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Abstract
The Merrimac supercomputer uses stream processors and a high-
radix network to achieve high performance at low cost and low
power. The stream architecture matches the capabilities of modern
semiconductor technology with compute-intensive parallel applica-
tions. We present a detailed case study of porting the GROMACS
molecular-dynamics force calculation to Merrimac. The charac-
teristics of the architecture which stress locality, parallelism, and
decoupling of memory operations and computation, allow for high
performance of compiler optimized code. The rich set of hardware
memory operations and the ample computation bandwidth of the
Merrimac processor present a wide range of algorithmic trade-offs
and optimizations which may be generalized to several scientific
computing domains. We use a cycle-accurate hardware simulator
to analyze the performance bottlenecks of the various implementa-
tions and to measure application run-time. A comparison with the
highly optimized GROMACS code, tuned for an Intel Pentium 4,
confirms Merrimac’s potential to deliver high performance.

1. Introduction
Modern semiconductor technology allows us to place hundreds

of functional units on a single chip but provides limited global on-
chip and off-chip bandwidths[25, 9]. General purpose processor
architectures have not adapted to this change in the capabilities and
constraints of the underlying technology, still relying on global on-
chip structures for operating a small number of functional units[4,
5, 15]. Stream processors[13, 3], on the other hand, have a large
number of functional units, and utilize a deep register hierarchy
with high local bandwidth to match the bandwidth demands of the
functional units with the limited available off-chip bandwidth.

A stream program exposes the large amounts of data parallelism
available in some application domains, as well as multiple levels
of locality. The Merrimac stream processor then exploits the paral-
lelism to operate a large number of functional units and to hide the
long latencies of memory operations. The stream architecture also
lowers the required memory and global bandwidth by capturing
short term producer-consumer locality, such as the locality present
within a function call, in local register files (LRF) and long term
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producer-consumer locality in a large stream register file (SRF),
potentially raising the application’s arithmetic intensity (the ratio
of arithmetic to global bandwidth).

Merrimac [3] is a design for a fully-programmable streaming
supercomputer tailored specifically to exploit the parallelism and
locality of many scientific codes. The design is scalable up to
a 16, 384 processor 2PFLOPS system. The core of Merrimac is
the single chip Merrimac processor, aimed for 90nm CMOS tech-
nology at 1GHz, that directly connects to 2GB of fast commodity
DRAM and to the global interconnection network. We estimate the
parts cost of this 128GFLOPS (double-precision) node to be under
$1, 000, and expect Merrimac to be more cost effective as both a
capacity and capability machine than ones designed using conven-
tional processors.

This paper deals with the development of the StreamMD molec-
ular dynamics application on Merrimac and its performance. We
describe the algorithm used, explore the different trade-offs and op-
timizations allowed by the hardware, draw generalizations of these
techniques to scientific computing domains other than molecular
dynamics, and provide feedback to the Merrimac hardware and
software development teams. We also analyze the performance on
the Merrimac cycle-accurate simulator and compare it to an im-
plementation on a traditional processor, as well as present initial
results of the scaling of the algorithm to larger configurations of
the system.

Molecular dynamics is a technique to model chemical and bio-
logical systems at the molecular level. It has been successfully ap-
plied to a wide range of disciplines including designing new materi-
als, modeling carbon nanotubes and protein folding. In this paper,
we are interested in the modeling of bio-molecules, such as pro-
teins or membranes, using the highly optimized code GROMACS.
In the most accurate models, a large number of water molecules
surround the protein. In this case, the most expensive step in the
calculation is the evaluation of the long range Lennard-Jones and
electrostatic forces. We implemented a version of the algorithm
where a cutoff is applied to those forces such that two atoms in-
teract only if they are within a certain distance rc from one an-
other. One of the difficulties in this calculation on a data-parallel
architecture such as Merrimac, is that the number of neighbors of a
given atom (i.e. all the atoms at a distance less than rc) varies. We
explore several methods to deal with this problem using a combi-
nation of replication, addition of dummy atoms, and Merrimac’s
conditional streams mechanism [11]. The approach which uses
conditional streams achieves the shortest run-time. Based on our
simulation results and estimates, StreamMD on Merrimac outper-
forms a Pentium 4, produced using the same 90nm semiconductor
technology as Merrimac, by a factor of 13.2. It is important to un-



derstand that the techniques proposed in this paper are applicable
whenever the data set is unstructured which occurs in many other
scientific applications such as calculations involving unstructured
grids, sparse matrix calculations, and tree codes among others.

The remainder of the paper is organized as follows. Section 2
presents details on the Merrimac architecture and highlights its
capabilities and constraints. Section 3 presents the details of the
Molecular Dynamics application and the various implementations
and optimizations. Our experimental setup and results appear in
Section 4. A discussion and future work are in Section 5, and con-
cluding remarks are given in Section 6.

2. Merrimac architecture and organization
The Merrimac system exploits the capabilities and constraints of

modern VLSI and signaling technologies and matches them with
application characteristics to achieve high performance at lower
power and cost than today’s state of the art systems. In a 90nm
modern semiconductor fabrication process a 64-bit floating-point
functional unit (FPU) requires an area of roughly 0.5mm2 and con-
sumes less than 50pJ per computation. Hundreds of such units can
be placed on an economically sized chip making arithmetic almost
free. Device scaling of future fabrication processes will make the
relative cost of arithmetic even lower. On the other hand, the num-
ber of input/output pins available on a chip does not scale with fab-
rication technology making bandwidth the critical resource. Thus,
the problem faced by architects is supplying a large number of
functional units with data to perform useful computation. Merri-
mac employs a stream processor architecture to achieve this goal.

In this section we present the design of the Merrimac system,
which is scalable from a 2TFLOPS workstation up to a 2PFLOPS
supercomputer. We first describe the Merrimac processor and the
stream programming model. We then continue with details of the
memory system, the interconnection network, and the packaging of
an entire Merrimac system.

2.1 Merrimac processor
The Merrimac processor is a stream processor that is specifically

designed to take advantage of the high arithmetic-intensity and par-
allelism of many scientific applications. It contains a scalar core
for performing control code and issuing stream instructions to the
stream processing unit, as well as the DRAM and network inter-
faces on a single chip. Most of the chip area is devoted to the stream
execution unit whose main components are a collection of arith-
metic clusters and a deep register hierarchy. The compute clusters
contain 64 64-bit FPUs and provide high compute performance,
relying on the applications’ parallelism. The register hierarchy ex-
ploits the applications’ locality in order to reduce the distance an
operand must travel thus reducing global bandwidth demands. The
register hierarchy also serves as a data staging area for memory in
order to hide the long memory and interconnection network laten-
cies.

As shown in Figure 1, Merrimac’s stream architecture consists
of an array of 16 clusters, each with a set of 4 64-bit multiply-
accumulate (MADD) FPUs, a set of local register files (LRFs) to-
taling 768 words per cluster, and a bank of the stream register file
(SRF) of 8KWords, or 1MB of SRF for the entire chip. At the
planned operating frequency of 1GHz each Merrimac processor
has a peak performance of 128GFLOPS, where the functional units
have a throughput of one multiply-add per cycle.

Each FPU in a cluster reads its operands out of an adjacent LRF
over very short and dense wires. Therefore the LRF can provide
operands at a very high bandwidth and low latency, sustaining 3
reads per cycle to each FPU. FPU results are distributed to the other
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Figure 1: Architecture of Merrimac’s stream core

LRFs in a cluster via the cluster switch over short wires, maintain-
ing the high bandwidth required (1 operand per FPU every cycle).
The combined LRFs of a single cluster, or possibly the entire chip,
capture the short term producer-consumer locality of the applica-
tion. This type of locality arises from the fact that the results of
most operations are almost immediately consumed by subsequent
operations, and can live entirely within the LRF. In order to pro-
vide instructions to the FPUs at a high rate, all clusters are run
in single instruction multiple data (SIMD) fashion. Each cluster
executes the same very long instruction word (VLIW) instruction,
which supplies a unique instruction to each of the cluster’s FPUs.
Instructions are fetched from the on-chip micro-code store.

The second level of the register hierarchy is the stream register
file (SRF), which is a software managed on-chip memory. The SRF
provides higher capacity than the LRF, but at a reduced bandwidth
of only 4 words per cycle for a cluster (compared to over 16 words
per cycle on the LRFs). The SRF serves two purposes: capturing
long term producer-consumer locality and serving as a data staging
area for memory. Long term producer-consumer locality is similar
to the short term locality but cannot be captured within the limited
capacity LRF. The second, and perhaps more important, role of the
SRF is to serve as a staging area for memory data transfers and al-
low the software to hide long memory latencies. An entire stream is
transferred between the SRF and the memory with a single instruc-
tion. These stream memory operations generate a large number of
memory references to fill the very deep pipeline between processor
and memory, allowing memory bandwidth to be maintained in the
presence of latency. FPUs are kept busy by overlapping the exe-
cution of arithmetic kernels with these stream memory operations.
In addition, the SRF serves as a buffer between the unpredictable
latencies of the memory system and interconnect, and the deter-
ministic scheduling of the execution clusters. While the SRF is
similar in size to a cache, SRF accesses are much less expensive
than cache accesses because they are aligned and do not require a
tag lookup. Each cluster accesses its own bank of the SRF over the
short wires of the cluster switch. In contrast, accessing a cache re-
quires a global communication over long wires that span the entire
chip.

The final level of the register hierarchy is the inter-cluster switch
which provides a mechanism for communication between the clus-
ters, and interfaces with the memory system which is described in
the following subsection.

In order to take advantage of the stream architecture, the stream
programming model is used to allow the user to express both the lo-



cality and parallelism available in the application. This is achieved
by casting the computation as a collection of streams (i.e. se-
quences of identical data records) passing through a series of com-
putational kernels. The semantics of applying a kernel to a stream
are completely parallel, so that the computation of the kernel can
be performed independently on all of its stream input elements and
in any order. Thus data level parallelism is expressed and can be
utilized by the compiler and hardware to drive the 64 FPUs on a
single processor and the 1 million FPUs of an entire system. An ad-
ditional level of task parallelism can be discerned from the pipelin-
ing of kernels. Streams and kernels also capture multiple levels
and types of locality. Kernels encapsulate short term producer-
consumer locality, or kernel locality, and allow efficient use of the
LRFs. Streams capture long term producer-consumer locality in the
transfer of data from one kernel to another through the SRF without
requiring costly memory operations, as well as spatial locality by
the nature of streams being a series of data records.

While the Merrimac processor has not been implemented we
have sketched a design for it based on a currently available 90nm
fabrication process and a clock frequency of 1GHz (37 FO4 invert-
ers in 90nm[25]). Each MADD unit measures 0.9mm × 0.6mm
and the entire cluster measures 2.3mm × 1.6mm. The floor-plan
of a Merrimac stream processor chip is shown in Figure 2. The
bulk of the chip is occupied by the 16 clusters while left edge of
the chip holds the remainder of the node. There are two MIPS64
20kc [21] scalar processors where one processor shadows the other
for reliability purposes. The node memory system consists of a
set of address generators, a line-interleaved eight-bank 64KWords
(512KB) cache, and interfaces for 16 external Rambus DRDRAM
chips. A network interface directs off-node memory references to
the routers. We estimate that each Merrimac processor will cost
about $200 to manufacture1 and will dissipate a maximum of 25W
of power. Area and power estimates are for a standard cell pro-
cess in 90nm technology and are derived from models based on a
previous implementation of a stream processor [14].
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Figure 2: Floor-plan of a Merrimac stream processor chip.

2.2 Memory system
The memory system of Merrimac is designed to support effi-

cient stream memory operations. As mentioned in Subsection 2.1
a single stream memory operation transfers an entire stream, which
is typically many thousands of words long, between memory and
the SRF. Merrimac supports both strided access patterns and gath-
ers/scatters through the use of the stream address generators. Each
processor chip has 2 address generators, which together produce
up to 8 single-word addresses every cycle. The address generators
1Not accounting for development costs.

take a base address in memory for the stream, and either a fixed
stride and record-length or a pointer to a stream of indices in the
SRF. The memory system provides high-bandwidth access to a sin-
gle global address space for up to 16, 384 nodes including all scalar
and stream execution units. Each Merrimac chip has a 128KWords
cache with a bandwidth of 8 words per cycle (64GB/s), and directly
interfaces with the node’s external DRAM and network. The 2GB
of external DRAM is composed of 16 Rambus DRDRAM chips
providing a peak bandwidth of 38.4GB/s and roughly 16GB/s, or
2 words per cycle, of random access bandwidth. Remote addresses
are translated in hardware to network requests, and single word
accesses are made via the interconnection network. The flexibil-
ity of the addressing modes, and the single-word remote memory
access capability simplifies the software and eliminates the costly
pack/unpack routines common to many parallel architecture. The
Merrimac memory system also supports floating-point and integer
streaming add-and-store operations across multiple nodes at full
cache bandwidth. This scatter-add operation performs an atomic
summation of data addressed to a particular location instead of sim-
ply replacing the current value as new values arrive. This operation
is used in the molecular dynamics application described, and is also
common in finite element codes.

2.3 Interconnection network
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Figure 3: Sixteen 128GFLOPS stream processors each with
2GB of DRAM memory can be packaged on a single board.
The board has a total of2TFLOPS of arithmetic and 32GB of
memory. Such a board is useful as a stand-alone scientific com-
puter and as a building-block for larger systems.

Merrimac is scalable from a 16 node 2TFLOPS single board
workstation to a 16, 384 node 2PFLOPS supercomputer spanning
16 cabinets. Figure 3 illustrates a single Merrimac board containing
16 nodes totaling a peak performance of 2TFLOPS with a capacity
of 32GB of memory, and four high-radix router chips. The router
chips interconnect the 16 processors on the board, providing flat
memory bandwidth on board of 20GB/s per node, as well as pro-
viding a gateway to the inter-board interconnection network. The
network uses a five-stage folded-Clos [2] network2 as illustrated in
Figure 4. The first and last stage of the network are the on-board
router chips, where every router provides two 2.5GB/s channels to
each of the 16 processor chips as well as eight such channels to
connect to the back-plane level of the network. At the backplane
level, 32 routers connect one channel to each of the 32 boards in a

2This topology is sometimes called a Fat Tree [17].



cabinet and connect 16 channels to the system-level switch. A total
of 512 2.5GB/s channels traverse optical links to the system-level
switch where 512 routers connect the 16 backplanes in 16 cabinets.
The maximal number of cabinets that can be connected by the net-
work is 48 but we do not plan to build a system of that size. As
with the rest of the Merrimac design, the network does not rely on
future technology and can be built using current components and
custom chips.
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Figure 4: A 2PFLOPS Merrimac system uses a high-radix in-
terconnection network.

3. StreamMD
Molecular Dynamics is the technique of simulating detailed atomic

models of molecular systems in order to determine the kinetic and
thermodynamic properties of such systems. GROMACS [28] is an
engine that performs molecular dynamics simulations by repeat-
edly solving Newton’s equations of motion for all the atoms in a
particular system. The simulations follow a discrete timescale, and
are used to compute various observables of interest. Often, such
simulations are used to design new materials or study biological
molecules such as proteins, DNA. When simulating the latter, it is
common to surround those molecules with a large number of wa-
ter molecules. In that case a significant portion of the calculation is
spent calculating long ranged interactions between water molecules
and between the protein and the surrounding water molecules.

GROMACS is highly optimized to take advantage of mecha-
nisms found in commercial high-end processors including hand op-
timized loops using SSE, 3DNow!, and Altivec instructions [27, 1,
22]. One of the numerical method employed by GROMACS for
long ranged forces uses a cut-off distance approximation. All in-
teractions between particles which are at a distance greater than rc

are approximated as exerting no force. This approximation limits
the number of interactions calculated for the system from O(n2) to
O(n), where each particle (we will refer to this as the central par-
ticle) only interacts with a small number of neighboring particles.
The list of neighbors for each particle is calculated in scalar-code
and passed to the stream program through memory along with the
particle positions. The overhead of the neighbor list is kept to a
minimum by only generating it once every several time-steps. The
accuracy of the calculation is maintained by artificially increasing
the cutoff distance beyond what is strictly required by the physics.
We have chosen this phase of the GROMACS algorithm to test a

streaming implementation on Merrimac.

3.1 Basic implementation
Since the Merrimac system integrates a conventional scalar pro-

cessor with a stream unit it offers a simple path for porting an ap-
plication. Most of the application can initially be run on the scalar
processor and only the time consuming computations are streamed.
We are developing StreamMD to perform the force calculation of
GROMACS using Merrimac’s highly parallel hardware. We are
currently concentrating on the force interaction of water molecules
and interface with the rest of GROMACS directly through Merri-
mac’s shared memory system.

The stream program itself consists of a single kernel performing
the interactions. As will be explained later, the interacting particles
are not single atoms but entire water molecules. Each kernel itera-
tion processes a molecule and one of its neighbors, and computes
the non-bonded interaction force between all atom pairs (Equa-
tion 1). The first term contributes to Coulomb interaction, where

1
4πε0

is the electric conversion factor. The second term contributes
to Lennard-Jones interaction, where C12 and C6 depend on which
particle types constitute the pair. After accounting for various com-
putations required to maintain periodic boundary conditions, each
interaction requires 234 floating-point operations including 9 di-
vides and 9 square roots.

Vnb =
∑
i,j

[
1

4πε0

qiqj

rij
+

(
C12

r12
ij

− C6

r6
ij

)]
(1)

GROMACS provides the configuration data consisting of a posi-
tion array containing nine coordinates for each molecule (because
we are using water molecules these are the coordinates for each of
the three atoms), the central molecule indices stream i central
(one element per molecule), and the neighboring molecules indices
stream i neighbor (one element per interaction). These streams
index into the position input array and the force output array. These
data are loaded through memory, so that the stream unit can be used
as a coprocessor for the time-intensive force computation portion
of the program.

The basic flow of StreamMD is as follows:

1. Gather the positions of the interacting molecules into the
SRF using Merrimac’s hardware gather mechanism.

2. Run the force computation kernel over all interactions, read-
ing the required data from the predictable SRF. The kernel’s
output is a stream of partial-forces and a stream of indices
which maps each force to a molecule. Those partial forces
are subsequently reduced to form the complete force acting
on each atom.

3. Reduce the partial forces. This is achieved using Merrimac’s
scatter-add feature.

This can be summarized in the pseudo-code below:

c_positions = gather(positions,i_central);
n_positions = gather(positions,i_neighbor);

partial_forces =
compute_force(c_positions,n_positions);

forces =
scatter_add(partial_forces,i_forces);

As explained in Section 2, to attain high performance on Merri-
mac we must ensure our program has latency tolerance, parallelism,



and locality. The following subsections explain how each of these
is achieved, and what optimizations and trade-offs are available on
Merrimac.

3.2 Latency tolerance
Merrimac can tolerate the high latency of memory operations

which results both from the slow access times of DRAM and the
low off-chip bandwidth. This is done in two different ways. First,
by issuing a memory operation consisting of a long stream of words,
the requests may be pipelined to amortize the initial long latency.
Second, by concurrently executing memory operations and kernel
computations, thus hiding memory accesses with useful computa-
tion. The SRF serves as a staging area for memory operations and
decouples them from the execution units, permitting memory and
computation to proceed concurrently. It allows the software-system
or programmer to pipeline the stream execution as illustrated in
Figure 5: while a kernel is running, the memory system is busy
gathering data for the next invocation of the kernel into the SRF,
and writing the results of the previous kernel out of the SRF into
memory.

tim
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compute0
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add0
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compute1
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gather2

compute2
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Figure 5: Software pipelining overlaps computation and mem-
ory operations

Since StreamMD consists of a single kernel, it must first be strip-
mined before pipelining can be employed. Strip-mining refers to a
software technique of breaking up a large data set into smaller strips
which are more easily handled by the hardware [18]. In the case of
StreamMD we strip-mine the computation by including an outer
loop such that each kernel invocation is only performed on a subset
of the input stream:

for i=1..strips {
c_positions =

gather(positions,i_central[strip_i]);
n_positions =

gather(positions,i_neighbor[strip_i]);

partial_forces =
compute_force(c_positions,n_positions);

forces = scatter_add(partial_forces,
i_forces[strip_i]);

}

The strip-mine process was done manually, but the next version of
our compiler will handle this case automatically.

3.3 Parallelism
StreamMD has abundant parallelism as each interaction can be

calculated independently of all other interactions, and the forces

reduced in a separate step. This parallelism is used to operate Mer-
rimac’s 16 clusters in SIMD fashion. This requires that all compute
clusters perform the same operations every cycle.

The simplest implementation (expanded in Table 3) is to fully
expand the interaction lists, so that the kernel reads 16 pairs of in-
teracting molecules each iteration – one pair per cluster. Thus, each
cluster reads in two interacting molecules and produces two partial
forces. This requires 27 input words (18 words for the coordinates
of the 6 atoms, and 9 words for periodic boundary conditions) and
18 output words (for the two partial forces). In addition three index
streams must also be read, for a total of 48 words for the 234 oper-
ations of each interaction. The partial forces are reduced using the
hardware scatter-add mechanism (Section 2.2).

A different implementation, which is still pure SIMD, is to use
a fixed-length neighbor list of length L for each central molecule
(fixed in Table 3). Now each cluster reads a central molecule once
every L iterations and a neighbor molecule each iteration. The par-
tial forces computed for the L interactions of the central molecule
are reduced within the cluster to save on output bandwidth. This
configuration requires 9 words of input and 9 words of output ev-
ery iteration (for the position and partial forces of the neighboring
molecule), and 18 words of input and 9 words of output for every L
iterations (for the central molecules position, boundary condition,
and partial forces). Including the index streams we end up with
18 + 1 + 27+2

L
words per iteration per cluster. If we choose a fixed

length of L = 8 the result is 22.6 words per iteration instead of
48 of the naive implementation. Since the number of neighbors for
each molecule is typically larger than L, central molecules are re-
peated in i central in order to accommodate all their neighbors.
Furthermore, whenever a central molecule does not have a multi-
ple of L neighbor molecules, some dummy neighbor molecules are
added to i neighbor to keep the fixed L : 1 correspondence
(Figure 6).

p(0) p(1) p(2) p(3) · · · p(N )
Original position array position

01 02 11 12 13 21 · · · · · · N1

Central molecule index stream i central

p(01) p(02) p(11) p(12) p(13) p(21) · · · · · · p(N1)
Gathered central position stream c positions

p(01
1) · p(01

L) p(02
1) · p(02

L) p(11
1) · p(11

L) · · ·
Gathered neighbor position stream n positions

Figure 6: Central molecules are repeated and neighbors are
padded for fixed length neighbor lists

The disadvantages of this scheme are the extra bandwidth re-
quired for reading the repeated molecules and the dummy values, as
well as the extra computation performed on the dummy neighbors.
This computation does not contribute to the solution but consumes
resources. The overheads are typically not large for a reasonable
value of L (between 8 and 32).

A third implementation option relies on Merrimac’s inter-cluster
communication, conditional streams mechanism [11], and the in-
dexable SRF [10] (variable in Table 3). These mechanisms allow a
SIMD architecture to process inputs and produce outputs at a differ-
ent rate for each cluster. We use this to implement variable-length
neighbor lists for each central molecule. Instead of reading a new
central molecule once every L iterations, each cluster checks on
each iteration whether a new molecule is required or not. To ad-



here to SIMD restrictions, the instructions for reading a new cen-
tral position and the writing of the partial forces for the central
molecule are issued on every iteration with a condition. Unless
a new molecule is required the instructions have no effect. This
leads to a slight overhead of unexecuted instructions within the ker-
nel, but since they are not floating-point arithmetic instructions they
have little detrimental effect on the overall kernel efficiency. The
exact number of words required for an iteration depends on the
number of neighbors per central molecule, but as a minimum 10
words of input are consumed and 9 words are produced for every
iteration in order to read the neighbor coordinates and index, and
write the partial force acting on that neighbor.

3.4 Locality and computation/bandwidth
trade-offs

The locality in StreamMD is a short term producer consumer
locality (i.e. within a single kernel). It is the result of comput-
ing 9 full atom-atom forces while reading the positions of just two
molecules in every kernel iteration, capturing intermediate results
used for these force calculations, and the internal reduction of the
partial forces of a central molecule within a cluster.

This locality is entirely captured within the LRFs. The amount
of arithmetic intensity changes with the implementation chosen
as shown in the preceding subsection. A key insight is that we
can trade-off extra computation for reduced memory bandwidth re-
quirements. Since Merrimac has abundant arithmetic resources,
this might lead to an overall performance improvement. One ex-
ample of such a trade-off was presented in the previous subsec-
tion regarding extra computation performed for interactions with
dummy molecules.

A more extreme case is to duplicate all interaction calculations
and save on the bandwidth required for the partial forces (dupli-
cated in Table 3). In this scheme, the complete force for each cen-
ter molecule is reduced within the clusters and no partial force for
neighbor molecules is written out. More sophisticated schemes are
briefly described as future work in Section 5.

4. Evaluation
In this section we evaluate the effectiveness of Merrimac and its

automated compilation system for running the molecular dynam-
ics force computation. We begin by describing our experimental
setup, continue by evaluating our various implementation versions
according to locality, computation, and total run-time, suggest im-
provements to the Merrimac system, and finally compare the results
with the fully hand optimized GROMACS on a conventional pro-
cessor.

4.1 Experimental setup
For this paper we conducted single-node experiments for the run

of one time-step of a 900 water-molecule system. The code was run
on a cycle-accurate simulator of a single Merrimac streaming node,
which accurately models all aspects of stream execution and the
stream memory system. The parameters of the Merrimac system
are summarized in Table 1, and the characteristics of the dataset
appear in Table 2.

For comparison purposes the same data-set was run on the latest
version of GROMACS 3.2 with its hand optimized assembly loops
using single-precision SSE instructions. We used GCC 3.3.4 on a
3.4GHz Intel Pentium 4 processor fabricated in a 90nm process.

We currently programmed 4 variants of StreamMD, which are
summarized in Table 3.

364 fused multiply-add operations per cycle.

Parameter Value
Number of stream cache banks 8
Number of scatter-add units per bank 1
Latency of scatter-add functional unit 4
Number of combining store entries 8
Number of DRAM interface channels 16
Number of address generators 2
Operating frequency 1GHz
Peak DRAM bandwidth 38.4GB/s
Stream cache bandwidth 64GB/s
Number of clusters 16
Peak floating point operations per cycle 1283

SRF bandwidth 512GB/s
SRF size 1MB
Stream cache size 1MB

Table 1: Merrimac parameters

Parameter Value
molecules 900
interactions 61, 770
repeated molecules for fixed 9150
total neighbors for fixed 71, 160

Table 2: Dataset properties

Name Description
expanded fully expanded interaction list
fixed fixed length neighbor list of 8 neighbors
variable reduction with variable length list
duplicated fixed length lists with duplicated computation
Pentium 4 fully hand-optimized GROMACS on a Pentium 4

with single-precision SSE (water-water only)

Table 3: Variants of StreamMD

4.2 Latency tolerance
Merrimac’s hardware and software systems automatically allo-

cate space in the SRF, and schedule memory and kernel operations
to execute concurrently [12]. This can be graphically seen in a
snippet of the execution of duplicated. Figure 7a shows that even
though the program spends more time executing kernels than mem-
ory operations, memory latency is not completely hidden. After
analyzing the reasons, we found a flaw in Merrimac’s allocation of
a low-level hardware register which holds a mapping between an
active stream in the SRF and its corresponding memory address.
After modifying the system to better handle this case, Figure 7b
shows a perfect overlap of memory and computation.

4.3 Locality
The arithmetic intensity and locality are tightly related and strongly

dependent on the specific implementation. Table 4 summarizes
the arithmetic intensity as calculated in Section 3 based on the
algorithm properties, as well as the measured operations per in-
put/output word for the actual data set. For fixed and variable, the
arithmetic intensity also depends on the data set. We also calculate
the arithmetic intensity more accurately based on the actual data set
used (without actually running the code), and present it in Table 4
as well (these values appear in parentheses). The small differences
between the theoretical and measured numbers attest to the ability
of the compilation tools to efficiently utilize the register hierarchy
of Merrimac.

A more direct measure of locality is shown in Figure 8, where
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355 Save to MAR0 from SDR14 for '<no name>*'380 Run 'mole' at MPC 0 with SDRs 386 Load from MAR11 to SDR18 for '<no name>*'391 Load from MAR15 to SDR19 for '<no name>*'392 Load from MAR14 to SDR7 with SDRIdx19 for '<no 397 Load from MAR18 to SDR10 for '<no name>*'393 Save to MAR16 from SDR7 for '<no name>*'403 Load from MAR21 to SDR20 for '<no name>*'398 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

404 Load from MAR20 to SDR16 with SDRIdx20 for '<no 405 Save to MAR22 from SDR16 for '<no name>*'

399 Save to MAR19 from SDR8 for '<no name>*'

381 Save to MAR10 from SDR17 for '<no name>*'385 Load from MAR12 to SDR6 for '<no name>*'412 Run 'mole' at MPC 0 with SDRs 387 Save to MAR13 from SDR6 with SDRIdx18 for '<no 417 Load from MAR2 to SDR21 for '<no name>*'
418 Load from MAR1 to SDR11 with SDRIdx21 for '<no 423 Load from MAR5 to SDR15 for '<no name>*'419 Save to MAR3 from SDR11 for '<no name>*'424 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
429 Load from MAR8 to SDR22 for '<no name>*'430 Load from MAR7 to SDR13 with SDRIdx22 for '<no 431 Save to MAR9 from SDR13 for '<no name>*'

425 Save to MAR6 from SDR12 for '<no name>*'

413 Save to MAR0 from SDR14 for '<no name>*'438 Run 'mole' at MPC 0 with SDRs 444 Load from MAR11 to SDR18 for '<no name>*'449 Load from MAR15 to SDR19 for '<no name>*'450 Load from MAR14 to SDR7 with SDRIdx19 for '<no 455 Load from MAR18 to SDR10 for '<no name>*'451 Save to MAR16 from SDR7 for '<no name>*'461 Load from MAR21 to SDR20 for '<no name>*'456 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

462 Load from MAR20 to SDR16 with SDRIdx20 for '<no 463 Save to MAR22 from SDR16 for '<no name>*'

457 Save to MAR19 from SDR8 for '<no name>*'

439 Save to MAR10 from SDR17 for '<no name>*'443 Load from MAR12 to SDR6 for '<no name>*'470 Run 'mole' at MPC 0 with SDRs 445 Save to MAR13 from SDR6 with SDRIdx18 for '<no 475 Load from MAR2 to SDR21 for '<no name>*'
476 Load from MAR1 to SDR11 with SDRIdx21 for '<no 481 Load from MAR5 to SDR15 for '<no name>*'477 Save to MAR3 from SDR11 for '<no name>*'487 Load from MAR8 to SDR22 for '<no name>*'482 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
488 Load from MAR7 to SDR13 with SDRIdx22 for '<no 489 Save to MAR9 from SDR13 for '<no name>*'

483 Save to MAR6 from SDR12 for '<no name>*'

471 Save to MAR0 from SDR14 for '<no name>*'496 Run 'mole' at MPC 0 with SDRs 502 Load from MAR11 to SDR18 for '<no name>*'507 Load from MAR15 to SDR19 for '<no name>*'508 Load from MAR14 to SDR7 with SDRIdx19 for '<no 513 Load from MAR18 to SDR10 for '<no name>*'509 Save to MAR16 from SDR7 for '<no name>*'519 Load from MAR21 to SDR20 for '<no name>*'514 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

520 Load from MAR20 to SDR16 with SDRIdx20 for '<no 521 Save to MAR22 from SDR16 for '<no name>*'

515 Save to MAR19 from SDR8 for '<no name>*'

497 Save to MAR10 from SDR17 for '<no name>*'501 Load from MAR12 to SDR6 for '<no name>*'528 Run 'mole' at MPC 0 with SDRs 503 Save to MAR13 from SDR6 with SDRIdx18 for '<no 533 Load from MAR2 to SDR21 for '<no name>*'534 Load from MAR1 to SDR11 with SDRIdx21 for '<no 539 Load from MAR5 to SDR15 for '<no name>*'535 Save to MAR3 from SDR11 for '<no name>*'540 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

545 Load from MAR8 to SDR22 for '<no name>*'546 Load from MAR7 to SDR13 with SDRIdx22 for '<no 547 Save to MAR9 from SDR13 for '<no name>*'

541 Save to MAR6 from SDR12 for '<no name>*'

529 Save to MAR0 from SDR14 for '<no name>*'554 Run 'mole' at MPC 0 with SDRs 560 Load from MAR11 to SDR18 for '<no name>*'565 Load from MAR15 to SDR19 for '<no name>*'566 Load from MAR14 to SDR7 with SDRIdx19 for '<no 571 Load from MAR18 to SDR10 for '<no name>*'567 Save to MAR16 from SDR7 for '<no name>*'577 Load from MAR21 to SDR20 for '<no name>*'572 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

578 Load from MAR20 to SDR16 with SDRIdx20 for '<no 579 Save to MAR22 from SDR16 for '<no name>*'

573 Save to MAR19 from SDR8 for '<no name>*'

555 Save to MAR10 from SDR17 for '<no name>*'559 Load from MAR12 to SDR6 for '<no name>*'586 Run 'mole' at MPC 0 with SDRs 561 Save to MAR13 from SDR6 with SDRIdx18 for '<no 591 Load from MAR2 to SDR21 for '<no name>*'592 Load from MAR1 to SDR11 with SDRIdx21 for '<no 597 Load from MAR5 to SDR15 for '<no name>*'593 Save to MAR3 from SDR11 for '<no name>*'603 Load from MAR8 to SDR22 for '<no name>*'598 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

604 Load from MAR7 to SDR13 with SDRIdx22 for '<no 605 Save to MAR9 from SDR13 for '<no name>*'

599 Save to MAR6 from SDR12 for '<no name>*'

587 Save to MAR0 from SDR14 for '<no name>*'612 Run 'mole' at MPC 0 with SDRs 618 Load from MAR11 to SDR18 for '<no name>*'623 Load from MAR15 to SDR19 for '<no name>*'624 Load from MAR14 to SDR7 with SDRIdx19 for '<no 629 Load from MAR18 to SDR10 for '<no name>*'625 Save to MAR16 from SDR7 for '<no name>*'635 Load from MAR21 to SDR20 for '<no name>*'630 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

636 Load from MAR20 to SDR16 with SDRIdx20 for '<no 637 Save to MAR22 from SDR16 for '<no name>*'

631 Save to MAR19 from SDR8 for '<no name>*'

613 Save to MAR10 from SDR17 for '<no name>*'617 Load from MAR12 to SDR6 for '<no name>*'644 Run 'mole' at MPC 0 with SDRs 619 Save to MAR13 from SDR6 with SDRIdx18 for '<no 649 Load from MAR2 to SDR21 for '<no name>*'
650 Load from MAR1 to SDR11 with SDRIdx21 for '<no 655 Load from MAR5 to SDR15 for '<no name>*'651 Save to MAR3 from SDR11 for '<no name>*'661 Load from MAR8 to SDR22 for '<no name>*'656 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
662 Load from MAR7 to SDR13 with SDRIdx22 for '<no 663 Save to MAR9 from SDR13 for '<no name>*'

657 Save to MAR6 from SDR12 for '<no name>*'
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329 Save to MAR13 from SDR6 with SDRIdx18 for '<no 359 Load from MAR2 to SDR21 for '<no name>*'
360 Load from MAR1 to SDR11 with SDRIdx21 for '<no 365 Load from MAR5 to SDR15 for '<no name>*'361 Save to MAR3 from SDR11 for '<no name>*'371 Load from MAR8 to SDR22 for '<no name>*'366 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
372 Load from MAR7 to SDR13 with SDRIdx22 for '<no 373 Save to MAR9 from SDR13 for '<no name>*'

367 Save to MAR6 from SDR12 for '<no name>*'

355 Save to MAR0 from SDR14 for '<no name>*'380 Run 'mole' at MPC 0 with SDRs 386 Load from MAR11 to SDR18 for '<no name>*'391 Load from MAR15 to SDR19 for '<no name>*'392 Load from MAR14 to SDR7 with SDRIdx19 for '<no 397 Load from MAR18 to SDR10 for '<no name>*'393 Save to MAR16 from SDR7 for '<no name>*'403 Load from MAR21 to SDR20 for '<no name>*'398 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

404 Load from MAR20 to SDR16 with SDRIdx20 for '<no 405 Save to MAR22 from SDR16 for '<no name>*'

399 Save to MAR19 from SDR8 for '<no name>*'

381 Save to MAR10 from SDR17 for '<no name>*'385 Load from MAR12 to SDR6 for '<no name>*'412 Run 'mole' at MPC 0 with SDRs 387 Save to MAR13 from SDR6 with SDRIdx18 for '<no 417 Load from MAR2 to SDR21 for '<no name>*'
418 Load from MAR1 to SDR11 with SDRIdx21 for '<no 423 Load from MAR5 to SDR15 for '<no name>*'419 Save to MAR3 from SDR11 for '<no name>*'424 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
429 Load from MAR8 to SDR22 for '<no name>*'430 Load from MAR7 to SDR13 with SDRIdx22 for '<no 431 Save to MAR9 from SDR13 for '<no name>*'

425 Save to MAR6 from SDR12 for '<no name>*'

413 Save to MAR0 from SDR14 for '<no name>*'438 Run 'mole' at MPC 0 with SDRs 444 Load from MAR11 to SDR18 for '<no name>*'449 Load from MAR15 to SDR19 for '<no name>*'450 Load from MAR14 to SDR7 with SDRIdx19 for '<no 455 Load from MAR18 to SDR10 for '<no name>*'451 Save to MAR16 from SDR7 for '<no name>*'461 Load from MAR21 to SDR20 for '<no name>*'456 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

462 Load from MAR20 to SDR16 with SDRIdx20 for '<no 463 Save to MAR22 from SDR16 for '<no name>*'

457 Save to MAR19 from SDR8 for '<no name>*'

439 Save to MAR10 from SDR17 for '<no name>*'443 Load from MAR12 to SDR6 for '<no name>*'470 Run 'mole' at MPC 0 with SDRs 445 Save to MAR13 from SDR6 with SDRIdx18 for '<no 475 Load from MAR2 to SDR21 for '<no name>*'
476 Load from MAR1 to SDR11 with SDRIdx21 for '<no 481 Load from MAR5 to SDR15 for '<no name>*'477 Save to MAR3 from SDR11 for '<no name>*'487 Load from MAR8 to SDR22 for '<no name>*'482 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
488 Load from MAR7 to SDR13 with SDRIdx22 for '<no 489 Save to MAR9 from SDR13 for '<no name>*'

483 Save to MAR6 from SDR12 for '<no name>*'

471 Save to MAR0 from SDR14 for '<no name>*'496 Run 'mole' at MPC 0 with SDRs 502 Load from MAR11 to SDR18 for '<no name>*'507 Load from MAR15 to SDR19 for '<no name>*'508 Load from MAR14 to SDR7 with SDRIdx19 for '<no 513 Load from MAR18 to SDR10 for '<no name>*'509 Save to MAR16 from SDR7 for '<no name>*'519 Load from MAR21 to SDR20 for '<no name>*'514 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

520 Load from MAR20 to SDR16 with SDRIdx20 for '<no 521 Save to MAR22 from SDR16 for '<no name>*'

515 Save to MAR19 from SDR8 for '<no name>*'

497 Save to MAR10 from SDR17 for '<no name>*'501 Load from MAR12 to SDR6 for '<no name>*'528 Run 'mole' at MPC 0 with SDRs 503 Save to MAR13 from SDR6 with SDRIdx18 for '<no 533 Load from MAR2 to SDR21 for '<no name>*'534 Load from MAR1 to SDR11 with SDRIdx21 for '<no 539 Load from MAR5 to SDR15 for '<no name>*'535 Save to MAR3 from SDR11 for '<no name>*'540 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

545 Load from MAR8 to SDR22 for '<no name>*'546 Load from MAR7 to SDR13 with SDRIdx22 for '<no 547 Save to MAR9 from SDR13 for '<no name>*'

541 Save to MAR6 from SDR12 for '<no name>*'

529 Save to MAR0 from SDR14 for '<no name>*'554 Run 'mole' at MPC 0 with SDRs 560 Load from MAR11 to SDR18 for '<no name>*'565 Load from MAR15 to SDR19 for '<no name>*'566 Load from MAR14 to SDR7 with SDRIdx19 for '<no 571 Load from MAR18 to SDR10 for '<no name>*'567 Save to MAR16 from SDR7 for '<no name>*'577 Load from MAR21 to SDR20 for '<no name>*'572 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

578 Load from MAR20 to SDR16 with SDRIdx20 for '<no 579 Save to MAR22 from SDR16 for '<no name>*'

573 Save to MAR19 from SDR8 for '<no name>*'

555 Save to MAR10 from SDR17 for '<no name>*'559 Load from MAR12 to SDR6 for '<no name>*'586 Run 'mole' at MPC 0 with SDRs 561 Save to MAR13 from SDR6 with SDRIdx18 for '<no 591 Load from MAR2 to SDR21 for '<no name>*'592 Load from MAR1 to SDR11 with SDRIdx21 for '<no 597 Load from MAR5 to SDR15 for '<no name>*'593 Save to MAR3 from SDR11 for '<no name>*'603 Load from MAR8 to SDR22 for '<no name>*'598 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

604 Load from MAR7 to SDR13 with SDRIdx22 for '<no 605 Save to MAR9 from SDR13 for '<no name>*'

599 Save to MAR6 from SDR12 for '<no name>*'

587 Save to MAR0 from SDR14 for '<no name>*'612 Run 'mole' at MPC 0 with SDRs 618 Load from MAR11 to SDR18 for '<no name>*'623 Load from MAR15 to SDR19 for '<no name>*'624 Load from MAR14 to SDR7 with SDRIdx19 for '<no 629 Load from MAR18 to SDR10 for '<no name>*'625 Save to MAR16 from SDR7 for '<no name>*'635 Load from MAR21 to SDR20 for '<no name>*'630 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

636 Load from MAR20 to SDR16 with SDRIdx20 for '<no 637 Save to MAR22 from SDR16 for '<no name>*'

631 Save to MAR19 from SDR8 for '<no name>*'

613 Save to MAR10 from SDR17 for '<no name>*'617 Load from MAR12 to SDR6 for '<no name>*'644 Run 'mole' at MPC 0 with SDRs 619 Save to MAR13 from SDR6 with SDRIdx18 for '<no 649 Load from MAR2 to SDR21 for '<no name>*'
650 Load from MAR1 to SDR11 with SDRIdx21 for '<no 655 Load from MAR5 to SDR15 for '<no name>*'651 Save to MAR3 from SDR11 for '<no name>*'661 Load from MAR8 to SDR22 for '<no name>*'656 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
662 Load from MAR7 to SDR13 with SDRIdx22 for '<no 663 Save to MAR9 from SDR13 for '<no name>*'

657 Save to MAR6 from SDR12 for '<no name>*'
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329 Save to MAR13 from SDR6 with SDRIdx18 for '<no 359 Load from MAR2 to SDR21 for '<no name>*'
360 Load from MAR1 to SDR11 with SDRIdx21 for '<no 365 Load from MAR5 to SDR15 for '<no name>*'361 Save to MAR3 from SDR11 for '<no name>*'371 Load from MAR8 to SDR22 for '<no name>*'366 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
372 Load from MAR7 to SDR13 with SDRIdx22 for '<no 373 Save to MAR9 from SDR13 for '<no name>*'

367 Save to MAR6 from SDR12 for '<no name>*'

355 Save to MAR0 from SDR14 for '<no name>*'380 Run 'mole' at MPC 0 with SDRs 386 Load from MAR11 to SDR18 for '<no name>*'391 Load from MAR15 to SDR19 for '<no name>*'392 Load from MAR14 to SDR7 with SDRIdx19 for '<no 397 Load from MAR18 to SDR10 for '<no name>*'393 Save to MAR16 from SDR7 for '<no name>*'403 Load from MAR21 to SDR20 for '<no name>*'398 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

404 Load from MAR20 to SDR

329 Save to MAR13 from SDR6 with SDRIdx18 for '<no 359 Load from MAR2 to SDR21 for '<no name>*'
360 Load from MAR1 to SDR11 with SDRIdx21 for '<no 365 Load from MAR5 to SDR15 for '<no name>*'361 Save to MAR3 from SDR11 for '<no name>*'371 Load from MAR8 to SDR22 for '<no name>*'366 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
372 Load from MAR7 to SDR13 with SDRIdx22 for '<no 373 Save to MAR9 from SDR13 for '<no name>*'

367 Save to MAR6 from SDR12 for '<no name>*'

355 Save to MAR0 from SDR14 for '<no name>*'380 Run 'mole' at MPC 0 with SDRs 386 Load from MAR11 to SDR18 for '<no name>*'391 Load from MAR15 to SDR19 for '<no name>*'392 Load from MAR14 to SDR7 with SDRIdx19 for '<no 397 Load from MAR18 to SDR10 for '<no name>*'393 Save to MAR16 from SDR7 for '<no name>*'403 Load from MAR21 to SDR20 for '<no name>*'398 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

404 Load from MAR20 to SDR16 with SDRIdx20 for '<no 405 Save to MAR22 from SDR16 for '<no name>*'

399 Save to MAR19 from SDR8 for '<no name>*'

381 Save to MAR10 from SDR17 for '<no name>*'385 Load from MAR12 to SDR6 for '<no name>*'412 Run 'mole' at MPC 0 with SDRs 387 Save to MAR13 from SDR6 with SDRIdx18 for '<no 417 Load from MAR2 to SDR21 for '<no name>*'
418 Load from MAR1 to SDR11 with SDRIdx21 for '<no 423 Load from MAR5 to SDR15 for '<no name>*'419 Save to MAR3 from SDR11 for '<no name>*'424 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
429 Load from MAR8 to SDR22 for '<no name>*'430 Load from MAR7 to SDR13 with SDRIdx22 for '<no 431 Save to MAR9 from SDR13 for '<no name>*'

425 Save to MAR6 from SDR12 for '<no name>*'

413 Save to MAR0 from SDR14 for '<no name>*'438 Run 'mole' at MPC 0 with SDRs 444 Load from MAR11 to SDR18 for '<no name>*'449 Load from MAR15 to SDR19 for '<no name>*'450 Load from MAR14 to SDR7 with SDRIdx19 for '<no 

16 with SDRIdx20 for '<no 405 Save to MAR22 from SDR16 for '<no name>*'

399 Save to MAR19 from SDR8 for '<no name>*'

381 Save to MAR10 from SDR17 for '<no name>*'385 Load from MAR12 to SDR6 for '<no name>*'412 Run 'mole' at MPC 0 with SDRs 387 Save to MAR13 from SDR6 with SDRIdx18 for '<no 417 Load from MAR2 to SDR21 for '<no name>*'
418 Load from MAR1 to SDR11 with SDRIdx21 for '<no 423 Load from MAR5 to SDR15 for '<no name>*'419 Save to MAR3 from SDR11 for '<no name>*'424 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
429 Load from MAR8 to SDR22 for '<no name>*'430 Load from MAR7 to SDR13 with SDRIdx22 for '<no 431 Save to MAR9 from SDR13 for '<no name>*'

425 Save to MAR6 from SDR12 for '<no name>*'

413 Save to MAR0 from SDR14 for '<no name>*'438 Run 'mole' at MPC 0 with SDRs 444 Load from MAR11 to SDR18 for '<no name>*'449 Load from MAR15 to SDR19 for '<no name>*'450 Load from MAR14 to SDR7 with SDRIdx19 for '<no 455 Load from MAR18 to SDR10 for '<no name>*'451 Save to MAR16 from SDR7 for '<no name>*'461 Load from MAR21 to SDR20 for '<no name>*'456 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

462 Load from MAR20 to SDR16 with SDRIdx20 for '<no 463 Save to MAR22 from SDR16 for '<no name>*'

457 Save to MAR19 from SDR8 for '<no name>*'

439 Save to MAR10 from SDR17 for '<no name>*'443 Load from MAR12 to SDR6 for '<no name>*'470 Run 'mole' at MPC 0 with SDRs 445 Save to MAR13 from SDR6 with SDRIdx18 for '<no 475 Load from MAR2 to SDR21 for '<no name>*'
476 Load from MAR1 to SDR11 with SDRIdx21 for '<no 481 Load from MAR5 to SDR15 for '<no name>*'477 Save to MAR3 from SDR11 for '<no name>*'487 Load from MAR8 to SDR22 for '<no name>*'482 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
488 Load from MAR7 to SDR13 with SDRIdx22 for '<no 489 Save to MAR9 from SDR13 for '<no name>*'

483 Save to MAR6 from SDR

455 Load from MAR18 to SDR10 for '<no name>*'451 Save to MAR16 from SDR7 for '<no name>*'461 Load from MAR21 to SDR20 for '<no name>*'456 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

462 Load from MAR20 to SDR16 with SDRIdx20 for '<no 463 Save to MAR22 from SDR16 for '<no name>*'

457 Save to MAR19 from SDR8 for '<no name>*'

439 Save to MAR10 from SDR17 for '<no name>*'443 Load from MAR12 to SDR6 for '<no name>*'470 Run 'mole' at MPC 0 with SDRs 445 Save to MAR13 from SDR6 with SDRIdx18 for '<no 475 Load from MAR2 to SDR21 for '<no name>*'
476 Load from MAR1 to SDR11 with SDRIdx21 for '<no 481 Load from MAR5 to SDR15 for '<no name>*'477 Save to MAR3 from SDR11 for '<no name>*'487 Load from MAR8 to SDR22 for '<no name>*'482 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
488 Load from MAR7 to SDR13 with SDRIdx22 for '<no 489 Save to MAR9 from SDR13 for '<no name>*'

483 Save to MAR6 from SDR12 for '<no name>*'

471 Save to MAR0 from SDR14 for '<no name>*'496 Run 'mole' at MPC 0 with SDRs 502 Load from MAR11 to SDR18 for '<no name>*'507 Load from MAR15 to SDR19 for '<no name>*'508 Load from MAR14 to SDR7 with SDRIdx19 for '<no 513 Load from MAR18 to SDR10 for '<no name>*'509 Save to MAR16 from SDR7 for '<no name>*'519 Load from MAR21 to SDR20 for '<no name>*'514 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

520 Load from MAR20 to SDR16 with SDRIdx20 for '<no 521 Save to MAR22 from SDR16 for '<no name>*'

515 Save to MAR19 from SDR8 for '<no name>*'

497 Save to MAR10 from SDR17 for '<no name>*'501 Load from MAR12 to SDR6 for '<no name>*'528 Run 'mole' at MPC 0 with SDRs 503 Save to MAR13 from SDR6 with SDRIdx18 for '<no 533 Load from MAR2 to SDR21 for '<no name>*'534 Load from MAR1 to SDR11 with SDRIdx21 for '<no 539 Load from MAR5 to SDR15 for '<no name>*'535 Save to MAR3 from SDR11 for '<no name>*'

12 for '<no name>*'

471 Save to MAR0 from SDR14 for '<no name>*'496 Run 'mole' at MPC 0 with SDRs 502 Load from MAR11 to SDR18 for '<no name>*'507 Load from MAR15 to SDR19 for '<no name>*'508 Load from MAR14 to SDR7 with SDRIdx19 for '<no 513 Load from MAR18 to SDR10 for '<no name>*'509 Save to MAR16 from SDR7 for '<no name>*'519 Load from MAR21 to SDR20 for '<no name>*'514 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

520 Load from MAR20 to SDR16 with SDRIdx20 for '<no 521 Save to MAR22 from SDR16 for '<no name>*'

515 Save to MAR19 from SDR8 for '<no name>*'

497 Save to MAR10 from SDR17 for '<no name>*'501 Load from MAR12 to SDR6 for '<no name>*'528 Run 'mole' at MPC 0 with SDRs 503 Save to MAR13 from SDR6 with SDRIdx18 for '<no 533 Load from MAR2 to SDR21 for '<no name>*'534 Load from MAR1 to SDR11 with SDRIdx21 for '<no 539 Load from MAR5 to SDR15 for '<no name>*'535 Save to MAR3 from SDR11 for '<no name>*'540 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

545 Load from MAR8 to SDR22 for '<no name>*'546 Load from MAR7 to SDR13 with SDRIdx22 for '<no 547 Save to MAR9 from SDR13 for '<no name>*'

541 Save to MAR6 from SDR12 for '<no name>*'

529 Save to MAR0 from SDR14 for '<no name>*'554 Run 'mole' at MPC 0 with SDRs 560 Load from MAR11 to SDR18 for '<no name>*'565 Load from MAR15 to SDR19 for '<no name>*'566 Load from MAR14 to SDR7 with SDRIdx19 for '<no 571 Load from MAR18 to SDR10 for '<no name>*'567 Save to MAR16 from SDR7 for '<no name>*'577 Load from MAR21 to SDR20 for '<no name>*'572 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

578 Load from MAR20 to SDR16 with SDRIdx20 for '<no 579 Save to MAR22 from SDR16 for '<no name>*'

573 Save to MAR19 from SDR8 for '<no name>*'

555 Save to MAR10 from SDR17 for '<no name>*'559 Load from MAR12 to SDR6 for '<no name>*'586 Run 'mole' at MPC 0 with SDRs

540 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

545 Load from MAR8 to SDR22 for '<no name>*'546 Load from MAR7 to SDR13 with SDRIdx22 for '<no 547 Save to MAR9 from SDR13 for '<no name>*'

541 Save to MAR6 from SDR12 for '<no name>*'

529 Save to MAR0 from SDR14 for '<no name>*'554 Run 'mole' at MPC 0 with SDRs 560 Load from MAR11 to SDR18 for '<no name>*'565 Load from MAR15 to SDR19 for '<no name>*'566 Load from MAR14 to SDR7 with SDRIdx19 for '<no 571 Load from MAR18 to SDR10 for '<no name>*'567 Save to MAR16 from SDR7 for '<no name>*'577 Load from MAR21 to SDR20 for '<no name>*'572 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

578 Load from MAR20 to SDR16 with SDRIdx20 for '<no 579 Save to MAR22 from SDR16 for '<no name>*'

573 Save to MAR19 from SDR8 for '<no name>*'

555 Save to MAR10 from SDR17 for '<no name>*'559 Load from MAR12 to SDR6 for '<no name>*'586 Run 'mole' at MPC 0 with SDRs 561 Save to MAR13 from SDR6 with SDRIdx18 for '<no 591 Load from MAR2 to SDR21 for '<no name>*'592 Load from MAR1 to SDR11 with SDRIdx21 for '<no 597 Load from MAR5 to SDR15 for '<no name>*'593 Save to MAR3 from SDR11 for '<no name>*'603 Load from MAR8 to SDR22 for '<no name>*'598 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

604 Load from MAR7 to SDR13 with SDRIdx22 for '<no 605 Save to MAR9 from SDR13 for '<no name>*'

599 Save to MAR6 from SDR12 for '<no name>*'

587 Save to MAR0 from SDR14 for '<no name>*'612 Run 'mole' at MPC 0 with SDRs 618 Load from MAR11 to SDR18 for '<no name>*'623 Load from MAR15 to SDR19 for '<no name>*'624 Load from MAR14 to SDR7 with SDRIdx19 for '<no 629 Load from MAR18 to SDR10 for '<no name>*'625 Save to MAR16 from SDR7 for '<no name>*'635 Load from MAR21 to SDR20 for '<no name>*'630 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

636 Load from MAR20 to SDR

561 Save to MAR13 from SDR6 with SDRIdx18 for '<no 591 Load from MAR2 to SDR21 for '<no name>*'592 Load from MAR1 to SDR11 with SDRIdx21 for '<no 597 Load from MAR5 to SDR15 for '<no name>*'593 Save to MAR3 from SDR11 for '<no name>*'603 Load from MAR8 to SDR22 for '<no name>*'598 Load from MAR4 to SDR12 with SDRIdx15 for '<no 
name>*'

604 Load from MAR7 to SDR13 with SDRIdx22 for '<no 605 Save to MAR9 from SDR13 for '<no name>*'

599 Save to MAR6 from SDR12 for '<no name>*'

587 Save to MAR0 from SDR14 for '<no name>*'612 Run 'mole' at MPC 0 with SDRs 618 Load from MAR11 to SDR18 for '<no name>*'623 Load from MAR15 to SDR19 for '<no name>*'624 Load from MAR14 to SDR7 with SDRIdx19 for '<no 629 Load from MAR18 to SDR10 for '<no name>*'625 Save to MAR16 from SDR7 for '<no name>*'635 Load from MAR21 to SDR20 for '<no name>*'630 Load from MAR17 to SDR8 with SDRIdx10 for '<no 
name>*'

636 Load from MAR20 to SDR16 with SDRIdx20 for '<no 637 Save to MAR22 from SDR16 for '<no name>*'

631 Save to MAR19 from SDR8 for '<no name>*'

613 Save to MAR10 from SDR17 for '<no name>*'617 Load from MAR12 to SDR6 for '<no name>*'644 Run 'mole' at MPC 0 with SDRs 619 Save to MAR13 from SDR6 with SDRIdx18 for '<no 649 Load from MAR2 to SDR21 for '<no name>*'
650 Load from MAR1 to SDR11 with SDRIdx21 for '<no 655 Load from MAR5 to SDR15 for '<no name>*'651 Save to MAR3 from SDR11 for '<no name>*'661 Load from MAR8 to SDR22 for '<no name>*'656 Load from MAR4 to SDR12 with SDRIdx15 for '<no 

name>*'
662 Load from MAR7 to SDR13 with SDRIdx22 for '<no 663 Save to MAR9 from SDR13 for '<no name>*'

657 Save to MAR6 from SDR12 for '<no name>*'
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Figure 7: Snippet of execution of “duplicated” (see Table 3)
showing the improvement in overlap of memory and kernel op-
erations. Left column of both (a) and (b) represents a kernel
being executed, and the right columns are for memory opera-
tions.

Variant Calculated Measured
expanded 4.9 4.9
fixed 10.3 (8.6) 8.6
variable 12.0 (9.9) 9.7
duplicated 8.0 7.2

Table 4: Arithmetic intensity of the various StreamMD imple-
mentations. Values in parenthesis are more accurate calcula-
tions accounting for the actual data set properties.

each bar represents the percentage of references made to each level
of the register hierarchy. Nearly all references are made to the LRFs
due the large amounts of kernel locality available in this applica-
tion. The relatively small difference between the number of ref-
erences made to the SRF and to memory indicates the use of the
SRF as a staging area for memory, and not for capturing long term
producer-consumer locality.

89%
95% 95% 96%

7% 3% 4% 2%3% 2% 1% 1%
0%

20%

40%

60%

80%

100%

120%

expanded fixed variable duplicated

%LRF %SRF %MEM

Figure 8: Locality of the various implementations

4.4 Performance
Figure 9 shows the performance results for the various imple-

mentations. The left-most bar group represents the rate of com-
putation for floating-point operations directly contributing to the
water-water interaction force calculation, and corresponds to the
time-to-solution – a higher value indicates faster execution. The
central group is the execution rate of all floating-point operations
on the hardware. These include operations on dummy neighbors,

kernel initialization, and other overheads. The right-most group
shows the total number of memory accesses performed. While a
higher total execution rate or lower memory reference count do not
correlate with better algorithm performance we can clearly see the
various trade-offs made between increased amount of computation
and memory bandwidth requirements of the difference implemen-
tation choices. At this point we only estimate the performance on a
conventional processor based on the wall-clock time of simulating
the same data set for 1000 time-steps. We are assuming the actual
force calculation accounts for 75% of the time.
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Figure 9: Performance of the different StreamMD implemen-
tations

The highest performance implementation is variable which out-
performs expanded by 84%, fixed by 26%, duplicated by 119%,
and GROMACS on a 3.4GHz Pentium 4 by a factor of 13.2.

Not only does Merrimac outperform a conventional processor
fabricated with the same semiconductor process by a factor of over
13, Merrimac also performs 64-bit double-precision computations
at full bandwidth as opposed to single-precision operations on the
Pentium 4.

5. Discussion and future work

5.1 Merrimac allows for effective automatic
optimizations

The Merrimac hardware is designed to allow effective automatic
compilation. The hardware presents a simple target which is mostly
software controlled, so that the compiler has access to all execu-
tion information and can statically decide on optimizations. The
main enabling hardware feature is the SRF which decouples mem-
ory from execution. It serves as a buffer for the unpredictable na-
ture of DRAM and interconnection network traffic, and presents a
deterministic view of data supply to the execution clusters. Each
execution cluster is a VLIW execution core with a distributed reg-
ister file, an inter-cluster result switch, and has predictable latency
and bandwidth access to its SRF bank.

Communication scheduling [20] takes advantage of these fea-
tures, and automatically employs sophisticated compilation tech-
niques to achieve near optimal schedules. Figures 10a and 10b
show the effect of applying loop unrolling and software pipelining
to the interaction kernel of variable. In each figure, the 4 columns
represent the cluster’s 4 arithmetic units, and a box represents an
instruction that started execution at a particular cycle. The opti-
mized kernel is unrolled twice and software pipelined to achieve an
execution rate that is 83% better than the original kernel. It takes
120 cycles for each iteration of the loop, which performs two dis-
tinct interactions (unrolled loop). While executing this inner loop
of the kernel a new instruction is issued on 90% of the cycles.



In contrast to this automated approach highly optimized code
for conventional processors is often written directly in assembly, as
was done for GROMACS.
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Figure 10: Schedules of thevariable interaction kernel (see Ta-
ble 3), before, and after optimization is applied – (a) and (b)
respectively

In addition the SRF is software managed using a technique called
stream scheduling, allowing the compiler to capture long term producer-
consumer locality, and manage eviction from the SRF in an intel-
ligent manner which cannot be mimicked by a conventional data
cache. Kapasi et al. discuss this point in depth [12].

The effectiveness of the automated tools is evident in the per-
formance of StreamMD. While the peak performance of Merri-
mac is specified at 128GFLOPS, the optimal we can achieve for
StreamMD is 77.6 solution GFLOPS – floating point operations
that are specified by the programmer. Optimal performance is lower
than peak due to the facts that peak performance can only be achieved
if all operations are fused multiply-add, and that divides and square-
roots are computed iteratively and require several operations. Vari-
able sustains a respectable 50% of this optimal at 38.8 solution
GFLOPS and 55.5GFLOPS overall (43% of peak). The reasons for
not achieving optimal performance are mainly constraints on com-
munication scheduling, overheads associated with running a kernel
and priming its software-pipelined loop, and small inefficiencies in
stream scheduling.

5.2 Merrimac is tuned for scientific
applications and modern semiconductor
technology

While most conventional processors are designed to execute a
large set of applications, ranging from productivity applications to
scientific simulation and games, Merrimac is specifically tuned for
scientific applications. Merrimac is not a special purpose processor
and is fully programmable. It takes advantage of the high arithmetic
intensity and large amount of parallelism found in many scientific
codes and matches them with the capabilities and limitations of
modern semiconductor technology.

This allows the Merrimac hardware to provide a large number of
execution units with data and instructions leading to much higher
performance, both in terms of computation and memory bandwidth.
We demonstrated this performance advantage by the StreamMD
application that, based on our simulation results, will run 13.2 times

faster on a Merrimac processor than a conventional Pentium 4 fab-
ricated in the same 90nm semiconductor process.

Moreover, Merrimac allows full bandwidth double-precision op-
erations which are important to the scientific computing commu-
nity. Merrimac also simplifies programming in a multi-node setting
by providing ample global bandwidth and a single name-space for
memory.

We did not perform a direct comparison to processors other than
the Pentium 4. However the GROMACS benchmark results [6]
indicate that leading conventional CPUs from different companies,
belonging to the same generation as the Pentium 4 such as the AMD
Opteron and IBM PPC970, perform within 10% of one another.

We also would have liked to compare Merrimac to a vector ma-
chine or a special purpose design such as MDGRAPE-3 [26], but
the lack of standardized benchmarks puts it beyond the scope of this
paper. Simply comparing operations per second, or even the com-
putation rate of atom interactions, is not enough to draw meaning-
ful conclusions due to the wide range of algorithms used. For ex-
ample, MDGRAPE-3 boasts impressive numbers of 165GFLOPS,
or 5 billion atom-atom interactions every second, using conserva-
tive design in a 0.13µm process. However, the algorithm used on
MDGRAPE computes many more interactions than GROMACS
since it does not maintain interaction lists. Instead it performs a
full O(n2) interactions for long range forces, and O(n′2) for lim-
ited range forces where n′ is the number of molecules in two cells
whose dimension is rcutoff

3.

5.3 Implications of StreamMD on other
applications

We chose StreamMD as a case study of application development
on Merrimac for three main reasons. First, interaction force cal-
culation in molecular dynamics shares many characteristics with
other scientific codes. Second, the algorithm for water-water inter-
action is fairly straightforward to understand and implement. And
finally, since a very highly optimized version exists for conven-
tional processors for comparison purposes.

While developing StreamMD we are encountering many gen-
eral problems such as variable-length work-lists. These appear as
neighbor lists in our case, but are also common in finite-element
methods with unstructured grids, sparse linear algebra, graph algo-
rithms, and adaptive mesh applications. The techniques developed
for StreamMD are generally applicable to scientific codes on Merri-
mac and other data-parallel machines, and not limited to molecular
dynamics. Just as importantly, StreamMD serves as a test case for
the Merrimac hardware design and software systems, and we are
able to provide feedback to the Merrimac architecture and compi-
lation teams. The improved hardware features and compiler algo-
rithms again benefit other scientific domains as well.

5.4 Computation and memory bandwidth
trade-offs and future work

As semiconductor technology continues to scale on-chip devices
at a higher rate than off-chip bandwidth, recomputing values in-
stead of fetching them from memory becomes a meaningful opti-
mization. Performance can potentially be improved by increasing
the arithmetic intensity, either trading off some of the computation
for memory bandwidth as was done in the duplicated variant, or
by taking advantage of the ample compute resources to implement
more accurate chemical models. We explore the two options in this
section.

Computation and memory bandwidth can be traded off by group-
ing molecules into cubic clusters of size r3. Since the GROMACS
algorithm requires an interaction sphere of radius rc (cut-off ra-



dius), we will pave this sphere with cubic clusters. This approach,
which we call the blocking scheme, is similar to the technique of
blocking used in many applications such as matrix vector products,
and fast Fourier transforms. It is possible to show that the total
memory bandwidth required with this approach scales as O(r−3).
However, the computation has to go up since the calculation now
includes extra pairs of molecules which are at a distance between rc

and rc +2
√

3r. We wrote MATLAB code to estimate this trade-off
more precisely. This estimate is less accurate than the Merrimac
simulator but it points out the trends and motivates further work.
Figure 11 shows the increase in computation and the reduction in
memory operations relative to the variable scheme. This shows that
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Figure 11: Estimate of computation and memory operations
with the blocking scheme. Results are relative to thevariable
scheme and were obtained with MATLAB. The size of the clus-
ter has been normalized so that a cluster of size 1 contains ex-
actly one molecule.

some improvement can be expected. Using data from the simula-
tion of the variable scheme, we further estimate the run-time of the
blocking scheme and show that there is a minimum around a clus-
ter size of 1.43, which corresponds to a cluster containing about
3 molecules. These results will be confirmed and validated in the
future using the more accurate Merrimac simulator.

The second topic of future research is to consider more complex
water models. Since Merrimac can provide high performance for
applications that exhibit good data locality, complex water mod-
els are attractive as they can significantly increase the amount of
arithmetic intensity. Water models are developed in order to im-
prove the fit with one particular physical structure (protein folding)
or a set of parameters such as density anomaly, radial distribution
function, and other critical parameters. By and large, the more pa-
rameters are used, the better the fit. Some examples of physical
properties computed with various models, and their corresponding
real experimental values, are given in Table 5. In our simulation,
we considered a model where 3 partial charges are located at the
hydrogen and oxygen atoms. More advanced models use up to 6
charges [23] at various locations. In all those models the location
of the charges is considered to be fixed relative to the molecule and
thus does not require any additional memory bandwidth. In real
physical systems however, molecules exhibit significant polariza-
tion. Polarizable force fields [8] seek to account for appropriate
variations in charge distribution with dielectric environment. Ex-
amples are PPC [16], SWFLEX-AI [29], POL5/TZ [7]. All of those
schemes give better fit. They also lead to a significant increase in
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Figure 12: Estimate of execution time with theblocking scheme,
relative to the variable scheme. The minimum occurs at about
3 molecules per cluster (cluster size of1.43).

arithmetic intensity. Consequently, Merrimac will provide better
performance for those more accurate models.

Model Dipole
moment

Dielectric
constant

Self diffusion
10−5 cm2/s

SPC [24] 2.27 65 3.85

TIP5P [19] 2.29 81.5 2.62

PPC [16] 2.52 77 2.6

Experimental 2.65, 3.0 78.4 2.30

Table 5: SPC is similar to the model used for our GROMACS
tests; TIP5P uses five fixed partial charges; PPC is a polarizable
model.

6. Conclusions
In this paper, we presented StreamMD – a molecular dynamic

application developed for the fully programmable Merrimac stream-
ing supercomputer. StreamMD performs the water-water interac-
tion force calculation of the GROMACS molecular dynamic simu-
lation package. It integrates with GROMACS through memory, and
the interface is simply the molecules position array, neighbor-list
stream, and the force array. The force computation presents imple-
mentation challenges on a high-performance, data-parallel SIMD
architecture such as Merrimac, due to the variable nature of the
neighbor interaction lists and the only moderate arithmetic inten-
sity of the algorithm.

We developed several techniques for dealing with the variable
number of interactions of each molecule. The simplest technique
expands the interaction list by replicating the interacting molecule
to form a molecule-pair for each interaction. This method suffers
from poor locality leading to relatively low performance. A second
variant of the algorithm reduces the bandwidth demands, while ad-
hering to strict SIMD semantics, by forming fixed-length neighbor
lists. To achieve this, a fixed-length list of 8 neighbors was chosen,
central molecules were replicated, and dummy neighbors were in-
troduced. The dummy neighbors lead to unnecessary computation
but still performance improved by 46% compared to the first imple-
mentation. Finally, conditional streams were used to relax SIMD



constraints on stream inputs, allowing for variable-length neighbor
lists. The result is a fairly fast algorithm achieves 84% speedup
over the original implementation, and performs at 50% of optimal.
Our last implementation attempted to trade-off extra computation
for reduced bandwidth demands in order to improve performance.
The simplistic approach we implemented did not achieve higher
performance with Merrimac’s ratio of computational to memory
bandwidths. However, we believe that this type of optimization is
becoming increasingly important and plan to explore more sophis-
ticated techniques.

Finally, we compared Merrimac’s suitability for molecular dy-
namic applications against a conventional Pentium 4 processor. The
unique architecture of Merrimac, which decouples memory and
kernel execution, allows for highly effective static scheduling of
kernel operations. This leads to very high performance on the crit-
ical inner loops of the computation without resorting to assembly
coding, as was the case with GROMACS on the Pentium 4. Merri-
mac also provides much higher memory and computational band-
widths than a Pentium 4 built with equivalent semiconductor pro-
cess technologies, and the software system is able to take advantage
of these resources. Our automatically optimized code on Merrimac
outperforms the highly hand-tuned Pentium implementation by a
factor of 13.2.
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