instance, data movement optimizations bring
down the extra memory access of gcc from 91% to 4% and
of libquantum from 54% to 1%. Compresso decreases the
maximum slowdown due to compression from 31% to 15%.

For benchmarks mcf, omnetpp, Forestfire, and Pagerank,
the LCP+Align performs slightly better than Compresso. This
is due to the fact that in parallel with a metadata memory
access, LCP allows speculative access to the memory based
on the assumption that the cache line being accessed is not
an exception. This benefits the applications with very high
metadata miss rates.

Optimization-Based Performance Breakdown. On
average, performance is increased using alignment-friendly
cache line sizes by 2.4%, predicting incompressibility by 1.2%,
Dynamic Inflation Room Expansion by 1.1% and metadata
cache optimization by 0.5%.

Memory Capacity Impact Evaluation. Fig. 10a shows
the impact of memory compression applied to a constrained
memory system (at 70%), relative to an uncompressed baseline.
Gamess, h264ref, and bzip2 do not show much sensitivity to
limited memory, as even the uncompressed constrained system
achieves the maximum performance of an unconstrained mem-
ory system (Fig. 10b). Mcf, GemsFDTD, and lbm are highly
sensitive to memory capacity and stall due to frequent paging
in a constrained memory environment. Since they are all incom-
pressible, compression does not help either. However, when run
as a part of a workload with benchmarks that are compressible,
they complete execution, as we show in Section VII-B.

The rest of the benchmarks are either almost-linearly

Mix1 mcf, GemsFDTD, libquantum, soplex
Mix2 milc, astar, gamess, tonto
Mix3 Forestfire, lbm, leslie3d, hmmer
Mix4 sjeng, omnetpp, gcc, namd
Mix5 xalancbmk, cactusADM, calculix, sphinx3
Mix6 perlbench, bzip2, gromacs, gobmk
Mix7 bwaves, povray, h264ref, Pagerank
Mix8 mcf, bwaves, Graph500, perlbench
Mix9 Forestfire, povray, gamess, hmmer
Mix10 Forestfire, Pagerank, Graph500, cactusADM

Tab. IV: Workloads for multi-core evaluation

sensitive to the amount of memory they have, or, in some cases,
need at least some threshold level of memory to perform well
(Graph500, Forestfire, namd). Due to the lower compression
benefits of LCP, it exhibits an average relative performance
of 1.11 as compared to Compresso’s 1.29. The upper bound
for performance is approximated with unconstrained memory
system, which achieves a relative speedup of 1.39.

Combining the results from the two evaluations, we observe
an average relative overall speedup of 1.03 for LCP, 1.06 for
LCP+Align and 1.28 for Compresso. Compresso therefore,
outperforms the LCP by 24.2%.

B. 4-Core Performance Evaluation

Cycle-Based Simulation. Fig. 11a shows the performance
overheads of compression in a 4-core system. Mix1 shows good
performance with Compresso, despite containing mcf, which is
a bad performer in the single-core runs. This is because of the
more pronounced bandwidth reduction benefits due to soplex
and libquantum in Mix1. A similar pattern can be seen for
Mixes 2, 3, and 8. These Mixes also exhibit much higher per-
formance with Compresso than with LCP, due to the data move-
ment optimizations, and low page overflow handling overhead.

The pressure on the metadata cache is higher in a 4-core
scenario. The impact can be seen in Mixes 4 and 10. Mix4
contains omnetpp and sjeng, which are bad performers in
isolation due to high metadata miss rates. The compression
bandwidth benefits from gcc and namd balance this effect a little,
but it still results in a low performance of 0.92. Mix10 contains
Forestfire, Pagerank, and Graph500, all of which have high
metadata miss rates, but also have good compression, resulting
in 0.87 speedup (i.e., 13% slowdown). Compresso out-performs
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Fig. 12: Energy evaluation of Compresso

LCP across all Mixes. LCP+Align out-performs Compresso
for Mixes 4 and 10 by 1.3% and 1.4%, respectively, due to the
benefits gained from LCP’s parallel speculative memory access.
We evaluated these systems with a 96KB metadata cache. If
targeting warehouse-scale computing, the metadata cache size
could be increased, which could lead to better performance
in benchmarks like omnetpp, Forestfire, and Pagerank.

On average, relative speedups are 0.975 for Compresso, 0.9
for LCP, and 0.95 for LCP+Align.

Optimization-Based Performance Breakdown. On aver-
age, performance is increased using alignment-friendly cache
line sizes by 5.5%, and 1% each by predicting incompressibility,
dynamic IR expansion and metadata cache optimization.

4-Core Memory Capacity Impact Evaluation. Fig. 11a
shows the performance benefits of compression when applied
to a constrained memory system. Note that since not all
benchmarks reach their maximum footprint at the same time,
it allows a slack memory based on the phases of different
benchmarks in a workload. This is the reason why Mixes 2, 5
and 7 are not very sensitive to the memory availability, despite
containing xalancbmk, Pagerank, and povray, all of which are
very sensitive to limited memory when run in isolation.

Once some benchmarks in the workload have compressed
enough to allow the other incompressible benchmarks in the
workload to use more memory, the workload performs well
and additional memory does not make a difference. This can
be seen in the behavior of Mix 4.

The other Mixes exhibit better performance with Compresso,
since Compresso frees up more space as compared to LCP.
Mix10 again is interesting from this point of view, since it
gains more than 100% performance with Compresso over LCP.
This is because Forestfire, Pagerank, and Graph500 all gain
significant memory capacity when using LinePack over LCP.
On average, Compresso achieves 2.33 relative performance
over a constrained memory system, as compared to 1.97
achieved by LCP, and reaches very close to the upper bound,
unconstrained memory’s performance (2.51) (Fig. 11b).

Fig. 11b also shows the overall performance in a multi-core
scenario, combining the cycle-based and memory-capacity
impact evaluations. The relative overall speedup is 2.27 for
Compresso, 1.78 for LCP and, 1.9 for LCP+Align, relative
to the constrained memory system. Overall, in a 4-core setup,
Compresso achieves a 27.5% performance over LCP.

Related
Work

OS-
transparent

Hardware
changes

Compression
Granularity

Cacheline
packing

Data-movement
optimizations

IBM-MXT Partially LLC, MC 1KB N/A N/A
RMC No BST, MC 64B LinePack Light
LCP No TLBs, MC 64B LCP No
Buri Partially MC 64B LCP No
DMC Partially MC 64B or 1KB LCP or N/A No
Compresso Yes MC 64B LinePack Yes

Tab. V: Related work summary

C. Energy Overheads

Major effects of Compresso on system energy are on:
(i) core’s energy usage due to slowdown/speedup; (ii) DRAM
energy due to change in data movement; and (iii) memory
controller energy due to the BPC compressor/decompressor
and metadata cache. Upon synthesizing BPC with 40nm
TSMC standard cells [28] at 800MHz, we find that the active
power utilization is 7 mW, which is less than 0.4% of a
DRAM channel’s active power for a 2GB DDR4-2666 channel.
The access energy of an 8-way 96KB metadata cache is 0.08
nJ, which is less than 0.8% of a DRAM read access energy.

Fig. 12 shows that well-compressed benchmarks like zeusmp
and cactusADM exhibit DRAM energy benefits due to accesses
to zero cache lines that hit in metadata cache. Mcf, sjeng, Forest-
fire, Pagerank and omnetpp exhibit higher DRAM energy due to
extra memory accesses from metadata cache misses, and astar
has higher DRAM energy due to compression-related data move-
ment. In comparison to the LCP-system, Compresso achieves
60% more energy savings, and 19% over the LCP+Align system.
Compared to an uncompressed system, Compresso reduces
DRAM energy by 11% and has equal core energy usage.

Previous work [29] shows that compression may increase
bus toggling energy. While a detailed evaluation of bus models
is beyond our scope, Seol et al. [30] have demonstrated that the
DRAM channel switching energy, for example, comprises only
7% of the DRAM subsystem energy. Further, Ghose et al. [31]
conclude that BDI-based compression does not consume more
internal DRAM switching energy than a baseline memory
system, though an energy-optimized encoding can reduce
internal-DRAM switching energy by 24% on average across a
set of benchmarks. Given that Compresso reduces compressed
data movement by an average of 45% and its better compression
ratio decreases paging, the overall energy savings are positive.
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D. Area Overhead

The BPC compressor unit with our optimizations synthesized
using 40nm TSMC standard cells [32] at 800MHz requires an
overall area of 43Kµm2, corresponding to roughly 61K NAND2
gates. A 96KB metadata (single read/write port) cache has an
area of roughly 100Kµm2 [28]. Although the area overhead
is not negligible, the benefits from Compresso justify it.

E. Cache Line Offset Calculation

In Compresso, we find the position of a cache line within
a compressed page by looking up the metadata cache and
calculating the offset with a custom low-latency arithmetic
unit. The bin sizes (0/8/32/64B) are first shifted right by 3 bits
to reduce their width. We then need to add up to 63 numbers
of values 0/1/4/8. A simple 63-input 4-bit adder requires under
1.5K NAND gates and 38 NAND-gate delays, which can be
reduced to 32 gate delays with some optimizations that take
possible inputs into account. DDR4-2666MHz allows only
˜30 gate delays in one cycle, but this offset calculation can
be partially parallelized with metadata cache lookup, thereby
making the overhead only 1 cycle.

V I I I . R E L AT E D W O R K

Software memory compression has been implemented
in commercial systems for the past decade. For example,
Linux (since Linux 3.14 and Android 4.4), iOS [33] and
Windows [34] keep background applications compressed. Any
access to compressed pages generates a compressed-page fault,
prompting the OS to decompress the page into a full physical
frame. Since the hardware is not involved, hot pages are stored
uncompressed, thereby limiting the compression benefits.

Most other prior work in system compression deals
with cache compression or bandwidth compression [5]–
[7, 13, 16, 18, 35]–[45]. We summarize the prior work in
main memory compression in Tab. V.

IBM MXT [8] was mostly non-intrusive, but required a
few OS changes. The OS was informed of an out-of-memory
condition by the hardware changing watermarks based on
compressibility. Furthermore, OS was required to zero out
free pages to avoid repacking data in hardware. Since the
compression granularity was 1KB, a memory read would result
in 1KB worth of data being decompressed and transferred. To
address this, a large 32MB L3 cache with a 1KB line size
was introduced. These features would significantly hinder the
performance and energy efficiency of MXT in today’s systems.

Robust Memory Compression [9] was an OS-aware
mechanism, proposed to improve performance of MXT. RMC
used translation metadata as part of page table data and cached
this metadata on chip in the block size table. RMC used 4
possible page sizes, and divided a compressed page into 4
subpages, with a hysteresis area at the end of each subpage
to store inflated cache lines.

Linearly Compressed Pages [4] was also OS-aware. It
addressed the challenge of cache line offset calculation by
compressing them all to same size, such that compression still
remains high. It used an exception region for larger cachelines

in order to achieve higher compression, hence still requiring
metadata access for every memory access.

Buri [10] targeted lightweight changes to the OS by manag-
ing memory allocation and deallocation in hardware. However,
it required the OS to adapt to scenarios with incompressible data,
using similar methods as MXT. It used an OS-visible “shadow
address” space, similar to OSPA and used the LCP approach to
handle computing cache line offsets within a compressed page.

DMC [11] proposed using two kinds of compression : LZ
at 1KB granularity for cold pages and LCP with BDI for hot
pages. It decides between the 2 compression mechanisms in
an OS-transparent fashion, at 32KB boundaries, which can
potentially increase the data movement. Additionally, LCP is
now applied for 32KB pages instead of 4KB pages, resulting
in lower compression.

CMH [12] proposed compression to increase the capacity of
a Hybrid Memory Cube (HMC), by having compressed and
uncompressed regions per vault, with a floating boundary in
between. The compression and allocation granularity is at the
cache-block level, thereby not needing any page movement.
However, having to maintain strictly separate compressed and
uncompressed regions amplifies the problem of cache-block
level data movement, causing their scheme to require explicit
defragmentation every 100 million cycles.

I X . C O N C L U S I O N

We identify important tradeoffs between compression
aggressiveness and unwanted data movement overheads of
compression, and optimize on these tradeoffs. This enables
Compresso to acheive higher compression benefits while
also reducing the performance overhead from this data
movement. We present the first main-memory compression
architecture that is designed to run an unmodified operating
system. We propose a detailed holistic evaluation with high
accuracy using the novel methodologies of Memory Capacity
Impact Evaluations. Overall, by reducing the data movement
overheads while keeping high compression, we make main
memory compression pragmatic for adoption by real systems,
and show the same with holistic evaluation.
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