
Evaluating and Accelerating
High-Fidelity Error Injection for HPC

Chun-Kai Chang† Sangkug Lym† Nicholas Kelly† Michael B. Sullivan†‡ Mattan Erez†

†University of Texas at Austin ‡NVIDIA Corporation
{chunkai, sklym, nick.kelly, mattan.erez}@utexas.edu misullivan@nvidia.com

Abstract—we address two important concerns for the analysis
of the behavior of applications in the presence of hardware
errors: (1) when is it important to model how hardware faults
lead to erroneous values (instruction-level errors) with high
fidelity, as opposed to using simple bit-flipping models, and (2)
how to enable fast high-fidelity error injection campaigns, in
particular when error detectors are employed. We present and
verify a new nested Monte Carlo methodology for evaluating
high-fidelity gate-level fault models and error-detector coverage,
which is orders of magnitude faster than current approaches.
We use that methodology to demonstrate that, without detectors,
simple error models suffice for evaluating errors in 9 HPC
benchmarks.

I. INTRODUCTION

As high-performance computing (HPC) applications con-
tinue to scale, the likelihood of hardware faults silently cor-
rupting results is increasing. Understanding such silent-data
corruption (SDC) errors and mitigating them is therefore a
critical research topic [1]. In this paper we address two im-
portant concerns in the analysis of the behavior of applications
in the presence of hardware errors: (1) when is it important to
model how hardware transient faults lead to instruction-level
errors with high fidelity, as opposed to using simple bit-flip
models, and (2) how to accelerate high-fidelity error injection
campaigns, in particular when error detectors are employed.

There are three main reasons for why these concerns are
important. Firstly, much prior work in the field of HPC has
relied on simple bit-flip error models (e.g., [2]–[7]), despite
the fact that it is already known such models do not match
the error patterns of actual hardware faults [8]–[11]. Secondly,
the overall methodology for evaluating the impact of hardware
errors on applications is to use a Monte Carlo fault or error
injection campaign, which requires massive resources for even
toy scientific applications. Thirdly, as errors become more
common, both hardware and software error detectors will
likely become more common as well. Evaluating the coverage
and impact of a good detector potentially requires orders of
magnitude more Monte Carlo trials.

We present a new methodology and tool for the rapid
evaluation of error detectors and high-fidelity instruction-level
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error models. Specifically, we adopt the hierarchical injection
methodology from [12], which significantly accelerates the
use of high-fidelity circuit logic-level fault injection, to the
point that using the high-fidelity error model outperforms
current state-of-the-art bit-flip error injectors. The main idea
is that the majority of logic-level injection attempts (to either
gates or latches) are logically masked by the circuit itself
(e.g., a logical AND gate where the non-erroneous input is
a 0). Completing the application for a Monte Carlo trial in
such cases is wasteful. Instead, a new fault may be immedi-
ately injected once the masking is identified. In [12], logical
masking is identified at the instruction level and re-injection
occurs before the application proceeds such that no application
run is “wasted” for evaluating logical masking. We extend
this idea to also accelerate the evaluation of the impact of
error detectors, where our method is 20− 100 times faster
than the conventional approach. Furthermore, our acceleration
methodology is orthogonal to acceleration methods that prune
fault-injection paths that are unimportant [13]–[15].

Using our tool, we confirm prior studies showing
statistically-significant differences in the outcomes when us-
ing high-fidelity circuit logic-level injection vs. simple bit-
flip models. However, we develop new analyses and metrics
for interpreting these statistical differences in the context of
scientific applications. Surprisingly, we find that there is no
meaningful difference between modeling errors in arithmetic
operations with high-fidelity logic-level injection or by ran-
domly flipping a single bit in an instruction’s output when
hardware error detectors are not used. We do this by evalu-
ating the impact on execution efficiency when using end-to-
end checkpoint-restart resilience and impact on accuracy when
interpreting final results as part of an ensemble computation.
We conclude that prior insights of work in the HPC community
that uses the simple bit-flip model hold.

When detectors are introduced, however, using a high-
fidelity error model has a much more substantial impact. We
demonstrate that our tool and methodology allow for fast and
high-fidelity evaluation of detectors and evaluate the impact
of detectors on both the rate and effect of those errors that
escape detection and silently corrupt data.

The contributions of this paper are summarized as follows:
• We propose and verify a nested Monte Carlo methodol-

ogy that couples error injection and detection to reduce
the overhead of high-fidelity injection and the evaluation
of error detector coverage by 1−2 orders of magnitude.



• We demonstrate an open-source tool1 that requires no
proprietary software to perform gate-level fault injection
for the error-impact analysis of HPC applications at
reasonable 3− 10× native slowdowns, which is faster
than current state of the art injectors.

• We use this tool to conclude that without error detec-
tors, the widely-adopted single bit-flip error model is
representative of high-fidelity gate-level fault injection
for evaluating HPC scientific applications; this is despite
statistically-significant differences in the types of errors
the two models generate.

• We show that the single bit-flip error model cannot
be used for the evaluation of a specific error event if
hardware-based error detectors are introduced.

• With further analysis, however, we conclude that esti-
mating the impact of errors on the overall performance
of a resilience scheme (specifically, checkpoint-restart of
ensemble methods) can be done with a simple error model
and any insights drawn are equivalent to those when using
a high-fidelity gate-level fault model, whether hardware
detectors are employed.

II. BACKGROUND AND MOTIVATION

We define faults as physical events that affect hardware
components. If a fault eventually changes the architectural
state, it becomes an error. We focus on soft/transient errors
in particular since they are random and transient in nature
and thus hard to detect. In contrast, permanent faults that
frequently lead to errors are typically detected and do not
corrupt any results silently.

A. Fault Propagation and Masking

Soft errors that affect storage elements and combinational
logic are triggered by random radiation events such as particle
strikes. Only those strikes that are energetic enough can
potentially lead to data corruption; otherwise, they are said
to be electrically masked. When a strong particle strike hits
a memory component (e.g., latches and flip-flops), the data is
corrupted until new data is written into it. On the other hand,
if a logic gate is hit, a transient pulse known as a single-
event transient is created. The faulty signal (i.e., the single-
event transient or the corrupted data signal from a memory
component) might be masked logically before propagating to
a following latch (e.g., it enters an AND gate with the other
input being 0). If the faulty signal reaches the next latching
window, erroneous data can be written into a latch. The
propagation process continues and might eventually corrupt
data in architectural components such as the register file. At
this point, the fault manifests as an error.

We assume that faults escape electrical masking and timing
masking in this paper; that is, we only consider particle strikes
that carry sufficient charge and result in faulty signals that
arrive on time at the next latch. However, we respect logical
masking because it depends not only on the circuit but also
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Fig. 1: Hardware faults that are not modeled by high-level
error injection.

on the application. In other words, we are concerned with the
impact of errors, but not the rate of errors. Also, we focus on
soft errors that affect execution units of the processor because
errors occurring within those circuits directly affect application
data and thus more likely lead to SDC. The same is assumed
in previous work [7], [16], [17].

B. The Modeling Gap of Existing Error Models
Consider a fault that occurs at a random location within

a circuit module consisting of an input buffer, combinational
logic, internal pipeline buffers, and an output buffer (Fig. 1).
Since we are interested in injecting errors, we assume the
circuit has inputs and/or outputs associated with architectural
state (e.g., an ALU or address generation unit).

Note that soft errors can be grouped based on their initial
fault site within the circuit. First, consider the faults that occur
at either the input buffer or the output buffer. When a fault
happens at the output buffer, it directly manifests as an error.
On the other hand, when a fault occurs in the input buffer,
it can be masked by the operation (e.g., errorneous bits are
shifted out). Such errors can be modeled by bit flips because
they either directly affect the output or logical masking can
be modeled by running the operation with erroneous inputs.
These soft errors are already modeled in previous work via
injecting errors into instruction operands [2]–[7].

Next, we consider the case where the fault site is at either
a logic gate within combinational logic or internal pipeline
buffers. Here we assume the fault induces a pulse that flips
the output of the affected unit. Although this faulty signal
may be masked logically before propagating to output buffer,
it is possible that it leads to a soft error that corrupts multiple
bits of the output buffer. Because the exact impact of the soft
error on the output buffer depends on the initial fault site, the
circuit, and the input data vector, there is no corresponding
simple architecture-level modeling for soft errors originating
from these internal circuit nodes. These errors are termed
hidden soft errors in this work. To quantify the impact of
this modeling gap, we perform gate-level fault injection to
study characteristics of these hidden soft errors. This gate-level
injection is also called RTL injection because the register-
transfer level (RTL) description of a circuit specifies the
circuit’s gates and latches.

C. Characterization of Hidden Soft Errors
Fig. 2 shows the distribution of how many bits in the circuit

output buffer are flipped if a fault from a circuit internal node
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Fig. 2: Distribution of bit-flip count at circuit output with RTL-
level particle-strike model.
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Fig. 3: Correlations between bit-flip positions with RTL-level
injection. Breakdown into two applications (LULESH and MG)
and two circuits (64-bit floating-point adder and multiplier).
Axes denote bit locations of circuit outputs.

is not logically-masked. On average, 78% of errors manifest
as single-bit flips. Hence, the single-bit flip model does not
accurately reflect 22% of errors, and these errors potentially
cause more severe data corruption. Note that the distribution
varies across applications since logical masking depends on
circuit input.

Modeling multi-bit errors is challenging because of corre-
lations between bit-flip positions at a circuit’s output (Fig. 3).
First, correlations vary across circuits because the circuit’s
structure determines its logic operations, which in turn affect
logical masking. Second, correlations are related to input data.
For example, using input data from LULESH, the floating-point
adder has strong correlations between bits in the exponent field
(bit 52-62), while we do not observe such phenomena with
input from MG. This is because logical masking depends on
input data. Hence, not only do correlations vary across circuits,
they also depend on input data and thus on applications. Such
complex and data-dependent correlation is not modeled by
existing random bit-flipping models.

Although we have shown that realistic error patterns are dif-
ferent from single-bit errors at the instruction level, the impact
on applications is still unknown due to application-level error
masking. Thus, we need to perform error injection to evaluate
the end-to-end effects of hardware faults on applications.

D. Inefficiency of The Monte Carlo Method due to Fault
Masking and Error Detection

The Monte Carlo method is widely adopted by existing
error injectors to reduce evaluation time as a result of its high
parallelism [2], [7]. The overall injection workflow usually
consists of two phases: profiling and injection. The methodol-
ogy assumes that soft errors affect each instruction with equal
likelihood to model uniform-random particle strike time. The
profiling phase is used for this purpose and derives the upper

bound of dynamic instructions in the program. The injection
phase uses the Monte Carlo method to evaluate the impact of
errors at the application level. In each experiment, the injector
chooses a random instruction instance (based on the profile),
injects an error into the instruction, and then classifies the
injection result.

However, in the presence of logical masking at the gate
level, many injection experiments end up as masked faults
that do not propagate to the instruction level and thus do
not affect the application. The fraction of unnecessary runs
is even worse when evaluating error detectors, because any
detected errors can be immediately classified without waiting
for the application to complete. The expected number of
Monte Carlo experiments to obtain an unmasked fault (or an
undetected error) increases with the fault-masking rate (or the
detection rate), and it can be formulated as the mean value of a
Geometric distribution with a (1−masking rate) probability
of success. This means when the masking rate is high, one
needs a sufficiently large number of samples to generate an
error sample given gate-level fault masking or to discover an
undetected error given error detection.

E. Hierarchical Injection for High-Fidelity Error Modeling

One option for modeling errors with high fidelity is to
perform each Monte Carlo experiment while simulating the
entire hardware at the gate level. Such RTL-based error injec-
tors offer high fidelity but are too slow to evaluate software
resilience techniques in a timely manner (seven orders of
magnitude slower than application-level injection [10]). To
strike a balance between injection speed and fidelity, previous
work proposes hierarchical injection where a faster injector
invokes another detailed injector at the injection site (e.g., [9],
[18]–[20]).

Despite offering orders-of-magnitude improvement over
RTL-only injection, hierarchical injection is still too slow for
evaluating the impact of errors on applications because of
the inefficiency described in Section II-D. Techniques have
been proposed to further accelerate injection campaigns by
a form of importance sampling. Such techniques prune all
possible fault/error injection sites, which may number in the
millions, to a smaller list of perhaps thousands of important
instructions [13] or hardware blocks [15] that dominate the
likelihood of error occurrences. Still, such techniques do not
fully account for data-dependent logical masking effects and
do not address the magnified injection inefficiency with detec-
tors. To accelerate evaluation in these scenarios, we introduce
a novel error injection framework in the next section.

III. A FAST AND ACCURATE INJECTION AND DETECTION
FRAMEWORK

A. Coupling Error Injection with Detection for Saving Eval-
uation Time

We adopt a refined hierarchical injection methodology [12]
and extend it to also be used for evaluating detectors. This
methodology focuses on faults that directly affect architectural
state (i.e., faults directly relating to instructions). The idea is



to use a form of nested Monte Carlo methodology. The outer
portion follows the traditional instruction-level error injection
campaign described in Section II-D. However, within each
Monte Carlo experiment a nested Monte Carlo is performed
at the gate level. In each outer iteration, we first record the
correct instruction (arithmetic circuit) output and then, a single
random fault is repeatedly and immediately injected at the gate
level until a fault manifests as an error that corrupts the output.
By doing so, only an actual error that has not been logically
masked is injected into the outer Monte Carlo trial, saving
significant time by avoiding complete application runs when
the outcome has already been determined. This injection flow
is depicted in Fig. 4, which also shows how we extend the
methodology to include detectors.

Evaluation using simple random sampling is even worse
when error detectors are introduced. Numerous Monte Carlo
runs and RTL gate-level fault injections are necessary to
generate faults that truly affect the application because good
error detectors have high coverage and detect most errors
that are not logically masked. As a result, we apply the idea
of iterative fault generation at the RTL level to filtering out
detected errors. That is, errors that would be detected should
also be pruned since the injection outcome is known at this
point (detected). Thus, we should also keep injecting until an
undetected error is generated to save time. Otherwise, similar
to the cases of masked faults at the RTL level, it is wasteful
to wait for the application running to other injection sites.

This filtering notion can be extended to resilience techniques
at different abstraction layers by cascading error detectors
starting from fine granularity to coarse granularity. For in-
stance, only errors that are not detected by instruction-level
hardware detectors are sent to fine-grained software state-
recovery mechanisms [21]. Note that the longer the detector
chain, the greater the savings that can be achieved. However, in
this paper we only evaluate the impact of hardware instruction-
level detectors.

An important aspect of this nested Monte Carlo methodol-
ogy is that it requires multiple faults that propagate to actual
errors to be identified in order to establish statistical bounds
on the logical fault-masking rates for different instructions
and applications. In that way one trial at the outer level is
indeed equivalent to a flat methodology for the purpose of
evaluating the logical masking rate and detector coverage.
Note that one also has to set a limit on injection attempts
to avoid practically infinite loop when the masking rate of
the circuit is high. The selection of the limit can affect the
tradeoff between evaluation time and accuracy. While the
nested algorithm provides the same statistics as a traditional
Monte Carlo, the specific instructions into which actual errors
are injected will differ from a traditional injection campaign
where each trial randomly selects an instruction. We verify
that the nested methodology is fully equivalent to a traditional
campaign despite this potential difference (Section V-A).

B. Pluggable RTL-level Injector and Detector

One of the main challenges of integrating an RTL gate-level
injector with a higher-level injector is software compatibility
across abstraction layers. To solve the compatibility problem,
we design a generic error context API as an interface between
abstraction layers. The error context API communicates essen-
tial information regarding a dynamic instruction instance. For
instance, instruction operation type is used to select the target
circuit for fault injection and instruction input operands are fed
as input patterns to the circuit. Once a fault manifests as an
error, the corrupted output is then sent back to the instruction
level for modifying the target instruction instance.

To inject faults at the gate level, we insert an additional
gate at each node of the circuit by modifying the RTL source
code with Pyverilog [22]. For instance, to model a particle
strike that flips a node’s value, we augment the circuit with
XOR gates, each of which has one input connecting to an
existing node and the other input as a trigger signal. At
runtime, we randomly trigger an XOR gate (by setting its
trigger signal to 1) to emulate a fault. The real RTL gate-
level simulation is done by Icarus Verilog, an open-source
Verilog simulation tool [23]. We also support customized RTL-
level error detectors to avoid the communication overhead of
passing the error context between C++ (Pin) and Python (RTL
simulation).

Importantly, our fault injection process does not depend on
any proprietary tools and software. The entire RTL gate-level
injector is wrapped into a set of Python modules and we have
tested it with an open source RTL simulator.

C. Injecting Errors with Dynamic Binary Instrumentation

The hierarchical injection framework we use in this paper
includes an assembly-level injector which drills down to the
RTL gate-level at a specific instruction instance (see Fig. 4).
Specifically, we implement the assembly-level injector using
Pin, a dynamic binary instrumentation tool [24]. We select
Pin (and in general dynamic binary instrumentation) for the
following reasons: (a) it is much faster than microarchitecture-
level and lower-level injectors since we can disable instru-
mentation after the injection point to run at native speed, (b)
it is more accurate than compiler IR-level injectors [2], and
(c) it allows injection into specific binary and source code
regions. Using Pin, we can still map injected instructions back
to the program source lines (i.e., directly pointing out which
lines are problematic). Overall, dynamic binary instrumenta-
tion can inject errors at a lower level (i.e., higher-fidelity)
with acceptable execution overhead (see Section V-B), at the
same time providing application developers useful feedback
regarding resilience from a higher-level point of view.

Our methodology and pluggable error models will work for
other instruction-level injectors [16], [25]–[28] with the help
of the error context API.

D. Limitations

Although our Pin-based implementation limits us to x86
platforms, the framework can be easily generalized to others.



Fig. 4: (Left) Proposed error injection flow: refined hierarchical injector coupled with instruction-level error detection. Bold
boxes denote time-consuming steps. (Right) Execution savings by nested Monte Carlo as a function of the masking rate (i.e.,
the probability that a fault (error) is masked (detected)).

We are not currently modeling microarchitecture-level error
masking (e.g., masking due to speculative execution in modern
processors) in our injector because the simulation is too slow
for HPC applications. Faults that potentially affect multiple
instructions are not modeled as well at this time. This paper
focuses only on arithmetic errors and we leave high-fidelity
models for memory errors as future work.

IV. EVALUATION METHODOLOGY

Our evaluation consists of six main parts: (a) verifying the
proposed nested Monte Carlo methodology, (b) evaluating the
cost of our tool for running an injection campaign and the
benefits of nested injection, (c) evaluating the impact of the
error model on the reliability of applications, (d) evaluating
the impact of error detection on the reliability and error types
of applications, (e) evaluating the impact of the error model
on application output quality in the context of HPC scientific
applications, and (f) evaluating the impact of the error model
on the overhead of an overall resilience scheme (specifically,
checkpoint-restart).

Before discussing the evaluation results, we first describe
which error models we are evaluating, how we evaluate the
outcome of each injection trial, and which applications and
quality metrics we use.

A. Detector Models

To study the impact of hardware detectors on application
resilience, we choose arithmetic residue checkers. They are
shown to provide high coverage for errors from execution
units with relatively low cost [29], [30], and are also adopted
by commodity processors (e.g., POWER6 [31]) and previous
work on hardware resilience design [32], [33].

Residue checkers detect errors by comparing output of the
arithmetic unit with that of a relatively low-cost datapath. The
checking can be described by Equation 1 where ⊕ denotes
integer addition, subtraction, or multiplication and |x|m denotes
x mod m.

|a⊕b|m
?
= |(|a|m⊕|b|m) |m (1)

We assume that no errors affect the final equality checker,
so these residue checkers have perfect coverage for single-bit
datapath errors. Specifically, we implement a residue checker
with modulus 3 and another with two moduli, 3 and 5. The
latter provides higher coverage because an error is not detected
only when both checks fail.

Note that we only evaluate integer addition, subtraction, and
multiplication operations with residue checker protection.

B. Error Models

We assume on-chip SRAM and system DRAM are protected
by ECC and only inject errors to instructions using arithmetic
and logic units. In each experiment, we inject an error into a
random instruction’s output operand with one of the four error
models below. By injecting into the output register we model
errors in the arithmetic units rather than register file errors;
register file errors require a memory error model. The four
error models are:
• Single-bit flip (RB1): randomly flips a single bit, as

commonly done in prior work in the HPC community.
• Double-bit flip (RB2): randomly flips two bits.
• Random (RND): replaces the output with a random

value, possibly mimicking worst-case errors.
• RTL gate-level model (RTL): generates an error pattern

using the methodology described in Section II-E. We use
RTL-G and RTL-L to denote injection into gates only and
latches only, respectively; latch injection is only done for
pipelined floating-point units.

• model+: uses model on a design with a single-modulus
residue checker where model is one of the error model
described above.

• model++: resembles model+ but with a double-modulus
residue checker (i.e., stronger detection).

For the RTL model, we synthesize gate-level netlists of
integer and floating-point execution units using Synopsys tools
(Design Compiler and DesignWare Library) with the 45nm
Nangate Open Cell Library [34], optimized for performance



TABLE I: Circuits used in the RTL error model, their pipeline
stages, and the fault-masking probabilities (average of all
applications studied in this work) of injecting a logic gate
and a latch, respectively.

Name Stages Gate Masking Rate Latch Masking Rate
INT add sub 1 0.17±0.02 n/a

INT mult 1 0.09±0.05 n/a
Shift 1 0.30±0.08 n/a

FP add sub 3 0.28±0.03 0.27±0.04
FP mult 3 0.41±0.02 0.33±0.02
FP div 10 0.49±0.09 0.54±0.12

FP sqrt2 1 0.46±0.10 n/a

(as also done in [12]). Because the DesignWare Library does
not include pipelined floating-point units, we use the register
retiming feature of Design Compiler to pipeline the circuits.
The pipeline stages are tuned to mimic those used by Intel
Broadwell processors2 based on the latency data from [35].
Tab. I lists the circuits used by the applications studied in this
paper. Note that the synthesized circuits can be different from
those designed and optimized for commodity processors, but
we have shown that they lead to errors different from single-bit
errors at the instruction level.

C. Outcome Classification

As in prior work, injection outcomes are classified into these
primary categories:
• Masked: the injected error is masked by application, with

output identical to the error-free run.
• Detected Uncorrectable Error (DUE): errors that crash

or hang the program are categorized as DUEcrsh. Errors
that result in obviously erroneous application output (e.g.,
output is not finite or mismatch in matrix size) are also
in this category and denoted as DUEtest .

• Silent Data Corruption (SDC): the program ends nor-
mally with output errors that are hard to detect.

D. Experimental Settings and Output Quality

We evaluate the serial version of 9 HPC benchmark pro-
grams and applications (Tab. II).3 For each application, we
perform 3000 injection experiments, which ensures a margin
of error <2% for a confidence level of 95% [36], on 10
combinations of error models and detector models. Therefore,
270,000 experiments in total are conducted. Note that this
work focuses on whether high-fidelity errors would signif-
icantly affect application resilience and we do not evaluate
parallel programs at this time; however, our injector and
methodology can be used for MPI programs and runs on the
Lonestar5 supercomputer at TACC.

For the output quality, we adopt the same metric shipped
with the application or suggested by previous work [37], [38].

2The RTL simulation hangs with a 15-stage square-root unit (as used by
Broadwell), so we use the unpipelined DesignWare version instead.

3We use a more resilient IS in which we insert an assertion at the end of
randlc() to check if the output falls within [0,1].

V. EXPERIMENTAL RESULTS

A. Verification of the Nested Monte Carlo Methodology

To verify the statistical equivalence between the nested
Monte Carlo we develop and a traditional fault-injection cam-
paign, we compare the outcome distributions of each method-
ology. For brevity, we do not include figures for this verifica-
tion experiment and simply note that any differences between
the two methodologies, for all experiments we conducted with
RTL injections are within the 95% confidence intervals of each
experiment. In other words, the specific numbers obtained are
not identical, but the 95% confidence intervals of the two
methodologies overlap. We note that the nested approach has
narrower (better) confidence intervals for a given number of
trials because each outer Monte Carlo trial identifies multiple
non-masked errors in the inner stage. Evaluation of output
quality shows similar statistical equivalence.

Notice that there is a pitfall when comparing the RTL error
injection results of our methodology with simple random sam-
pling: the proportion of each instruction type among the error
samples is different between the two methods because each
circuit has different logical masking rate. Our methodology
collects error samples following the instruction mix of the
application since we keep fault injection until an error is
generated for each experiment, while simple random sampling
collects more samples from circuits with lower masking rate
since the experiments end as soon as the injected fault is
masked. Thus, it is necessary to normalize the proportion of
each instruction type among the error samples before compar-
ing the injection results. Such normalization is performed in
the aforementioned validation campaign.

Conclusion 1: the nested Monte Carlo approach is equiv-
alent to traditional injection campaigns, despite significant
potential benefits in execution time.

B. Injector Overhead

Tab. II compares the execution time overhead of using our
injector with a simple bit-flipping error model, RTL injection,
and RTL injection with detectors, to the time each application
runs natively. Recall that we disable instrumentation after the
injection point, so the injector overhead depends on the injec-
tion point (i.e., a dynamic instruction). We therefore measure
the injector overhead at the median instance of all dynamic
instructions, at which we go through the entire injection phase
but did not apply the corrupted value at the instruction level
to avoid error affecting measurement. Evaluation is performed
on a machine with an Intel i5-6500 CPU and 16GB DRAM.

We make three interesting observations. First, very short-
running applications that require a fraction of a second to
run natively incur a significant relative overhead for injection
because starting up the Pin injector and invoking the error
model require a fairly fixed, but comparatively high, amount
of time. Second, longer running applications incur a reasonable
injection overhead with a slowdown of 3−5× without detec-
tors and 5−10× with detectors, even when RTL injection is
used. This is because the relative time to bring up the injection



TABLE II: Benchmark, input, injection overhead per experiment, and output quality related information.

Program Input Native Time Simple Time RTL Time RTL+ Time RTL++ Time Quality Metric DUEtest Criteria

FFT [39] -m 16 0.01s 1.3s 1.7s 5.2s 19.1s Rel-L2-Norm Infinite values
miniFE [40] nx=18 ny=16 nz=16 0.04s 2.1s 6.0s 8.1s 12.1s Resid-Norm Resid-Norm > 1
LU cb [39] default 0.04s 1.2s 1.8s 4.8s 11.2s MaxAbsDiff Infinite values

IS [41] 3 A 1.2s 3.0s 4.6s 7.4s 21.3s n/a Failed verification
CG [41] A 1.2s 7.1s 7.8s 8.8s 10.9s Zeta Infinite values
MG [41] A 1.5s 11.9s 15.0s 18.0s 51.7s L2-Norm L2-Norm > 1

CoMD [42] default 5.7s 28.5s 29.1s 32.2s 52.4s Potential energy Lost atoms, infinite energy, or potential energy > 0
LULESH [43] default 22.1s 103.7s 109.7s 112.3s 121.9s Measure of symmetry (MaxAbsDiff) [37]
XSBench [44] small 30.9s 91.7s 92.5s 93.4s 96.3s n/a n/a
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Fig. 5: (a) Speedup over PINFI with simple error models (RB1,
RB2, and RND) and our RTL gate-level model. Error bars
denote maximum and minimum speedups. (b) Scaling of per-
experiment execution time as native time increases.

infrastructure is small relative to the execution time of these
applications. Third, the overhead of RTL injection and detector
evaluation varies between applications because the masking
factor and detector coverage is data dependent—the higher the
masking or coverage, the more iterations are required within
the inner Monte Carlo step.

Fig. 5 (a) shows that the overhead of our injector, even
with RTL injection, is actually lower than PINFI [7], which
is one of the fastest injectors currently available. We compare
to PINFI because recent work has shown that it has lower
overhead than compiler-based injectors [2]. Our implementa-
tion outperforms PINFI even with RTL-level injection, except
for applications that can finish in under two seconds. The
performance loss is due to the additional features for injecting
specific binaries and instructions, but the overhead is amor-
tized for larger applications. On average, our error injector is
faster than PINFI by a factor of 3.

Since full-scale HPC applications have much longer ex-
ecution time, we therefore show the tool’s execution time
vs. problem size in Fig. 5 (b). We increase the input size
of LULESH to mimic native execution time of larger HPC
applications. Note that the overhead increases linearly due to
instrumentation overhead of the Pin tool. When the problem
size is large enough, the difference of overhead between
simple models and the RTL model is negligible (4.32X and
4.34X slowdown for simple and RTL model, respectively). The
overhead can be further reduced by taking checkpoints during
the profiling phase and starting each injection experiment at
the checkpoint closest to the target injection point as in [45].

Next, we measure the execution savings of the error in-
jection experiments for each application. The savings are
presented as the ratio of runs saved due to nested Monte Carlo:
∑

N
n=1 itern×dyninstn/total dyninst, where N is the number of
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Fig. 6: Execution savings (relative to actual runs, 3000 in this
work) by nested Monte Carlo for RTL and injection-detection
coupling. Top: RTL error model with residue checkers. Bot-
tom: Simple error models with residue checkers.

injection experiments, itern is the number of local iteration for
the nth experiment, dyninstn is the dynamic instance number
of the nth experiment, and total dyninst is the total dynamic
instructions of the application. We assume the overhead of
actual error injection at the injection site is small relative to
the overhead of pre-injection and post-injection period, which
we verify true for all applications that are not very short. Fig. 6
shows that the overall savings are higher when the RTL model
is used since we keep injecting faults until one manifests as
an error. Also the savings increase with the strength of the
detector used. Note that LU_cb has the highest savings due
to most of the instructions can be protected by the residue
checkers (Tab. III). In contrast, LULESH has a small portion
of instructions protected by residue checker but its savings at
the RTL level is significant because of the input data result in
high logical masking.

Conclusion 2: with the nested approach, the overhead of
injection, even when using detailed error models and high-
coverage detectors, can be kept low and roughly match that
of current injectors with simple error models.
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Fig. 7: Injection outcome distribution. Error bars are 95%
confidence intervals.

C. Reliability Outcome Distribution

We now evaluate the impact of the error model on expected
outcomes of applications that experience an error.

1) RTL vs. Simple Error Models: Fig. 7 shows the outcome
distribution of all combinations of error models without de-
tectors. The most surprising result here is the small difference
between RTL and RB1 for all applications. While the small
confidence intervals demonstrate that the outcome distribution
is sometimes statistically different, the absolute difference
is very small. The largest difference of SDC rates between
the two models is only 4% (XSBench), and that of DUE
rates is also only 4% (CG). This shows that even though the
two models are quite different at the instruction level (Sec-
tion II-C), the impact on application is likely unimportant due
to high proportion of single-bit errors, correlated error patterns,
and application-level error masking. However, neither RB2
nor RND can closely approximate the RTL model because
of aggressive (uncorrelated) bit-flips in these two models.
See Appendix for sensitivity study of input sizes and circuit
implementations.

2) Gate Soft Error vs. Latch Soft Error: Next, we study the
impact of gate soft errors (i.e., a logic gate output is flipped)
vs. latch soft errors (i.e., the output of a latch (or flip-flop)
is flipped). We only report results of six applications here
because compiled binaries for the others do not use pipelined
circuits. The top of Fig. 8 compares the distribution of bit-flip
count at the instruction level between gate and latch soft errors.
One can see that latch soft errors have more multi-bit patterns
than gate soft errors. However, we observe similar final impact
on application resilience for both error types (bottom of Fig. 8)
due to application-level error masking.

Conclusion 3: RB1 is a good approximation of RTL injec-
tion, whether experiencing gate or latch faults.

D. Impact of Hardware Residue Checkers on Application
Reliability Outcome

The impact of residue checkers on final outcome distribution
is shown in Fig. 9. We only show the distribution of protected
instructions (i.e., integer add/sub/mul instructions) so as to
decouple protection ratio from the result. To account for the
fact that each instruction is injected multiple times until an
undetected error is generated, we assume a detected error
triggers an exception that leads to DUEcrsh and thus compute
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Fig. 8: Comparison of bit-flip count distribution at the instruc-
tion level (top) and injection outcome distribution (bottom)
between gate soft error and latch soft error. Only floating-
point instructions are injected here because they are pipelined
(i.e., having both gates and latches).

the distribution as following. First, we construct four empty
bins corresponding to each outcome category. Next, for each of
the 3000 injection outcomes, it contributes ce to the DUEcrsh
bin and (1− ce) to the outcome category of the undetected
error where ce is the averaged detector coverage of error
model e in Fig. A.2 (see Appendix). In the end, the outcome
distribution and confidence intervals are computed with data
in the four bins.

Since residue checkers have perfect coverage for RB1
and good coverage for the RTL model, we observe higher
improvement in SDC rate compared with RB2 and RND.
However, with the RTL model, the additional improvement in
SDC rate by adding another modulus to the residue checker is
marginal because coverage of single-modulus residue checker
is already high (except for XSBench).

It is important to note that SDC improvement due to
residue checkers on all instructions is highly dependent on
the protection ratio (Tab. III). For example, although SDC rate
is improved by nearly 9% for protected instructions in MG,
the actual SDC rate improvement is only 2% as only 25% of
instructions are protected. The injection outcome results can
guide the adoption of software error detectors and how they
should be tuned. When the hardware detector can detect most
critical errors such that the resultant SDC rate already meets
the resilience target, software detector is not necessary and
thus performance would not be degraded. On the other hand,
the software detector should be tuned to target those errors left
by hardware detectors to minimize impact on performance.

Conclusion 4: When detectors are introduced, the impact
of the error model is large when the fraction of instructions
protected is also large.

E. Impact of Error Models and Detector Models on Applica-
tion Output Quality
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Fig. 9: Injection outcome distribution for instructions protected by residue checker (i.e., integer addition, subtraction, and
multiplication operations). See Section IV-B for the definitions of error models and detector models.

TABLE III: Ratio of dynamic arithmetic and logic instructions
protected by residue checkers.

Program Ratio Program Ratio Program Ratio
FFT 0.78 miniFE 0.88 LU cb 0.99
IS 0.38 CG 0.59 MG 0.25

CoMD 0.35 LULESH 0.09 XSBench 0.65

1) Perturbed Application Output Quality due to SDC:
Previous work demonstrates that reliability and output qual-
ity may be traded off (e.g., [38], [46]). With a bounded
degradation of quality, the cost of protecting the application
against soft errors can be reduced. We thus compare the
application output quality of SDC cases between error models.
We use two methods to objectively compare output quality
degradation distributions from different error models. First, we
compare the quality metric of each SDC sample to the golden
value to identify the most significant decimal position of the
outcome error. We construct a histogram of these positions for
each application and model. We then compare the histograms
between each pairs of error models using chi-squared test,
which is widely used to test the similarity of one set of binned
data against another [47].

Secondly, we treat the perturbed quality of each error
model as a continuous random variable. Thus, for each error
model, the perturbed quality can be uniquely described as
a cumulative distribution function (CDF). To compare sim-
ilarity between two CDFs of continuous data, we perform
Kolmogorov-Smirnov test.

For both hypothesis tests, our null hypothesis H0 is no
difference in output quality between a pair of error models; the
alternative hypothesis H1 is there is difference in output quality
between error models. Thus, if the null hypothesis is rejected,
it indicates output quality differs significantly between the pair
of error models. We choose the significance level (α) to be
0.05. As a result, if the calculated p-value from a test is less
than 0.05, the observed data rejects the null hypothesis. The
results of both tests are shown in Tab. IV.

Both tests show that there is no significant difference in

TABLE IV: p-values of Chi-squared and Kolmogorov-Smirnov
tests for application output quality between error models. Bold
fonts represent output qualities are significantly different.

Program
p-values (Chi-squared / Kolmogorov-Smirnov)

RTL vs. RB1 RTL vs. RB2 RTL vs. RND RTL+ vs. RB1+ RTL++ vs. RB1++

FFT 0.87 / 0.36 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
miniFE 0.77 / 0.99 0.03 / 0.01 0.06 / 0.09 0.00 / 0.00 0.00 / 0.00

CG 0.05 / 0.66 0.74 / 0.22 0.01 / 0.18 0.00 / 0.16 0.21 / 0.50

MG 0.76 / 0.32 0.23 / 0.51 0.10 / 0.60 0.95 / 0.76 0.74 / 0.89

CoMD 0.74 / 0.69 0.38 / 0.49 0.00 / 0.45 0.15 / 0.04 0.91 / 0.33

LULESH 0.67 / 0.86 0.01 / 0.07 0.05 / 0.00 0.24 / 0.51 0.69 / 0.78

output quality between RB1 and RTL when there are no
hardware residue checkers. However, neither RB2 nor RND
results in similar output quality as RTL. When residue check-
ers exist, the perturbed output quality of RTL is statistically
different from bit-flipping models for applications in which the
detectors protect a reasonable fraction of instructions. This is
because multi-bit errors generated with RTL model may not be
detected by residue checkers and thus affect the output quality.

2) Effective Application Output Quality: So far we only
show how error models and detector models affect application
output quality given an error always results in SDC. Nonethe-
less, the effective output quality actually depends on SDC rate
and the coverage of the detector (if any). The effective output
quality can be computed as

(1− c)∗ ((1−PSDC)∗MeanerrFree + PSDC ∗MeanSDC)

+c∗ (MeanerrFree)
(2)

where c is detector coverage, PSDC the SDC rate of the
error model, MeanerrFree the expected output without error,
and MeanSDC the mean perturbed output due to SDC. Here
detected errors contribute MeanerrFree because they can be
corrected either by checkpoint-restart, or by restarting the
whole application from the begining.

Using this metric, we find that: (1) both RB1 and RTL lead
to very similar effective output quality because their SDC
rates and MeanSDC are similar, (2) residue checkers fail to
improve effective quality of miniFE and LULESH because
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Fig. 10: Application efficiency due to checkpointing overhead
vs. the ratio of dump time to MTTF where alpha is the
ratio of estimated MTTF to true MTTF. This implies that
slight estimation error of DUE rates has negligible impact on
achieving minimal checkpointing overhead.

the MeanSDC is significantly different from MeanerrFree, and
(3) the impact of error models on effective quality is negligible
for the applications whose effective quality is improved by
the residue checkers (e.g., RND++ and RTL++ have similar
effective quality for FFT, CG, MG, and CoMD).

Conclusion 5: While the specific output quality degrada-
tion of a specific run with detectors requires a high-fidelity
error model, the overall impact on ensemble methods can be
reasonably estimated with RB1.

F. Impact of Error Models on Resilience Overhead

Recall that the DUE rates obtained with RB1 and RTL are
slightly different (max difference is 4% for CG in Fig. 7).
With the DUE rate from error injection results, one can tune
the checkpointing interval for minimal overhead incurred by
checkpointing and rollback. To quantify the impact of tuning
the checkpointing interval based on RB1 instead of the RTL
model, we compute the application efficiency (i.e., the fraction
of time for real computation as opposed to checkpointing)
using the higher-order formula in [48], [49]. Note that the
4% difference of DUE rates for CG (39.4% vs. 35.5%) leads
to around 10% estimation error of the mean time to failure
(MTTF). However, such difference has negligible impact on
application efficiency (Fig. 10). This is also true when we
consider the residue checkers studied in this work. The maxi-
mal difference of the DUE rates between RB1 and RTL with
detectors is XSBench (100% for RB1+ vs. 90.5% for RTL+),
which also leads to 10% estimation error for MTTF. Thus,
tuning the workload-specific checkpointing interval through
single-bit error injection is good enough.

Conclusion 6: RB1 is sufficient for evaluating the overall
performance efficiency impact of errors (on checkpoint-restart)
whether detectors are used or not.

VI. RELATED WORK

Recent error injectors targeting HPC are based on compiler-
level [2], [3], assembly-level [6], [7], emulator-based [4],
[27], and debugger-based [5] injection. This work achieves
fast injection by coupling an assembly-level error injector
with an RTL-level fault injector because the former supports
injecting HPC applications while the latter improves error
fidelity. Moreover, given the high coverage of error detectors,
we further apply the nested Monte Carlo idea introduced in
[12] to filtering detected errors, saving evaluation time by
orders of magnitude.

Combining resilience techniques across multiple abstraction
layers to achieve minimal cost has also been an active research
topic [50]–[52]. Orthogonal to prior work, this paper demon-
strates how to take advantage of the interaction between error
injection and detection to reduce the evaluation time of cross-
layer resilience techniques.

Prior work also studies acceleration of error injection exper-
iments [13]–[15], [45], [53]. Our methodology is orthogonal
to acceleration methods that prune faults potentially leading
to the same injection outcome [13]–[15].

A previous resilience study of the POWER6 processor at
IBM [31] finds that when running random instruction mixes,
injecting single bit-flips to latches at the RTL level results in an
outcome distribution close to beam experiments. However, soft
errors resulting from combinational logic were not considered
in that work. These errors are a growing concern at newer
technology nodes [54]–[56]. We find that even if these errors
are considered, single-bit errors remain a good approximation
of realistic errors, though only if hardware detectors are not
used.

Recently, Sangchoolie et al. [57] find that single bit-flips
result in SDC rates reasonably close to data-independent
multi-bit flips in many cases. In this work, we further observe
that this is also true for a more realistic data-dependent RTL
error model, meaning that conclusion drawn by prior work
using single-bit errors should still hold even if realistic errors
are injected.

VII. CONCLUSION

We show how the nested Monte Carlo method saves eval-
uation time for error injection campaign. Since the benefit
increases with the aggregate detection rate of the resilience
technique under test, such methodology can significantly ac-
celerate designs of cost-effective resilience techniques that
span across abstraction layers. Additionally, to minimize per-
formance overhead, existing and future software resilience
techniques should take into account the effect of hardware
detectors. Most importantly, by demonstrating the outcome
distribution, application output quality, and the impact on
checkpointing overhead, we conclude that, although differ-
ent at the instruction level, single-bit errors remain a good
approximation of realistic soft errors from arithmetic and
logic circuits when hardware detectors are not considered.
If hardware detectors are known to exist, a more realistic



error model should be used to evaluate and tune the software
resilience techniques.
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APPENDIX

A. Reliability Outcome Distribution with Larger Inputs and
Different Circuit Implementations

The conclusion that RB1 is a good approximation of high-
fidelity models should still hold for larger benchmarks and
different circuit implementations. To further support this, we
increase the input size of MG and CG from class A to class
B and perform error injection with the same RTL model.
Plus, we construct another RTL model (called RTL-F) with a
different circuit implementation from the FloPoCo circuit gen-
erator [58]. Circuits are generated with the default unpipelined
implementation and synthesized with the same cell library as
the original RTL model. Fig. A.1 shows that the conclusion
holds even with larger input sizes and another high-fidelity
RTL model.
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Fig. A.1: Injection outcome distribution of CG and MG with
different inputs. Error bars are 95% confidence intervals.

B. Characteristics of Hardware Residue Checkers

1) Detector Coverage: Fig. A.2 shows the coverages (i.e.,
error detection rates) of the checkers with different error
models applied. First, coverages are application-dependent
when RTL error model is used. The residue checker with a
single modulus can detect 88% of errors on average, while
the coverage increases to 97% with two moduli. Second,
when RB2 is used, the coverage of the single-modulo checker
is slightly application-independent, while that of the double-
modulus checker has larger variation across applications. Fi-
nally, when RND is used, coverages of both detectors are
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nearly the same across applications but significantly lower than
RTL model.
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Fig. A.2: Coverage of residue checkers with different error
models. Coverage for RB1 (not shown) is always 100%. Error
bars are 95% confidence intervals.

2) Profile of Undetected High-Fidelity Errors: Recall that
residue checkers can detect all single-bit errors. Fig. A.3 shows
what errors are not detected by residue checkers when the
RTL error model is used. We observe that: (1) the profile of
undetected errors in terms of bit-flip counts is application-
dependent; in comparison (not shown), RB2 always has 2
erroneous bits and RND nearly always exhibits 4+ bit errors,
and (2) two-bit errors still account for a portion of errors
undetected by the single-modulus checker (20% in most case),
while few errors undetected by the double-modulus checker
are two-bit.
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Fig. A.3: Distribution of bit-flip count of RTL errors unde-
tected by residue checkers.
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