
Flexible Cache Error Protection using an ECC FIFO

Doe Hyun Yoon
Electrical and Computer Engineering

Department
The University of Texas at Austin
doehyun.yoon@gmail.com

Mattan Erez
Electrical and Computer Engineering

Department
The University of Texas at Austin

mattan.erez@mail.utexas.edu

ABSTRACT

We present ECC FIFO, a mechanism enabling two-tiered
last-level cache error protection using an arbitrarily strong
tier-2 code without increasing on-chip storage. Instead of
adding redundant ECC information to each cache line, our
ECC FIFO mechanism off-loads the extra information to
off-chip DRAM. We augment each cache line with a tier-
1 code, which provides error detection consuming limited
resources. The redundancy required for strong protection is
provided by a tier-2 code placed in off-chip memory. Because
errors that require tier-2 correction are rare, the overhead of
accessing DRAM is unimportant. We show how this method
can save 15 − 25% and 10 − 17% of on-chip cache area and
power respectively while minimally impacting performance,
which decreases by 1% on average across a range of scientific
and consumer benchmarks.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; B.3.4 [Memory Structures]: Reliability, Testing
and Fault-Tolerance—Error-checking

General Terms

Reliability, Design

Keywords

soft error, error correction, last-level caches, reliability

1 Introduction

In this paper we present ECC FIFO – a strong error pro-
tection architecture aimed at large on-chip last-level caches
(LLCs) that minimizes hardware energy and area overheads
while having minimal impact on performance. Our tech-
nique is based on a two-tiered ECC scheme and off-loads
all of the storage required for strong error correction to

This work is supported in part by donations from the Intel corpora-
tion

(c) ACM, 2009. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-

tion. The definitive version was published in the Proceedings of SC’09

November 11–20, Portland, Oregon, USA.

off-chip DRAM, potentially leaving only low-cost error de-
tection on chip. We store error-correction bits in a FIFO
structure in main memory, instead of in a dedicated on-chip
SRAM array. The tiered approach also offers a generaliza-
tion of energy-reducing non-uniform error correction tech-
niques; low-overhead and low-latency first-tier detection or
correction is performed on every access to the cache, while
stronger and more costly second-tier correction is only en-
gaged once an error is detected.

It is important to minimize the impact on area, power, and
application performance of strong error protection mecha-
nisms because of the continuing increase in soft-error propen-
sity. The combination of growing LLC capacity, shrinking
SRAM cell dimensions, and increasing fabrication variability
that reduces error margins is leading to a higher soft error
rate (SER) [19, 27, 29]. In particular, recent trends show
that multi-bit burst errors in the array are becoming signif-
icant, partially because many memory cells can fall under
the footprint of a single energetic particle strike [19, 21, 26].

Because of these trends, the need to account for high LLC
SER and also tolerate multi-bit errors in SRAM arrays is be-
coming acute [3]. Researchers have already observed up to
16-bit errors in SRAM arrays and are predicting potentially
higher counts in the future [1, 19, 21]. The more powerful er-
ror protection mechanisms required to correct large numbers
of bit flips come at a cost of storing more redundant infor-
mation or modifying physical designs, as well as increased
energy requirements [12, 23]. We aim to reduce the over-
heads of providing increased protection against soft errors
in large SRAM arrays. We base our efficient error protec-
tion architecture on four important observations that have
been reported in our recent work:

• While SER is increasing and cannot be ignored at any
memory hierarchy level, error events are still expected
to be extremely rare for a given processor. For in-
stance, the mean time to failure (MTTF) of a 32MB
cache is around 155 days assuming 10−3FIT/bit [27]
(FIT: failures in time).

• Every write to the LLC is accompanied by computing
information required for error correction as well as for
detection. The latency of this operation, however, does
not affect performance as long as write throughput can
be supported.

• Given that SER is low, the latency and the complex-
ity of error correction is not important, since it would
occur once every several weeks or months on a given
processor.

1

• Much of the data stored in the LLC is also stored else-
where in the memory hierarchy (clean cache lines).
Replicated data is inherently soft-error tolerant, be-
cause correct values can be restored from a copy. Thus,
it is enough to detect errors in clean lines.

We combine the observations above into an architecture
that decouples error detection from error correction and that
stores all the redundant information required for correction
in a FIFO structure located in low-cost off-chip DRAM. Un-
like prior techniques that reduce the cost of on-chip ECC, in-
cluding our recently introduced Memory-Mapped ECC [36],
ECC FIFO, which we develop in this paper, does not use
any on-chip storage for strong error correction and keeps
only detection, and potentially light weight correction, in-
formation on chip. Unlike prior techniques for reducing ECC
cost, ECC FIFO does not change the caching behavior of ap-
plications, and we demonstrate the importance of this trait
in a direct comparison to prior work. Another important
feature of ECC FIFO is the flexibility it enables in choosing
two-tiered code combinations. We analyze the advantages
of different two-tier schemes over their one-tier counterparts
with respect to protection and cost.

We evaluate our architecture using full-system cycle-based
simulation of memory-intensive applications from the
SPLASH2 [34], PARSEC [2], and SPEC CPU 2006 [28]
suites. We show that the proposed FIFO based approach
outperforms prior techniques for reducing error protection
overheads on nearly every metric. We estimate 15 − 25%
and 10− 17% reductions in area and power-consumption of
a last-level cache respectively, while performance is degraded
by only 1.2% on average and by no more than 6%.

The rest of the paper is organized as follows: Section 2 de-
scribes related work; Section 3 details our architecture and
discusses its benefits and requirements; Section 4 discusses
protection capabilities and new tradeoffs enabled by the
two-tiered approach; Section 5 compares our method with
prior work and provides evaluation of ECC FIFO on an out-
of-order processor and projections to chip multi-processors
(CMPs); and Section 6 concludes the paper.

2 Background and Related Work

In this section we briefly provide background on code-based
error detection and correction mechanisms and prior work
on reducing the area and power impact of these mechanisms.

2.1 Information Redundancy

A common solution to address soft errors is to apply error
detecting codes (EDC) and error correcting codes (ECC)
uniformly across all cache lines. A cache line is extended
with an EDC and/or an ECC, and every read or write re-
quires error detection/correction or EDC/ECC encoding re-
spectively. Typically, error detection only codes are simple
parity codes, while the most common ECCs use Hamming [7]
or Hsiao [8] codes that provide single bit error correction and
double bit error detection (SEC-DED).

When greater error detection is necessary, double bit error
correcting and triple bit error detecting (DEC-TED) codes [17],
single nibble error correcting and double nibble error detect-
ing (SNC-DND) codes [4], and Reed Solomon (RS) codes [24]
have also been proposed. They are, however, rarely used in
cache memories because the overheads of ECC grow rapidly
as correction capability is increased [12]. Instead of us-
ing these complex codes, multi-bit correction and detection

Table 1: ECC storage array overheads [27].

SEC-DED SNC-DND DEC-TED
Data check

overhead
check

overhead
check

overhead
bits bits bits bits
16 6 38% 12 75% 11 69%
32 7 22% 12 38% 13 41%
64 8 13% 14 22% 15 23%
128 9 7% 16 13% 17 13%

is more commonly achieved by interleaving multiple SEC-
DED codes. Table 1 compares the overhead of various ECC
schemes. Note that the relative ECC overhead decreases as
data size increases.

Examples from Current Processors.

If the first-level cache (L1) is write through and the LLC
(e.g., L2) is inclusive, it is sufficient to provide only error
detection on the L1 data array because the data is repli-
cated in L2. Then, if an error is detected in L1, error cor-
rection is done by invalidating the erroneous L1 cache line
and re-fetching the cache line from L2. Such an approach is
used in the SUN UltraSPARC-T2 [30] and IBM Power 4 [31]
processors. The L2 cache is protected by ECC, and because
L1 is write-through, the granularity of updating the ECC
in L2 must be as small as a single word. For instance, the
UltraSPARC-T2 uses a 7-bit SEC-DED code for every 32
bits of data in L2, an ECC overhead of 22%.

If L1 is write-back (WB), then L2 accesses are at the gran-
ularity of a full L1 cache line. Hence, the granularity of
ECC can be much larger, reducing ECC overhead. The In-
tel Itanium processor, for example, uses a 10-bit SEC-DED
code that protects 256 bits of data [35] with an ECC over-
head of only 5%. Other processors, however, use smaller
ECC granularity even with L1 write-back caches to provide
higher error correction capabilities. The AMD Athlon [9]
and Opteron [11] processors, as well as the DEC Alpha
21264 [5], interleave 8 8-bit SEC-DED codes for every 64-
byte cache line to tolerate more errors per line at a cost of
13% additional overhead.

2.2 Reducing Error Correction Overheads

Prior work on reducing on-chip ECC overhead generally
break the assumption of uniform protection of all cache lines
and either sacrifice protection capabilities, when compared
to uniform ECC protection, or utilize different mechanisms
to protect clean and dirty cache lines. Kim and Somani [14]
suggest parity caching, which compromises error protection
to reduce area and energy costs of ECC by only protecting
those cache lines that have been most recently used in every
cache set. Another scheme in this first category is In-Cache
Replication (ICR) [38]. ICR increases error protection for a
subset of all cache lines, which are accessed frequently, by
storing their replicas in place of cache lines that are predicted
to be “dead” and no longer required. Not all cache lines are
replicated leading to a potentially higher uncorrectable error
rate than with the baseline uniform ECC.

An approach to save energy and latency rather than area
was proposed in [25]. The idea is to decouple error detection
from error correction and utilize a low-latency and
low-cost EDC for reading, while traditional ECC is com-
puted and stored on every write. This ECC is used if an
error is detected. A similar idea was taken further in [16],
where the SEC-DED ECC portion of clean cache lines is
power-gated to reduce leakage power, leaving only parity
EDC active. Lines that are clean can be recovered from a

2

deeper level in the memory hierarchy and only error detec-
tion is necessary.

Kim [13] proposes a method to decrease area in addition to
energy by trading-off performance. His area-efficient scheme
allows only one dirty cache line per set in a 4-way set as-
sociative cache. If a larger number of lines in a set require
ECC (more than one dirty line), a write-back is forced to
make space for the new ECC. In our experiments that ac-
curately model the DRAM system (Section 5), we found
that this additional memory write traffic can significantly
degrade performance. The performance impact can be re-
duced at an area and energy cost if more ECC-capable lines
are provided in each set. We will refer to this generalization
scheme where n lines per set have ECC as MAXn.

Essentially, the area-efficient scheme above implements a
set-associative cache for storing ECC bits. Other work pro-
posed a fully-associative replication cache (R-Cache) that
utilizes replication to provide error protection [37]. The R-
Cache stores replicas of writes to a L1 cache, and the replicas
are accessed on reads to provide detection and correction. If
the R-Cache is full, the controller forces a line to be cleaned
and written back to L2 so that no data is jeopardized. Al-
though its performance impact is minimal, the R-Cache in-
creases energy consumption and can only be used with small
L1 caches due to its fully associative structure.

To tolerate multi-bit burst errors, physical bit interleav-
ing [23] is used in some commercial designs. By interleaving
bits from adjacent cache lines in the physical layout, a multi-
bit error caused by a single upset appear as single-bit errors
in multiple cache lines rather than a single line with a multi-
bit error. While this method can reduce ECC overhead for
burst errors, it requires additional power for accessing of
the other interleaved words, which are not necessary, and
additional area and delay due to the long word lines and col-
umn multiplexer. Hence, physical interleaving is suitable for
small-scale multi-bit errors, with scaling to higher potential
error counts results in large performance, area, and power
overheads [12]. 2D error coding [12] can tolerate multi-bit
errors in a more scalable way. Interleaving horizontal and
vertical parity codes together provides higher error protec-
tion with only a modest increase in ECC storage. 2D coding,
however, forces every write being read-modify-write.

Recently, we suggested Memory-Mapped ECC (MME) [36]
that uses a two-tiered error protection similar to this work,
but differs in how off-loading to memory is managed. MME
stores tier-two error codes as cacheable data in the memory
hierarchy, dynamically and transparently partitioning the
LLC into data and error codes. MME’s impact on perfor-
mance is low in general, but can be significant because it
impacts the caching behavior of the application, as some of
the LLC is used for redundant information. This effect is
particularly strong when cache blocking is used to closely
match the working set with the cache size. ECC FIFO does
not suffer from this behavior and we explore its benefits over
MME in Section 5.

Finally, Lee et al. proposed eager write-back as a way to
improve DRAM bandwidth utilization [15]. It eagerly writes
dirty cache lines back to DRAM so that dirty evictions do
not contend with demand fetches. Many cache reliability
studies (e.g., [13, 16, 36]), including ours, use eager write-
back as a way to reduce the average number of dirty cache
lines in the LLC.

Last Level Cache

T2EC
encoder

T2EC
FIFO

Coalesce
Buffer

DRAM

k

m

Rest of cache hierarchy

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Data T1EC

. . .

S sets

W ways

. . .

B T1

Tag/T2EC

Figure 1: ECC FIFO architecture.

3 ECC FIFO

One of the challenges in designing a large LLC is support-
ing strong soft and transient error protection while mini-
mizing energy, area, and performance overheads. The most
common approaches today extend cache lines with redun-
dant information in the form of ECC resulting in overheads
that are proportional to the degree of error protection; a
larger number of errors can be tolerated only at the cost
of increased redundancy, which increases area and energy
leading to lower potential performance. Our ECC FIFO ar-
chitecture is designed to minimize energy and area costs of
on-chip redundancy information and increase performance
headroom. Our technique optimizes the common case of
detecting errors, and potentially correcting a small num-
ber of errors, while providing strong error correction using a
unique FIFO structure that off-loads redundant information
to main memory. In the rest of this section, we explain our
two-tiered protection scheme in detail and evaluate its im-
plementation cost (Section 3.1), followed by a discussion of
a potential limitation to protection due to the finite-nature
of the FIFO in DRAM and a solution that allows trading
off the likelihood of an uncorrectable errors with off-chip
storage requirements (Section 3.2).

3.1 High Level Design and Implementation

We use a two-tiered error protection mechanism, in which
the mechanisms for detecting errors and correcting errors
are essentially split. The Tier-1 error code (T1EC) is a
low-cost code that is accessed on every read and is designed
to be decoded with low latency and energy. We provide
dedicated on-chip storage for the T1EC in every cache line
and use it exclusively for error detection or for light-weight
error correction. The Tier-2 error code (T2EC) is more
costly and provides the required redundancy for strong error
correction. The T2EC, however, is only computed on a dirty
write-back into the LLC because clean LLC lines can be
recovered from a different level of the memory hierarchy.
Just as importantly, the T2EC is only read and decoded
on the rare event that the T1EC detects an error that it
cannot correct (recall that it is possible to architect T1EC

3

Table 2: Definitions and nominal parameters used for evalu-
ation.

LLC parameters
number of sets S 2048 sets
associativity W 8 way
line size B 64B
LLC size S × W × B 1MB

ECC FIFO parameters
tag size log

2
(S × W) 14 bits

the coalesce buffer size m 6
T1EC size per cache line T1 see Section 4
T2EC size per cache line T2 see Section 4
T2EC FIFO size k see Section 3.2

Others
DRAM bandwidth BW 5.336GB/s
eager write-back period Tewb 106 cycles
processor clock clock 3GHz

with light-weight correction). Therefore, we do not provide
dedicated on-chip storage for the T2EC and instead write
this redundant information into a FIFO structure allocated
in DRAM (Figure 1). Every time a T2EC is generated, the
redundant information is pushed onto the T2EC FIFO along
with a tag that indicates the corresponding dirty physical
LLC line. Thus, when an error is detected by the T1EC, the
T2EC FIFO can be searched starting from the newest entry
until a matching tag is found and the redundant information
can be retrieved. The FIFO is simple to implement and
allows us to easily identify the T2EC corresponding to an
error with very low management overhead and with efficient
transfer of T2EC data to DRAM.

We now discuss the on-chip area overhead, how to write a
line into the LLC and generate the redundant information,
how to write T2EC data out to DRAM through a coalesce
buffer, how to manage the T2EC FIFO, and how to access
the LLC and potentially correct any errors.

On-chip Area Overhead

As shown in Figure 1, the on-chip ECC storage overhead is
for T1EC only and is equal to S ×W ×T1 bytes, where S is
the number of LLC sets, W is the LLC associativity, and T1

is the number of bytes required for the T1EC corresponding
to single LLC line of B bytes (see Table 2). For example,
an 8-way interleaved parity T1EC that detects up to a 15-
bit burst error requires just 1 byte of storage for a 64-byte
cache line. This is a much smaller overhead than in the con-
ventional approach of uniformly providing an 8-way inter-
leaved SEC-DED code requiring 8 bytes for each cache line.
Both the 8-way interleaved parity T1EC and the conven-
tional 8-way interleaved SEC-DED have similar burst-error
detection capability (up to 16-bit bursts for SEC-DED and
15-bit bursts for the T1EC), although the SEC-DED code
can detect a larger number of non-burst bit errors. To pro-
vide a matching correction capability the T2EC is an 8-way
interleaved SEC-DED that is stored in the off-chip DRAM.
We discuss the off-chip storage overhead in Section 3.2.

LLC Write

We assume the cache level preceding the LLC (e.g., L1 if the
LLC is L2) is a write-back cache, hence, the LLC is always
accessed at a coarse granularity of a cache line. When a
cache line is evicted into the LLC, as well as when a line is
written into the LLC from DRAM, a T1EC is encoded and
written along with the data into the LLC. Because a clean
line can be corrected by re-fetching the line from DRAM,
a T2EC is encoded only for a dirty line written back into

the LLC from the level above. The encoded T2EC is packed
with a tag , which is a pointer to the corresponding physical
data line in the LLC. A tag is composed of the set number
and the way number of the cache line so that the T2EC can
later be associated with a detected error. The tag requires
log2(S × W) bits, e.g., 18 bits for a 16MB LLC with 64B
cache lines. The packed tag/T2EC pair is pushed into a
coalesce buffer and then written into the FIFO with DRAM-
burst granularity. The coalesce buffer is necessary to achieve
high DRAM throughput because a single tag/T2EC is only
10.5 bytes in the example above (8 bytes for an interleaved
SEC-DED T2EC and 2.5 bytes for the tag), smaller than the
minimum burst size of modern DRAM controllers, which are
architected for LLC-line granularity (e.g., 64 bytes). Using
the parameters above, we can coalesce up to 6 tag/T2EC
pairs into a single DRAM write-back.

LLC Read

When a cache line is read from the LLC (fill into the preced-
ing level, or write-back into DRAM), the T1EC is used to
detect and potentially correct errors. If the T1EC detects
an error that it can correct, the LLC controller immediately
corrects the error and re-writes the cache line. If, on the
other hand, the error is not correctable by the T1EC, then
a copy of the line within the memory hierarchy is re-fetched
into the LLC if the line is clean and the T2EC FIFO is used
if the line is dirty.

The first step required to correct an error using T2EC is
to identify the FIFO entry that contains the T2EC data.
The FIFO is searched sequentially to find the tag, which
corresponds to the LLC physical line in which the error was
found. The search starts from the newest FIFO entry, which
can still be in the on-chip coalesce buffer, and proceeds from
the current DRAM tail towards the head. Once the most
recent matching pair is found, the T2EC (and the T1EC,
if needed) attempts to correct the errors. Thus, the worst
case penalty of T2EC error correction is the required time to
read and compare all tag/T2EC pairs from the FIFO. This
takes roughly k × (B/m)/BW seconds, where k is the size
of the FIFO in number of pairs, m is the number of pairs
in a cache line and BW is the expected throughput of the
DRAM channel in bytes/sec (see Table 2). For instance, the
worst case correction latency is around 1.66 ms when k is one
million entries, m is 6, B is 64 bytes, and BW is 6.4GB/s.
This overhead, however, is entirely negligible given the rare
occurrence of an error that requires T2EC for correction,
which we estimate at one error every 155 days for a 32MB
cache in today’s technology [27, 29].

T2EC FIFO

We propose to use a large circular FIFO buffer in the main
memory space to store the T2EC information. The FIFO
has two significant advantages over other T2EC storage op-
tions: (i) a FIFO allows for arbitrary coalescing with a triv-
ial and small on-chip buffer that can still maximize DRAM
throughput; and (ii) a FIFO is easy to manage in software
and provides a clear way to identify the most recent up-
date to a LLC physical line’s T2EC data. Information on
the FIFO size and base address is stored within the LLC
controller and can be set by privileged hypervisor or O/S
instructions, or through the BIOS.

One caveat to using a circular buffer is that a T2EC push
into the FIFO overwrites the oldest entry. If the physical
cache line that corresponds to the overwritten T2EC FIFO

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

FIFO size [thousand entries]

Probability of T2EC unprotected

Fevict

Freuse

Figure 2: Punprot, Freuse, and Fevict in the lbm application

entry has not been modified or evicted from the LLC then
its T2EC information is overwritten and lost. At that point,
the line becomes T2EC unprotected and the system will not
be able to recover from an error within it.

3.2 T2EC Overwrite and Unprotected Lines

In this section, we analyze the effects of the T2EC FIFO
size on T2EC protection capability, which we define as the
probability that a T2EC cannot correct the LLC line due
to a T2EC overwrite in the circular buffer (Punprot). Even
though the buffer is finite, the probability of unprotected
lines is small for two main reasons: (i) inherent memory ac-
cess patterns in applications that limit the lifetime of dirty
lines in the LLC through reuse and capacity/conflict evic-
tions; and (ii) limiting dirty line lifetime by programming
the LLC controller to periodically clean dirty lines.

3.2.1 Reused and Evicted Dirty Lines

In many applications the natural access pattern leads to
relative short lifetime of dirty lines in the LLC. Cache lines
are often re-written by the application as new results are
generated, rendering earlier computed T2EC data stale and
unnecessary. In other cases, LLC lines are evicted to make
room for new lines being fetched, and again any existing
corresponding T2EC data in the FIFO becomes obsolete.
We denote the fraction of T2EC entries that correspond to
reused lines in the LLC as Freuse and the fraction of entries
corresponding to evicted lines as Fevict.

For example, lbm from the SPEC CPU 2006 suite [28]
has streaming memory access patterns, and hence, the vast
majority of dirty lines are written-back into DRAM before
a T2EC overwrite occurs. Simulation results (parameters as
described in Section 5) show that Fevict goes up rapidly as
the FIFO size is increased from 15K to 30K entries so that
the probability of T2EC unprotected reaches 0 when the
FIFO is larger than 30K entries, which is 313KB of DRAM
space (Figure 2).

3.2.2 Periodically Cleaning Dirty Lines

Although some applications (such as lbm) do not suffer from
T2EC unprotected with a reasonable FIFO size, other ap-
plications may cause overwrites leading to unprotected lines
regardless of the FIFO depth. We utilize the previously pro-
posed eager write-back technique [15] to bound the lifetime
of a dirty line in the LLC. We explain this in detail and de-
rive a model to analyze the T2EC unprotected probability
with eager write-back.

The original eager write-back technique, proposed in [15],
opportunistically writes dirty lines into DRAM when a dirty
line is in the least-recently used position and a DRAM issue
slot is available. This reduces pressure on DRAM when de-
mand fetches are necessary and increases performance. We
utilize a more predictable approach, which retains the per-
formance advantages, in which lines are periodically probed

dirty line

eviction to LLC

eager write-back scan

time

Tewb cycles Tewb cycles

Tewb cycles Tewb cycles

eager write-back scan

-- not old to be cleaned

eager write-back scan

-- old enough -- clean

Figure 3: An example time-line of dirty line eviction to the
LLC and eager write-back.

Tewb 2Tewb

PD(t)
1

0 t

Figure 4: Probability that a dirty cache line remains dirty in
time.

and written back if dirty. This is similar to the policy used in
cache error protection studies [13, 16] and decay caches [10].
Our eager write-back implementation scans each cache line
with a predetermined period, Tewb cycles, and eagerly writes
a dirty line older than the period.

Figure 3 shows an example time-line of a dirty line in
the LLC, from the time it is evicted into the LLC until the
time it is cleaned by an eager write-back. Each cache line is
scanned once per Tewb cycles so that a dirty line is eagerly
written back to DRAM within a maximum of 2×Tewb cycles
after the line is evicted into the LLC. Based on this observa-
tion and the fact that the periodic scanning is independent
of the eviction times, we can define PD(t) as the expected
probability that a dirty cache line that was written into the
LLC at time t = 0 remains dirty at time t, as shown in
Figure 4. Since eager write-back does not clean dirty lines
younger than Tewb cycles, PD(t) = 1 for the first Tewb cy-
cles, after which PD(t) decreases linearly until it reaches 0
at time t = 2× Tewb cycles. Figure 5 illustrates the two po-
tential time-lines of a dirty LLC line that is neither evicted
nor reused with respect to being cleaned by an eager write-
back or overwritten in the T2EC FIFO. Figure 5(a) depicts
the case that a line is cleaned by an eager write-back before
its T2EC data is overwritten and is thus fully protected,
whereas Figure 5(b) shows a window of vulnerability open-
ing if the T2EC is overwritten before the line is written back.

To summarize the discussion above, the factors determin-
ing whether a line becomes T2EC unprotected are the pe-
riod of time in which a T2EC entry is required to protect
the cache line (the T2EC entry’s valid-time) and the time
for the T2EC to be overwritten in the FIFO (its overwrite-
time); when a T2EC entry’s valid-time is longer than its
overwrite-time, the cache line becomes T2EC unprotected.
The valid-time is the property of the LLC and memory ac-
cess pattern; the time it takes for the line to be cleaned by
an eager write-back determines the valid-time unless the line
is reused or evicted before it is cleaned. The overwrite-time
is a function of the FIFO depth and the rate at which dirty
lines are written into the LLC (property of memory access
pattern and parameters of the caches closer to the core). Be-
cause the valid- and overwrite-times are application-specific
and dynamic, we model their impact on unprotected lines

5

dirty line

eviction to LLC

T2EC push to

the FIFO … (k-1) additional pushes …
k-th T2EC push

now, the first ECC is overwritten

…
time

clean

the T2EC is no longer needed

(a) a protected case

…
time

clean
Window of

vulnerability

dirty line

eviction to LLC

T2EC push to

the FIFO … (k-1) additional pushes …
k-th T2EC push

now, the first ECC is overwritten

(b) an unprotected case

Figure 5: Time-lines of dirty lines with T2EC pushes to the FIFO.

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

D
T
2E

C
(t)

P D
(t)

time [M cycles]

PD(t)

DT2EC(t)5K FIFO DT2EC(t)10K FIFO

Figure 6: Examples of DT2EC(t) for 5k and 10k entry FIFOs
from omnetpp application overlaid on PD(t) when Tewb is 1M
cycles.

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
ili

ty
 o

f T
2
E

C
 u

n
p

ro
te

c
te

d

FIFO size [thousand entries]

FFT CHOLESKY OCEAN RADIX

canneal fluidanimate mcf hmmer

libquantum omnetpp lbm milc

sphinx3 dedup freqmine bzip2

00

Figure 7: Probability of T2EC unprotected when Tewb is 1M
cycles. A FIFO larger than 40k entries is required only in
three applications: dedup, freqmine, and bzip2.

using a probability density function of the overwrite-time,
DT2EC(t). DT2EC(t) is the distribution of T2EC overwrite-
time that a T2EC entry that was computed at time t = 0
is overwritten at time t > 0. Figure 6 shows examples of
DT2EC(t) from omnetpp with different FIFO sizes. A larger
FIFO shifts DT2EC(t) towards longer overwrite times so that
eager write-back cleans nearly all the dirty lines before the
T2EC is overwritten. We can now write the probability of
an unprotected line as in Equation 1.

Punprot = (1−Freuse−Fevict)×

Z

∞

0

PD(t)×DT2EC(t) dt (1)

We used a detailed simulator, described in Section 5, to
collect T2EC overwrite-time information for a variety of
benchmark applications and a range of FIFO sizes. We then
applied the model of Equation 1 and compared the resulting
expected fraction of unprotected LLC lines to that from the
cycle-accurate simulation. Although we do not present the
detailed comparison results in this paper, the model and the
simulation agreed to within 1%.

Impact of FIFO Size and Eager Write-Back Period

Figure 7 shows the decrease in probability of T2EC unpro-
tected as the size of the FIFO increases for a range of appli-
cations when the eager write-back period is 1M cycles. All
but 3 of the applications (dedup, freqmine, and bzip2) are
fully protected with a FIFO of 40K entries requiring only
417KB of DRAM storage. The deepest FIFO required to
avoid overwrites with Tewb = 1M cycles is 100K-entries for
bzip2, requiring about 1MB of DRAM storage. Figure 8
shows the effects of varying Tewb on a few representative
applications. All but 4 of the applications evaluated be-
haved similarly to OCEAN of the SPLASH2 suite, requiring
a FIFO smaller than 100K entries even with Tewb = 5M
cycles. RADIX, bzip2, freqmine, and dedup required deeper
buffers, with dedup requiring a 220K-entry (2.5MB) buffer
with Tewb = 5M cycles.

Guaranteeing No T2EC Unprotected Lines.

If the T2EC FIFO is sufficiently large, then eager write-back
will always clean a dirty line before the corresponding T2EC
is overwritten. With eager write-back, the maximum T2EC
valid-time is 2 × Tewb cycles so we need to choose a FIFO
deep enough to make the minimum T2EC overwrite-time
longer than the maximum valid-time. The minimum T2EC
overwrite-time is k/R, where R is the maximum FIFO fill
rate, and a FIFO greater than 2× Tewb ×R prevents T2EC
unprotected.

The maximum FIFO fill rate is essentially the maximum
possible rate of dirty line writes into the LLC. At worse, ev-
ery store instruction can cause a dirty line eviction into the
LLC. Alternatively, the fill rate may be limited by the total
DRAM write bandwidth (to fill the FIFO) or the bandwidth
of the LLC controller. In our simulated system (see Ta-
ble 5), the DRAM write bandwidth sets the tightest bound.
The FIFO size required is 2 × Tewb × m/B × BW/clock,
where clock is the clock frequency of eager write-back op-
erations. This corresponds to a FIFO of 346, 070 entries
requiring 3.6MB. While this is a fairly large buffer, its size
is very small compared to today’s main-memory capacities
and replaces valuable on-chip area.

Sensitivity to Cache Size

Intuitively, a larger L1 or a smaller L2 will reduce the num-
ber of T2EC unprotected lines; a larger L1 reduces the
rate of dirty evictions into the LLC, and as a result, T2EC
overwrite-time increases. Similarly, a smaller L2 will cause
cache lines to be replaced more often, due to capacity con-
straints, which then decreases T2EC valid-time. We ran
simulations varying the L1 size between 32−128KB and the
L2 size between 512 − 2048 KB. The behavior of T2EC un-
protected is as expected and described above. The overall
impact of cache sizes is relatively small and we omit the full
results for brevity. The conclusion is that the FIFO depth

6

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 20 40 60 80 100

P
ro

b
a
b

ili
ty

 o
f T

2
E

C
 u

n
p

ro
te

c
te

d

FIFO size [thousand entries]

0.1M
0.3M
0.5M
0.75M
1M
2M
3M
4M
5M

0

(a) OCEAN

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 20 40 60 80 100 120 140 160 180 200 220 240

P
ro

b
a

b
ili

ty
 o

f T
2
E

C
 u

n
p

ro
te

c
te

d

FIFO size [thousand entries]

0.1M
0.3M
0.5M
0.75M
1M
2M
3M
4M
5M

0

(b) dedup

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 20 40 60 80 100 120 140 160 180 200

P
ro

b
a

b
ili

ty
 o

f T
2
E

C
 u

n
p
ro

te
c
te

d

FIFO size [thousand entries]

0.1M
0.3M
0.5M
0.75M
1M
2M
3M
4M
5M

0

(c) RADIX

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 20 40 60 80 100 120 140 160 180 200

P
ro

b
a

b
ili

ty
 o

f T
2
E

C
 u

n
p

ro
te

c
te

d

FIFO size [thousand entries]

0.1M
0.3M
0.5M
0.75M
1M
2M
3M
4M
5M

0

(d) bzip2

Figure 8: Probability of T2EC unprotected varying Tewb.

required to eliminate the possibility of T2EC unprotected
lines is unchanged in most applications and only changes by
5 − 10K in four of the 8 applications we tested.

4 Error Protection Tradeoffs

In this section, we evaluate improvements in protection ca-
pabilities and discuss new tradeoffs enabled by the two-
tiered approach. One of the main advantages of our two-
tiered error protection is the flexibility it provides in choos-
ing the T1EC and T2EC. The most important design con-
siderations of applying ECC FIFO are as follows:

• The T1EC should be chosen to minimize on-chip over-
head as it is stored along with every cache line.

• T1EC should be computed with low latency and max-
imize error detection; correction can be left to T2EC.

• The T2EC size determines overall protection capabil-
ities, but large T2ECs increase DRAM traffic, which
degrades the performance of some applications.

• The T2EC FIFO depth and eager write-back period
must be selected to limit the number of unprotected
lines.

With these considerations, Table 3 describes the configu-
rations and burst error protection capabilities of a number
of one-tiered baseline error codes as well as two-tiered error
codes. All of the two-tiered codes have identical T2EC size
(8B) per 64B cache line, hence the impact on performance
will be roughly the same. This leaves the tradeoff to be be-
tween the error protection capability (T1EC detection and
T2EC correction) and on-chip area (T1EC size).

The PS configuration (parity T1EC and SEC-DED T2EC)
allows us to directly compare our architecture to the base-
line one-tier 8-way interleaved Hamming SEC-DED codes
(S), which are commonly used in related and prior work.
The two-tiered PS provides the same bursty error correction
capability (up to 8-bit bursts) as the one-tier SEC-DED (S)
with reduced on-chip area. The number of detectable er-
rors is different, however. The interleaved parity can detect

bursts up to 15 bits long, whereas the conventional inter-
leaved SEC-DED Hamming codes can detect up to 16-bit
bursts (8 interleaved double bit errors). The codes also differ
in their detection capability for non-burst multi-bit errors,
which we evaluate later in this section using error injection.

The PN (parity T1EC and nibble-based SNC-DND T2EC)
and PB (parity T1EC and byte-based RS T2EC) configura-
tions can correct even longer bursts. Correction capability
is up to 4 nibbles (13–16 bits) and 4 bytes (25–32 bits) re-
spectively, while the on-chip overhead is still very low; even
the 32-way parity T1EC of PB requires only 4 bytes, half
the space of the baseline (S).

The SD configuration uses a DEC-TED code, which is sep-
arable into an 8-bit SEC-DED, with an additional 8 bits pro-
viding detection and correction for one more bit error [22].
In our two-tier SD, the 8-bit SEC-DED portion is the T1EC
that correct nearly all errors, those that have up to 8-bit
bursts, with very low latency. The T2EC DEC-TED, which
is constructed from the 8 bits stored on chip in the T1EC
and the 8 bits that are retrieved from the T2EC FIFO, is
used only in the very rare case of an error that was detected
by the T1EC but cannot be corrected by it. Note that the
T1EC has only half the on-chip storage overhead of the one-
tier DEC-TED configuration (D).

Storage, Energy, and Latency Overheads

The T2EC encoding complexity plays an important role, af-
fecting both energy requirements and latency. The latency
of computing T2EC, however, can be hidden, because there
are no dependencies on T2EC data. Thus, choosing differ-
ent T2ECs with regards to the encoding complexity only
impacts energy consumption, which is relatively low.

Table 4 compares area overheads, leakage power, and ar-
ray energy per access of the two-tiered error protection,
MAXn, and baseline schemes. We use CACTI 5 [32] to
report the properties of a 1MB LLC and related ECC in a
45nm process. Our architecture only dedicates on-chip stor-
age to the T1EC and significantly reduces the area and leak-

7

Table 3: Burst error protection of baseline and two-tiered error codes assuming 64B cache line (baseline codes are regarded as
T1EC without T2EC).

T1EC T2EC T1EC T1EC T2EC
code size code size burst error correction burst error detection burst error correction

baseline
S 8 way SEC-DED 8B N/A N/A 8 16 N/A
D 8 way DEC-TED 16B N/A N/A 16 24 N/A
two-tiered error protection
PS 8 way parity 1B 8 way SEC-DED 8B N/A 15 bits 8 bits
PN 16 way parity 2B 4 way SNC-DND 8B N/A 31 bits 4 nibbles
PB 32 way parity 4B 8 bit symbol RS 8B N/A 63 bits 4 bytes
SD 8 way SEC-DED 8B 8 way DEC-TED 8B 8bits 16 bits 16 bits

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 5 10 15

Pr
ob
ab
ilit
y o

f e
rro

r c
or
re
ct
io
n

random errors

S
D
PS
PN
PB
SD

(a) Error Correction (log scale)

9.00E-01

9.25E-01

9.50E-01

9.75E-01

1.00E+00

0 2 4

Pr
ob
ab
ilit
y o

f e
rro

r c
or
re
ct
io
n

random errors

S
D
PS
PN
PB
SD

(b) Error Correction (zoomed)

8.00E-01

8.50E-01

9.00E-01

9.50E-01

1.00E+00

0 5 10 15

Pr
ob
ab
ilit
y o

f e
rro

r d
et
ec
tio
n

random errors

S
D
PS
PN
PB
SD

(c) Error Detection

Figure 9: Random Error Protection Capabilities.

age overheads of strong ECC. For up to 8-bit burst error cor-
rection (S, MAXn, and PS), the two-tiered error protection
has much lower area overhead (2.4%) compared to the one-
tier SEC-DED baseline (20.4%) and MAXn (3.4% − 6.5%
for n = 1− 4). With the increased burst error protection of
PN and PB, the area overhead is very small (4.9% for PN,
and 9.8% for PB). In addition, 16-bit burst error correction
in the two-tiered (SD) has the same overhead of the baseline
S, whereas it is only supported with a 41.7% area overhead
using a one-tier equivalent code (D).

Random Error Behavior

In order to further assess the error protection capability of
the two-tiered codes, we used random-error injection and
measured error protection and detection capabilities. For
each error scenario presented in Figure 9, we generated 1000
random cache lines and injected each line with random bit
flips, including varying the number of erroneous bits from
1 − 15 for each protection scheme. Figure 9 depicts the
probability of errors corrected and detected in the presence
of multi-bit random error.

Figure 9(a) shows the probability that the error codes
detected and corrected the injected errors. We make three
observations regarding the results: (i) in general, two-tiered
error protection matches the correction capabilities of its
one-tiered counterparts; (ii) in some cases, such as PS vs.
S, two tiers provide better protection because errors in both
the cache line and the off-chip redundant information are
extremely unlikely; and (iii) the symbol-based PN and PB
error codes perform relatively poorly with respect to random
errors, even though they have superior burst-error correction
capabilities (Table 3). Also, note that PB cannot correct
all double- and quad-bit errors, even though it uses 1-byte
RS, because the parity-based T1EC cannot detect all even-
numbered random errors (Figure 9(b)).

Figure 9(c) depicts the rate of correctly detected errors,
including errors that are correctable. The behavior of the
one-tier and two-tier approaches is quite different, because
the stronger T2EC only comes into play if T1EC detects
an error. The parity-based T1EC schemes, perform poorly
in detecting two random errors, but the greater interleaving
degree of PN and PB have very good detection rates for
a large number of errors. Both the one-tier and two-tier
SEC-DED and DEC-TED based codes perform well with a
small number of errors, but cannot handle a larger number
of errors. One conclusion we draw is that further study of
error detection techniques is necessary if a large number of
random errors become a possibility.

5 Evaluation

In this section, we evaluate the cost and performance im-
pact of ECC FIFO. We use the Simics full system simu-
lator [18] with the GEMS [20] toolset. We use the OPAL
out-of-order processor model of GEMS to simulate a SPARC
V9 4-wide superscalar core with a two-level write-back ex-
clusive cache hierarchy implemented in the Ruby module
of GEMS. To accurately account for the impact our tech-
nique has on memory bandwidth and performance we inte-
grated DRAMsim [33] into GEMS. We use applications from
the SPEC CPU 2006 [28], PARSEC [2], and SPLASH2 [34]
benchmark suites that stress the memory subsystem. We
do not present results for applications that are not memory
intensive as they are not sensitive to the T2EC traffic. We
believe that simulating a single core with the given param-
eters proves the utility of ECC FIFO and conclusions can
be drawn on the performance and overheads if implemented
within a multi-core processor, and we discuss ECC FIFO in
the context of CMPs in Section 5.2.5.

Table 5 describes the baseline system configuration. As
mentioned in Section 3.2, we use eager write-back [15] to

8

Table 4: Area, leakage power, and array energy per read access.

baseline MAXn two-tiered error protection
no ECC S D MAX1 MAX2 MAX4 PS PN PB SD

Leakage Power (W) 1.4 1.6 1.8 1.5 1.5 1.6 1.4 1.5 1.5 1.6
Array Energy per Read (nJ) 2.0 2.4 2.9 2.1 2.1 2.7 2.1 2.1 2.2 2.4
Area (mm2) 10.0 12.0 14.1 10.3 10.4 10.6 10.2 10.5 10.9 12.0
ECC area overhead (%) - 20.7 41.7 3.4 4.2 6.5 2.4 4.9 9.8 20.7

Table 5: Simulated system parameters.

Processor SPARC V9 ISA
Core 4-wide superscalar (3GHz)
L1 Cache split I/D cache

each 64KB
2-way set associative
64B cache lines
write-back
1 cycle latency

L2 Cache unified 1MB cache
8-way set associative
L1 exclusive
64B cache lines
eager write-back (Tewb = 106 cycle)
L2 latency is 12 cycles,
including ECC encoding/decoding

DRAM single channel DDR2 DRAM (5.336GB/s)
667MHz 64-bit data bus
open page
Read and Instruction Fetch First

0.9

1

1.1

1.2

1.3

1.4

C
H
O
LE

SK
Y

FF
T

O
C
EA

N

R
AD

IX

ca
nn
ea
l

de
du
p

flu
id
an
im
at
e

fre
qm

in
e

bz
ip
2

m
cf

hm
m
er

lib
qu
an
tu
m

om
ne
tp
p

m
ilc lb
m

sp
hi
nx
3

Av
g.

SPLASH2 PARSEC SPEC2006

N
or
m
al
iz
ed
 E
xe
cu
tio
n T

im
e

Max1
Max2
Max4
MME
ECC FIFO

Figure 10: Normalized execution time.

limit the lifetime of dirty lines in the LLC and to improve the
baseline performance; eager write-back improves the base-
line performance by 6–10% in most applications and 26% in
libquantum. In lbm and bzip2, however, eager write-back
degrades performance significantly and we disable it for the
prior-work techniques, as it is not needed for correctness or
protection. We also disable eager write-back for ECC FIFO
in lbm, because the probability of T2EC unprotected is neg-
ligible, even without eager write-back. We keep eager write-
back at 1M cycles for bzip2 with ECC FIFO to maintain
a low T2EC unprotected rate. Note that we applied dif-
ferent eager write-back periods for fluidanimate (0.25M)
and libquantum (1.2M) to optimize the performance of the
baseline scheme.

5.1 Workloads

We use a mix of the SPLASH2 [34], PARSEC [2], and SPEC
CPU 2006 [28] workloads. We concentrated on applications
with large working sets that stress the memory hierarchy
and highlight the differences between our architecture and
prior work. For the detailed cycle-based simulations, we
ran the applications from SPLASH2 and PARSEC to com-

1.40E+09

1.60E+09

1.80E+09

2.00E+09

2.20E+09

2.40E+09

2.60E+09

256KB 512KB 1MB 2MB

Ex
ec
ut
io
n
Ti
m
e
[c
yc
le
]

LLC size

Baseline
MME
ECC FIFO

Figure 11: OCEAN 258× 258 performance of the baseline, MME,
and ECC FIFO varying LLC size.

pletion using a single thread and small to medium problem
sizes: tk15.O for CHOLESKY; 64K samples for FFT; a 514×514
grid for OCEAN; 1M samples for RADIX, and the simsmall in-
puts for all PARSEC applications. For the SPEC CPU 2006
workloads, we used SimPoint [6] to extract five representa-
tive regions of 200M instructions and report their weighted
sums.

5.2 Performance Results and Analysis

This section contains multiple subsections in which we eval-
uate overall performance results and compare the impact
of ECC FIFO to that of MAXn schemes [13] and Memory-
Mapped ECC [36]; analyze LLC power consumption in vari-
ous error coding schemes discussed in Section 4 and show the
potential of saving LLC power consumption by off-loading
the T2EC to DRAM; evaluate the impact of additional DRAM
traffic needed for off-loading the T2EC to DRAM, which
only degrades performance if it competes with demand fetches;
and analyze sensitivity to DRAM bandwidth to assess the
performance impact of ECC FIFO on CMPs, where DRAM
bandwidth is more scarce.

5.2.1 Impact on Performance

Figure 10 compares the execution times of MAXn, MME,
and ECC FIFO normalized to the execution time of the
baseline configuration. As shown, the impact on applica-
tion performance of ECC FIFO is minimal, with an aver-
age performance penalty of less than 1.2% and a maximum
degradation of just under 6% in bzip2 and 4% in lbm. The
degradation in bzip2 is not from ECC traffic, but rather
because of the use of eager write-back to bound the life-
time of dirty lines (recall that eager write-back is enabled
only with ECC FIFO for bzip2). ECC FIFO without eager
write-back degrades the performance of bzip2 by only 1.3%,
but requires a larger FIFO of 2MB in DRAM. These results
are encouraging because of the benefits our scheme provides

9

1

1.2

1.4

1.6

1.8

2

2.2

S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD
CHOL FFT OCEAN RADIX canneal ddedup fluidanimate freqmine

SPLASH2 PARSEC

LL
C
 P
ow

er
 [W

]

LLC Wr
LLC Rd
Leakage

(a) SPLASH2 and PARSEC

1

1.2

1.4

1.6

1.8

2

2.2

S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD S PS PN PB D SD
bzip2 mcf hmmer libquantum omnetpp milc lbm sphinx3

SPEC Avg.

LL
C
 P
ow

er
 [W

]

(b) SPEC CPU 2006

Figure 12: LLC power consumption estimated with CACTI 5 for a 1MB, 8-way, 64B cache line LLC in 45nm technology.

0

5

10

15

20

25

30

35

40

45

50

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a

s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

CHOLESKY FFT OCEAN RADIX canneal dedup fluidanimate freqmine

SPLASH2 PARSEC

R
e
q
u

e
s
t

p
e
r

th
o
u

s
a
n

d
 i

n
s
tr

u
c
ti
o
n

s

T2EC Rd/Wr

Cleaning

eager write-back

DRAM Wr

DRAM Rd

(a) SPLASH2 and PARSEC

0

5

10

15

20

25

30

35

40

45

50

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

F
IF

O

bzip2 mcf hmmer libquantum omnetpp milc lbm sphinx3

SPEC 2006

(b) SPEC CPU 2006

Figure 13: DRAM traffic comparison.

in reducing on-chip area and leakage power by minimizing
dedicated on-chip ECC storage. The MAXn technique, on
the other hand, requires significant tradeoff between perfor-
mance loss and area gains. MAX1 averages over 8% perfor-
mance loss with several applications experiencing 10 - 36%
degradation, MAX2 degrades 8% on average while libquan-
tum is significantly degraded by 30%, and MAX4 performs
only slightly better than ECC FIFO and MME. MAX4 re-
quires, however, much more area than MME and ECC FIFO
as shown in Table 4.

The anomalous behavior of OCEAN, fluidanimate, fre-

qmine, bzip2, mcf, libquantum, and sphinx3, where the per-
formance of MAX2 and MAX4 is slightly better than base-
line, is a result of increased eager write-backs for lines that
are being forced clean in order to guarantee protection. We
also note that applications with small working sets, such as
WATER-NSQUARED (SPLASH2) and blackscholes (PAR-
SEC) experience no performance drop with ECC FIFO, as
well as with MAXn and MME, and we do not report their
results. All other applications from the benchmark suites,
which we do not discuss in this paper, are also unaffected
by the two-tiered approach.

5.2.2 Comparison with MME

MME’s performance degradation is 1.3% on average (Fig-
ure 10), which is comparable to that of the ECC FIFO

(1.2% on average). Note that the area / error protection
tradeoff in MME is the same as that of ECC FIFO be-
cause both schemes use two-tiered error protection and off-
loading to DRAM. MME, however, can impact performance
significantly when the working set of an application closely
matches the LLC size. Figure 11 compares the execution
times of OCEAN with a 258× 258 grid on the baseline, MME,
and ECC FIFO configurations as the LLC size is varied. As
the LLC size grows from 512KB to 1MB, the baseline per-
formance is improved by 26%. ECC FIFO’s performance
penalty is consistently less than 1% across all LLC sizes.
MME, however, degrades performance significantly (10%)
with a 1MB LLC since the effective LLC size is reduced by
sharing the LLC between data and error codes.

5.2.3 Impact on LLC

ECC FIFO bypasses the LLC to accesses T2EC information,
and thus does not change the caching behavior and only im-
pacts the operation of the DRAM system. ECC FIFO, how-
ever, reduces power consumption of the LLC in two ways:
decreased energy per access and reduced leakage power.

Figure 12 compares LLC power consumption of the base-
line (S and D) and the ECC FIFO (PS, PN, PB, and SD)
estimated using CACTI 5 [32] for the cache parameters in
Table 5 in a 45nm technology. PS saves 9% of LLC power
consumption compared to S, while SD, PN, and PB consume

10

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

C
H
O
LE

SK
Y

FF
T

O
C
EA

N

R
AD

IX

ca
nn
ea
l

de
du
p

flu
id
an
im
at
e

fre
qm

in
e

bz
ip
2

m
cf

hm
m
er

lib
qu
an
tu
m

om
ne
tp
p

m
ilc lb
m

sp
hi
nx
3

Av
g.

SPLASH2 PARSEC SPEC2006

N
or
m
al
iz
ed
 E
xe
cu
tio
n T

im
e

Max1
Max2
Max4
MME
ECC FIFO

Figure 14: Normalized execution time (2.667 GB/s DRAM
bandwidth).

10%, 17%, and 15% less power than D, respectively. Note
that PS and SD provide similar error protection as S and
D, respectively, and PN and PB can protect against even
longer error bursts, even compared to D.

5.2.4 Impact on DRAM Traffic

Figure 13 shows the total DRAM traffic broken down into
components of data reads and writes of LLC lines (DRAM
Rd and DRAM Wr), eager write-backs of cache lines (eager
write-back), MAXn writes for cleaning lines (Cleaning), and
T2EC traffic of MME and ECC FIFO (T2EC Rd/Wr). Al-
though MAXn does not increase overall memory traffic by
much in most cases, the type of traffic and its timing dif-
fer significantly from the baseline. Unlike eager write-back
traffic, which is scheduled during idle DRAM period [15],
MAXn’s cleaning writes compete with demand fetches and
degrade performance as shown in Figure 10. More detailed
analysis on how MAXn’s cleaning traffic degrades perfor-
mance can be found in [36]. Compared to the baseline, ECC
FIFO increases memory traffic by 9% on average, which is
much larger than MME’s traffic penalty (2%). It is, how-
ever, not critical to performance in that T2EC write-back
is one-way traffic and can be scheduled during idle DRAM
period.

5.2.5 Multi-Core Considerations

We have so far discussed and evaluated ECC FIFO in the
context of a single core and now briefly discuss multi-core
and multi-processor implications. ECC FIFO is easily in-
tegrated with any cache coherence mechanism because the
T2EC FIFO in DRAM is inherently private. On the other
hand, the increased traffic of ECC FIFO may hurt the per-
formance due to relatively lower DRAM bandwidth per core
in CMPs. We evaluated ECC FIFO in a system with low
DRAM bandwidth of only 2.667 GB/s, which is half the
bandwidth of the baseline system. As Figure 14 shows, the
relative performance of ECC FIFO is not sensitive to mem-
ory bandwidth.

6 Conclusions and Future Work

This paper presents the ECC FIFO that exploits flexible
two-tiered error protection and off-loads the overheads of
strong error codes to DRAM to achieve both low cost and
high reliability in a LLC. With the minimized dedicated on-
chip ECC storage, both the leakage power and energy per
access are reduced leading to 10 - 17% LLC power reduction
in addition to 15 - 25% of area saving, while performance is

degraded only by 1.2% on average and no more than 6%. It
is achieved with a simple and unique FIFO structure that
off-loads ECC storage overheads to DRAM, and outperforms
prior techniques. ECC FIFO performs better than MME
especially when the reduced effective cache size of MME
hurts performance.

The two-tiered error protection used in this study offers
great design flexibility, and several two-tiered error codes
that provide strong error protection with reduced on-chip
overheads are presented. We have also shown that the prob-
ability of T2EC unprotected due to FIFO overwrite can be
managed to be very small with a reasonably sized FIFO.
In future work, we will explore how to reduce off-chip traf-
fic by buffering or caching T2EC and how to manage eager
write-back and the FIFO adaptively with regards to memory
access patterns and system resources.

7 References

[1] H. Ando, K. Seki, S. Sakashita, M. Aihara, R. Kan, K. Imada,
M. Itoh, M. Nagai, Y. Tosaka, K. Takahisa, and K. Hatanaka.
Accelerated Testing of a 90nm SPARC64 V Microprocessor for
Neutron SER. In Proc. the IEEE Workshop on Silicon Errors
in Logic - System Effects (SELSE), April 2007.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. Technical Report TR-811-08, Princeton Univ.,
January 2008.

[3] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H.
Dennard, R. K. Montoye, L. Sekaric, S. J. McNab, A. W.
Topol, C. D. Adams, K. W. Guarini, and W. Haensch. Stable
SRAM Cell Design for the 32nm Node and Beyond. In Digest
of Technical Papers of Symp. VLSI Technology, June 2005.

[4] C. L. Chen and M. Y. Hsiao. Error-correcting Ccodes for
Semiconductor Memory Applications: A State-of-the-art
Review. IBM J. Research and Development, 28(2):124–134,
March 1984.

[5] Digital Equipment Corporation. Alpha 21264 Microprocessor
Hardware Reference Manual, July 1999.

[6] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0:
Faster and More Flexible Program Analysis. In Proc. the
Workshop on Modeling, Benchmarking and Simulation, June
2005.

[7] R. W. Hamming. Error Correcting and Error Detecting Codes.
Bell System Technical J., 29:147–160, April 1950.

[8] M. Y. Hsiao. A Class of Optimal Minimum Odd-weight-column
SEC-DED codes. IBM J. Reserach and Development,
14:395–301, 1970.

[9] J. Huynh. White Paper: The AMD Athlon MP Processor with
512KB L2 Cache, May 2003.

[10] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power. In
Proc. the 28th Ann. Int’l Symp. Computer Architecture
(ISCA), June-July 2001.

[11] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The
AMD Opteron Processor for Multiprocessor Servers. IEEE
Micro, 23(2):66–76, March-April 2003.

[12] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe.
Multi-bit Error Tolerant Caches Using Two-Dimensional Error
Coding. In Proc. the 40th IEEE/ACM Int’l Symp.
Microarchitecture (MICRO), December 2007.

[13] S. Kim. Area-Efficient Error Protection for Caches. In Proc.
the Conf. Design Automation and Test in Europe (DATE),
March 2006.

[14] S. Kim and A. K. Somani. Area Efficient Architectures for
Information Integrity in Cache Memories. In Proc. the 26th
Ann. Int’l Symp. Computer Architecture (ISCA), May 1999.

[15] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager Writeback
- A Technique for Improving Bandwidth Utilization. In Proc.
the 33rd annual IEEE/ACM international Symp.
Microarchitecture (MICRO), November-December 2000.

[16] L. Li, V. S. Degalahal, N. Vijaykrishnan, M. Kandemir, and
M. J. Irwin. Soft Error and Energy Consumption Interactions:
A Data Cache Perspective. In Proc. the Int’l Symp. Low
Power Electronics and Design (ISLPED), August 2004.

11

[17] S. Lin and D. J. C. Jr. Error Control Coding: Fundamentals
and Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1983.

[18] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. SIMICS: A Full System Simulation Platform. IEEE
Computer, 35:50–58, February 2002.

[19] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong.
Characterization of Multi-Bit Soft Error Events in Advanced
SRAMs. In Technical Digest of the IEEE Int’l Electron
Devices Meeting (IEDM), December 2003.

[20] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. SIGARCH Computer Architecture
News (CAN), 33:92–99, November 2005.

[21] K. Osada, K. Yamaguchi, and Y. Saitoh. SRAM Immunity to
Cosmic-Ray-Induced Multierrors based on Analysis of an
Induced Parasitic Bipolar Effect. IEEE J. Solid-State Circuits,
39:827–833, May 2004.

[22] A. M. Patel and M. Y. Hsiao. An Adaptive Error Correction
Scheme for Computer Memory System. In Proc. the Fall Joint
Computer Conf., part I, December 1972.

[23] N. Quach. High Availability and Reliability in the Itanium
Processor. IEEE Micro, 20(5):61–69, Sept.-Oct. 2000.

[24] I. S. Reed and G. Solomon. Polynomial Codes Over Certain
Finite Fields. J. Soc. for Industrial and Applied Math.,
8:300–304, June 1960.

[25] N. N. Sadler and D. J. Sorin. Choosing an Error Protection
Scheme for a Microprocessor’s L1 Data Cache. In Proc. the
Int’l Conf. Computer Design (ICCD), October 2006.

[26] N. Seifert, V. Zia, and B. Gill. Assessing the Impact of Scaling
on the Efficacy of Spatial Redundancy based Mitigation
Schemes for Terrestrial Applications. In Proc. the IEEE
Workshop on Silicon Errors in Logic - System Effects
(SELSE), April 2007.

[27] C. Slayman. Cache and Memory Error Detection, Correction,
and Reduction Techniques for Terrestrial Servers and
Workstations. IEEE Trans. Device and Materials Reliability,
5:397– 404, September 2005.

[28] Standard Performance Evaluation Corporation. SPEC CPU
2006. http://www.spec.org/cpu2006/, 2006.

[29] J. Standards. JESD89 Measurement and Reporting of Alpha
Particles and Terrestrial Cosmic Ray-Induced Soft Errors in
Semiconductor Devices, JESD89-1 System Soft Error Rate
(SSER) Method and JESD89-2 Test Method for Alpha Source
Accelerated Soft Error Rate, 2001.

[30] Sun Microsystems Inc. OpenSPARC T2 System-On-Chip
(SOC) Microarchitecture Specification, May 2008.

[31] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and
B. Sinharoy. POWER4 System Microarchitecture. IBM J.
Research and Development, 46(1):5–25, January 2002.

[32] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi.
CACTI 5.1. Technical report, HP Laboratories, April 2008.

[33] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. DRAMsim: A Memory-System Simulator.
SIGARCH Computer Architecture News (CAN), 33:100–107,
September 2005.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proc. the 22nd Ann. Int’l
Symp. Computer Architecture (ISCA), June 1995.

[35] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The
asynchronous 24MB On-Chip Level-3 Cache for a Dual-Core
Itanium R©-Family Processor. In Proc. the Int’l Solid-State
Circuits Conf. (ISSCC), February 2005.

[36] D. H. Yoon and M. Erez. Memory Mapped ECC: Low-Cost
Error Protection for Last Level Caches. In Proc. the 36th Int’l
Symp. Computer Architecture (ISCA), June 2009.

[37] W. Zhang. Replication Cache: A Small Fully Associative Cache
to Improve Data Cache Reliability. IEEE Trans. Computer,
54(12):1547 –1555, December 2005.

[38] W. Zhang, S. Gurumurthi, M. Kandemir, and
A. Sivasubramaniam. ICR: In-Cache Replication for Enhancing
Data Cache Reliability. In Proc. the Int’l Conf. Dependable
Systems and Networks (DSN), June 2003.

12

