Memory Mapped ECC Low-Cost Error Protection for Last Level Caches

Doe Hyun Yoon Mattan Erez

- Reliability issues in caches
 - Increasing soft error rate (SER)
 - Cost increases with error protection capability
- Memory Mapped ECC
 - Two-tiered error protection
 - Tier-1 Error Code: Light-weight on-chip error codes
 - Tier-2 Error Code: Strong error codes in DRAM namespace
 - T2EC storage is off-loaded to DRAM
 - No compromise on error protection
 - Achieved 15% area and 8% power reduction
 - Low performance overhead 1.3% on average
 - Supports arbitrary error codes

Background

Error Detecting and Correcting Codes

- Parity for error detection
- SEC-DED (Hamming code)
 - Single bit Error Correction and Double bit Error Detection

Error Detecting and Correcting Codes

- Parity for error detection
- SEC-DED (Hamming code)
 - Single bit Error Correction and Double bit Error Detection
- DEC-TED
 - Double bit Error Correction and Triple bit Error Detection

- Interleaving
 - To protect burst (adjacent) errors
 - N-way Interleaved code makes an N-bit burst error to N single bit errors for each error code

- Interleaving
 - To protect burst (adjacent) errors
 - N-way Interleaved code makes an N-bit burst error to N single bit errors for each error code
- 8-way interleaved SEC-DED for a 64B cache line
 - 8 SEC-DED codes (8B)
 - 13% Overhead
 - Can correct up to 8 bit burst errors

Conventional Uniform Error Protection

ECC increases area, leakage/dynamic power

(c) Doe Hyun Yoon

Related Work

(c) Doe Hyun Yoon

NCObservations on Soft Errors in LLC

- Error detection common case operation
 Every cache line read requires error detection
- Only dirty cache lines need ECC
 - Memory hierarchy provides multiple copies for clean lines

Prior work – PERC [Sorin 06] and Energy Efficient [Li 04]

Read only data and EDC – save dynamic power Power gate ECC of clean lines – save static power

(c) Doe Hyun Yoon

Area Efficient Scheme [Kim 06]

Allow only 1 dirty line per set

May cause detrimental cleaning traffic

(c) Doe Hyun Yoon

Memory Mapped ECC

(c) Doe Hyun Yoon

Not constructions on Soft Errors in LLC

- Error detection -- common case operation
 Every cache line read requires error detection
- Only dirty cache lines need ECC
 Memory hierarchy provides multiple copies for clean lines
- Soft Error Rate is increasing, but is still very low
 - Mean time to failure (MTTF) of a 32MB cache is estimated as 155 days even with pessimistic assumptions
- Error correction uncommon, extremely rare, case
 latency/complexity is not important

MME Architecture – 15% Area Saving

MME Architecture – 15% Area Saving

T2EC is memory mapped to DRAM namespace

(c) Doe Hyun Yoon

Last Level Cache

T2EC in DRAM

(c) Doe Hyun Yoon

ways				A physical cache line				
ſ	-		4		a T2EC in DRAM	F		
set -				1				
				1				
				$\left \right $		-		+
				-				
]				
Data + T1EC (64B+1B)					T	1 2EC (8B)		
Last Level Cache					r	T2EC in DRAM		

(c) Doe Hyun Yoon

- T2EC is inherently private to a cache
 - Can be easily integrated with cache coherent multi processor systems
- T2EC region in DRAM
 - 128kB for a 1MB cache in our example (8way SEC-DED as T2EC)
 - Relatively small compared to DRAM capacity
 - Can be reserved by OS or BIOS
- A generic way of providing meta-data for physical cache lines
- Performance impact
 - Increased cache miss rate due to T2EC in caches
 - Increased traffic of T2EC reads and writes

Memory Mapped ECC – RECAP

- Two-Tiered Error Protection
- Low on-chip ECC cost
 - Only T1EC on-chip, T2EC storage is off-loaded to DRAM
 - 15% area and 8% power in a 1MB cache (45nm Cacti model)
- No compromise on error protection capability
 - T2EC provides strong error protection
- T2EC is memory mapped and cacheable
 - Dynamic and transparent partition of LLC into data and T2EC
- Worst case error correction is roughly DRAM latency
- Flexibility in design T1EC/T2EC
 - T1EC: error detection, T2EC: error correction
 - T1EC: light-weight error correction, T2EC: strong error correction
 - More examples in our paper

Evaluation

(c) Doe Hyun Yoon

- GEMS + DRAMsim
 - An out-of-order 3GHZ SPARC processor core
 - Exclusive two level cache hierarchy
 - L1: split I/D, each 2-way 64kB
 - L2: unified 8-way 1MB
 - DDR2 667MHz DRAM: 5.33GB/s
 - Eager write-back is integrated
 - Dirty lines are periodically scanned and cleaned
- Workloads
 - 16 data-intensive applications from SPLASH2, PARSEC, and SPEC 2006
 - Other non data-intensive applications are insensitive to our technique
 - Omitted for clarity and emphasize degradation

Performance – 1.3% Penalty on Average

Comparison to MAXn Scheme

Traffic Increase – 2% on Average

- Flexible two-tiered error protection
 - Low on-chip overhead of only T1EC
 - No dedicated on-chip storage for T2EC
- No compromise on error protection
 - T2EC is memory mapped and cacheable
- Reduced cost
 - 15% area saving and 8% LLC power saving
- Performance impact
 - 1.3% on average
- DRAM traffic
 - 2% increase on average

