
Assessing The Impact of Timing Errors on HPC Applications

Chun-Kai Chang
University of Texas at Austin

chunkai@utexas.edu

Wenqi Yin
University of Texas at Austin

wqyin@utexas.edu

Mattan Erez
University of Texas at Austin

mattan.erez@utexas.edu

ABSTRACT

Timing errors are a growing concern for system resilience as
technology continues to scale. It is problematic to use low-
fidelity errors such as single-bit flips to model realistic timing
errors. We address the lack of holistic methodology and tool
for evaluating resilience of applications against timing errors.
The proposed technique is able to rapidly inject high-fidelity
and configurable timing errors to applications at the instruc-
tion level. Our implementation has no runtime dependencies
on proprietary tools, enabling full parallelism of error in-
jection campaign. Furthermore, because an injection point
may not generate an actual error for a particular application
run, we propose an acceleration technique to maximize the
likelihood of generating errors that contribute to the overall
campaign with speedup up to 7X. With our tool, we show
that realistic timing errors lead to distinct error profiles from
those of radiation-induced errors at both the instruction level
and the application level.

ACM Reference Format:
Chun-Kai Chang, Wenqi Yin, and Mattan Erez. 2019. Assess-

ing The Impact of Timing Errors on HPC Applications. In The
International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC ’19), November 17–22, 2019,

Denver, CO, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3295500.3356184

1 INTRODUCTION

As semiconductor technology scaling slows, timing margins
are likely to shrink to improve performance and power. As
a result, large-scale systems may become increasingly sus-
ceptible to timing errors resulting from variations in supply
voltage and temperature. Such errors can cause insidious
application failures known as silent-data corruption (SDC).
In this paper we evaluate the impact of timing errors on a set
of scientific benchmarks. We develop a new, fast, high-fidelity
timing-injection framework that uses just-in-time circuit-level
analysis to account for both low-level functional-unit design
details and the workload. To the best of our knowledge, our
framework is the first that can be used to dynamically in-
ject high-fidelity timing errors into running applications to
account for the values used and their error-masking effects.

We are also the first to evaluate timing-errors specifically
for scientific applications. This is in contrast to prior work in

SC ’19, November 17–22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’19), November
17–22, 2019, Denver, CO, USA, https://doi.org/10.1145/3295500.
3356184.

this field, which has either focused on particle-strike induced
errors or used generic low-fidelity synthetic error models, such
as single-bit flips (e.g., [1–6]). Previous work on timing errors
has focused on developing statistical models for errors [7–9]
rather than on incorporating injection in a way that fully
accounts for both the circuit and its dynamic application-
based inputs. We evaluate the impact of timing errors on
functional units and find that their impact is quite different
from that of particle-strike errors. Functional-unit timing
errors can only occur in bit positions that change value during
the execution of an operation. As a result, timing errors
nearly always affect lower-significance bits, while particle-
strike errors tend to be distributed more uniformly across
bit positions. The implications are that timing errors nearly
never lead to detected errors and are either masked or lead
to an SDC failure.

Unlike previous work that characterizes timing errors to
form abstract statistical error models, our work takes a direct
approach in which timing errors are generated on demand
at runtime based on the circuit state and its workload. We
adopt the idea of hierarchical injection [6, 10, 11] where an
instruction-level error injector invokes a circuit-level analysis
routine just in time to generate an error at the injection point.
In this way, the generated errors are high-fidelity, workload-
dependent, and adaptive to dynamic behavior and different
circuit implementations. At the same time, the whole error
injection campaign is fast because the instruction-level injec-
tor has low overhead and the entire application often has to
be executed to completion to determine the impact of each
injected error. Our approach applies further acceleration by
maximizing the likelihood that each of these expensive appli-
cation execution trials yields an outcome that contributes to
the overall campaign; because timing errors are particularly
input-dependent, it is quite possible that an injection point
simply does not generate an actual error for a particular
application run. We call this technique Injection-Point Over-
provisioning because it allows us to correctly maintain Monte
Carlo statistical analysis while continuing to use an applica-
tion run even if its initial injection point fails to generate an
error.

Our approach of just-in-time timing-error injection is
unique and challenging. Like prior work, we focus on in-
jecting and evaluating the impact of errors, rather than on
estimating the rate at which such errors occur. Prior ap-
proaches pursued a statistical modeling approach because
simulating timing errors dynamically either requires the use
of proprietary and expensive commercial circuit-design soft-
ware or extremely-slow low-level circuit simulation. Injecting
particle-strike errors is simpler and faster because it only re-
quires simulating logic gates, rather than circuits. To address

https://doi.org/10.1145/3295500.3356184
https://doi.org/10.1145/3295500.3356184
https://doi.org/10.1145/3295500.3356184
https://doi.org/10.1145/3295500.3356184

SC ’19, November 17–22, 2019, Denver, CO, USA Chun-Kai Chang, Wenqi Yin, and Mattan Erez

this challenge, we develop a new methodology and tool for
high-fidelity just-in-time error generation and injection at
the instruction level.

We rely on recently-developed static circuit timing anal-
yses that are fast and are available as open source [12]. We
adapt these analysis routines to evaluate dynamic timing for
specific inputs to the functional unit and the magnitude of
the voltage droop that causes a timing violation. We borrow
the method of Cherupalli and Sartori [13]. We first use gate-
level simulation to identify propagation paths through the
circuit and then dynamically remove all paths that do not
toggle before evaluating the new input-specific circuit timing
constraints. We can then determine if an error is possible
and which output bits are erroneous. The model parameters
are dynamically configurable and include changing the cir-
cuit, operating conditions, and voltage variation signal profile.
Because we inject at the instruction level, our model also ac-
counts for timing violations that impact multiple consecutive
instructions.

To the best of our knowledge, this is the first tool that is
capable of evaluating the end-to-end effects of high-fidelity,
yet configurable timing errors on applications. At the same
time, the overhead of injection is low (6X on average relative
to a native application run). The framework is compatible
with existing instruction-level error injectors, and we rely
only on free open-source components. We can thus release
our tool and share it as open source as well. 1

The contributions of this paper are summarized as follows:

• We develop the first fast, open-source, high-fidelity,
instruction-level timing-error injection model and tool.
It can be used with any injection framework (we use
Hamartia [6]) and applications it supports (x86 bina-
ries) and can be configured with different functional-
unit implementations and operating conditions.

• We propose Injection-Point Overprovisioning to speed
up an error-injection campaign. Depending on the like-
lihood that a given voltage variation leads to an error,
Injection-Point Overprovisioning speeds up injection
by up to 7X.

• We characterize the impact of timing errors on HPC
applications at both the instruction level and the appli-
cation level. We find that the impact of timing errors
on application outcomes differs from the impact of
particle-strike errors. At the same time, we show that
two well-known error models (i.e., single-bit flips and
previous values) fail to represent timing errors.

2 BACKGROUND

We define faults as physical events that affect hardware
components. If a fault eventually changes the architectural
state, it becomes an error.

2.1 Timing Errors of Digital Circuits

Timing faults result from variations in supply voltage, tem-
perature, or device characteristics that change circuit timing.

1Available at https://lph.ece.utexas.edu/users/hamartia/

0 0

Flip-Flops

G2

G3

G1
1 1
1 1

0 1

1 0
G5

0 0

Should be 1 but 0 is latched Vnominal

Toggled Path

G4
Observable Fault

Masked Fault

Correct: 0
Observed: 0

Correct: 0
Observed: 1 E1

Figure 1: An example timing error caused by a volt-
age droop.

As a result, some inputs may take too long to propagate
through the circuit and lead to an error. In a sequential
circuit, a timing fault manifests as a timing error when at
least one flip-flop latches an incorrect value and it eventually
perturbs the architectural state. This process is complicated
because it depends on the variation magnitude and duration,
the circuit, its operating condition (including clock frequency,
voltage, temperature, etc.), and the sequence of input values
to the circuit; both current inputs and previous inputs are
important. In this work, we specifically focus on timing errors
as a result of voltage droops.

Although the circuit structure determines the delay of
each path, input values control which paths are toggled (or
sensitized). For example, in Figure 1, given the input pair, it
is the red path that determines the timing of the endpoint
E1, while the other paths are false paths because their timing
is irrelevant given the inputs. Only variations that are strong
enough can significantly delay the toggled paths such that
old values or glitches are latched by flip-flops at the circuit
endpoints. However, old values are not always different from
the correct values. As a result, whether an instruction is
affected by a timing fault depends on the input history of
the circuit as well (i.e., circuit inputs at previous cycles).

In addition to the aforementioned temporal masking, for
pipelined circuits, whether faults become errors also depends
on logical masking. For instance, in Figure 1, even though
the flip-flop of E1 fails to latch the new value produced by
gate G2, the fault only affects the output of G4 but not G5
in the subsequent stage. This is because the other input to
G5 is a controlling value (in this case, 0). Thus, one cannot
faithfully model timing errors in pipelined circuits without
modeling logical masking as well.

Moreover, timing errors may affect multiple instructions
and corrupt multiple bits in output operands. For instance,
consider variations that persist across multiple cycles or those
that impact multiple pipeline stages simultaneously. Note
that this is different from radiation-induced errors, which
usually affect a single instruction. We refer readers to prior
work [14, 15] for more details about timing errors.

Assessing The Impact of Timing Errors on HPC Applications SC ’19, November 17–22, 2019, Denver, CO, USA

//	binary	snippet
fpadd	r1,	r2,	r3	
		//	r3	=	r1	+	r2	(previous	inst)
fpadd	r4,	r5,	r6	
		//	r6	=	r4	+	r5	(victim	inst)

//	error	config
voltage:	"0.85V"
frequency:	"400MHz"
duration:	"single_cycle"
occupancy:	"low"
																	

Figure 2: Example binary snippet and error configu-
ration.

2.2 Impact of Timing Errors on HPC
Systems

Modern systems apply substantial voltage and/or frequency
guardbands in hardware to ensure that timing errors never
occur, even at the worst operating condition. However, guard-
bands waste energy and performance because typical use cases
do not lead to timing errors. Prior work has shown that such
guardbands can account for 18% of total node power for IBM
POWER7 [16] and ARMv8 systems [17].

Researchers have been advocating new cross-layer tech-
niques to overcome the power constraints of future HPC sys-
tems without expensive guardbanding [15, 18, 19]. Nonethe-
less, due to dynamic variations (e.g., voltage droops and
temperature fluctuations) and interference of supply voltage
in many-core processors [15, 20, 21], the likelihood that tim-
ing errors occur in HPC systems may become non-negligible.
Emerging technologies such as near-threshold voltage com-
puting are even more susceptible to timing errors [22]. Thus, a
methodology to evaluate the resilience of applications against
timing errors is highly desirable.

3 TIMING ERROR INJECTION

We adopt the concept of hierarchical injection [6, 10, 11]
where a faster injector invokes a detailed model at the in-
jection point to accelerate injection and still generate high-
fidelity errors. In this work, we integrate an instruction-level
injector with a gate-level timing fault injector. At the injec-
tion point, the instruction-level injector provides the gate-
level timing fault injector with: (1) the instruction type (used
to determine which circuit to simulate) and (2) a pair of input
vectors to the circuit for the previous and current cycle. A
user-provided error configuration supplies the voltage droop
profile (i.e., magnitude and duration). The gate-level timing
error injector then returns a potentially corrupted output to
the instruction-level injector. Figure 3 shows the overall flow
of our timing error injector. We use the example in Figure 2
to explain the workflow of the injector.

3.1 The Instruction-Level Injector

The instruction-level error injector is based on the injector
from Hamartia, an open-source error injection and detection
suite [6]. It uses dynamic binary instrumentation to modify
the architectural state of the instrumented application. How-
ever, the models we develop do not depend on Hamartia and

are portable and open source; they should work with any
instruction-level injector, including compiler-level ones.

As mentioned in Section 2.1, the manifestation of a timing
error depends on the circuit’s computation history. As a
result, the role of the instruction-level injector is to collect
the data necessary for reproducing circuit state. We refer
to instruction instances affected by a timing fault as victim
instructions. Specifically, the injector logs: (1) input pairs,
which are input operands of victim instructions and those of
the previous instructions that utilized the same circuit and
(2) instruction types of those instructions (e.g., ADD, MUL,
etc.). For the example in Figure 2, the input pair is ((r1,r2),
(r4,r5)) and the instruction type is floating-point addition.
These data along with the error configuration are passed to
the gate-level injector.

3.2 The Gate-Level Injector

This injector produces the potentially corrupted output operand
for each victim instruction. The core consists of a fault driver
and multiple timing fault injectors. Each fault injector mod-
els temporal masking in one pipeline stage. The fault driver
prepares input for the fault injectors which are chained to
model logical masking across stages.

3.2.1 The Fault Driver. Based on the instruction type, it first
looks up the circuit database to determine the circuit used
by the victim instruction. If the circuit’s pipeline depth is D,
then D fault injectors are chained together. Next, the driver
prepares input for each fault injector. It decides the operating
condition of the circuit based on the error configuration.
It also generates fault-enable signals to control whether a
stage should be injected or not. These fault-enable signals
are determined based on the fault duration and pipeline
occupancy (explained in Section 5.1.1). Once all input to
fault injectors are ready, the driver launches simulation of
the first stage and waits for the result of the last stage.

For the example in Figure 2, the victim instruction uses
the floating-point adder, which has three pipeline stages in
our evaluation (see Table 1). Therefore, three fault injec-
tors are chained together. Since the user specifies that the
droop decreases the voltage to 0.85V, the driver fetches the
characterization corner for that voltage level from the cell
library database. Assuming the victim instruction is in the
third stage when the single-cycle droop occurs, only the fault-
enable signal to the third stage should be set (i.e., the results
of first two stages are error-free). Finally, the input pair,
((r1,r2), (r4,r5)), is sent to the first stage and the simu-
lation begins. The output of the first stage becomes the input
to the second stage, and so on. In the end, the fault driver
sends the potentially corrupted output of the last stage back
to the instruction-level injector, which modifies the value of
r6 accordingly.

3.2.2 Modeling Temporal Masking. Figure 4 shows how we
model temporal masking within each pipeline stage. To this
end, we need to know which endpoints (i.e., input of flip-
flops or circuit’s output pin) experience a timing violation

SC ’19, November 17–22, 2019, Denver, CO, USA Chun-Kai Chang, Wenqi Yin, and Mattan Erez

given the input pair to the circuit and its operating condition.
We perform dynamic timing analysis to determine which
endpoints encounter a timing violation using the method pro-
posed by Cherupalli and Sartori [13]. The idea is to remove
false paths before running static timing analysis (STA) such
that only paths with gates toggled in the specific cycle deter-
mine signal arrival times at the endpoints (e.g., the red path
in Figure 1). We derive the false paths by parsing the value
change dump (VCD) generated by gate-level simulation. Al-
though the original evaluation in [13] uses a proprietary STA
tool, we use OpenTimer, an open-source STA tool [12]. For
gate-level simulation, we use Icarus Verilog, an open-source
Verilog simulator [23].

Once we know which output pins encounter a timing vi-
olation, the error-free output of the victim instruction, and
error-free output of the previous instruction that used the
same circuit, we can then derive the potentially corrupted
output operand for the victim instruction (the timing fault
generator box in Figure 4). For example, if the error-free out-
put of the victim instruction is 0010, the output of previous
instruction is 1111, and all bits except the least-significant
bit encounter a timing violation, then the corrupted output
operand is 1110.

3.2.3 Modeling Logical Masking. We model logical masking
by chaining fault injectors. If a fault is injected at one stage,
it may be logically masked by one of its following stages. We
preprocess each pipelined circuit by splitting it into individual
stages using Pyverilog, a hardware design processing toolkit
for Verilog HDL [24]. We verify the resultant circuits to ensure
that the circuit transformation does not break functionality.
This is a one-time procedure and it is completely transparent
to the user. At runtime, the fault driver provides the circuit
of each pipeline stage to each corresponding fault injector.

3.3 Limitations

We assume that the magnitude of variations is constant
within each cycle. Also, we assume that the execution order
of instructions follows the program order. This is not always
true for processors with out-of-order execution, which require
detailed modeling of their micro-architecture for full fidelity.
For such a study, our gate-level injector can be integrated
with injectors at the micro-architectural level [25, 26]. We do
not model metastability because the estimated mean time
between metastability (using the models in [27]) is larger than
1040 years even for the worst operating condition evaluated
in this work.2 Although our evaluation focuses on timing
errors as a result of voltage droops, the tool can be used to
evaluate timing faults due to overclocking or temperature
fluctuations as well.

2If the user specifies very small cycle time or very strong droop, the
tool reports the mean time between metastability based on existing
models and warns the user if the mean time between metastability is
lower than 105 years (i.e., metastability rate is higher than 0.1 FIT).

,QVW�/HYHO¬
(UURU�,QMHFWRU
�6HFWLRQ�����

3LSHOLQH

)DXOW�'ULYHU
�6HFWLRQ�������

,QSXW�
3DLU

,QVW�
7\SH

(UURU
&RQÀJ

)DXOW
'XUDWLRQ

)DXOW
0DJQLWXGH

7LPLQJ
)DXOW
,QMHFWRU

���

,QSXW�3DLU

&LUFXLW
'DWDEDVH

6WDJH�� 6WDJH�'

7LPLQJ
)DXOW
,QMHFWRU

2SHUDWLQJ
&RQGLWLRQV

)DXOW¬
(QDEOHV

&LUFXLWV

3RWHQWLDOO\
&RUUXSWHG¬
2XWSXW

&HOO�/LE
'DWDEDVH

*DWH�/HYHO�7LPLQJ�(UURU�,QMHFWRU
�6HFWLRQ�����

%LQDU\

Figure 3: Instruction-level timing error injector for
a pipeline of depth D. Each timing fault injector is
the per-stage injector in Figure 4.

*DWH�/HYHO
6LPXODWLRQ

	
'\QDPLF
7LPLQJ
$QDO\VLV

(UURU�IUHH
2XWSXW

2XWSXW�3LQV�ZLWK�
7LPLQJ�9LRODWLRQ¬

7LPLQJ�)DXOW
*HQHUDWRU

3UHYLRXV
2XWSXW

,QSXW�3DLU

&LUFXLW

2SHUDWLQJ¬
&RQGLWLRQ

)DXOW
(QDEOH

�

�
3RWHQWLDOO\
&RUUXSWHG¬
2XWSXW

3HU�6WDJH�7LPLQJ�)DXOW�,QMHFWRU
�6HFWLRQ�������

3UHYLRXV¬
2XWSXW

Figure 4: Per-stage timing fault injector.

4 ACCELERATING
INSTRUCTION-LEVEL TIMING
ERROR INJECTION

We assume that timing faults occur randomly and uniformly
during execution because timing errors depend on a large
number of factors that include dynamics of the system and
variations of the operating environment. To evaluate the re-
silience of applications against timing errors, we adopt the
Monte Carlo method because the error space is enormous.
However, it takes a large number of Monte Carlo trials to
collect statistics on errors that do affect applications. This
is because many injected faults may be masked either tem-
porally or logically by hardware and thus have no impact
on the running applications. Although we utilize hierarchi-
cal injection to reduce per-trial evaluation time, the overall

Assessing The Impact of Timing Errors on HPC Applications SC ’19, November 17–22, 2019, Denver, CO, USA

Run Id:

Time

8 1 3 4 2 6 7 5

Time

1 1 1 1 2 2 2 2

SRS
(1 point per run)

Overprovisioning
(N points per run)

(a)

Masked faults Errors

(b)

(c)

1 1 1 2

Parallel
Overprovisioning

Time
1 1 1 1

Time

Core 1

Core 2

Figure 5: The proposed injection-point overprovisioning technique vs. simple random sampling. (a) simple
random sampling, (b) injection-point overprovisioning, and (c) an example of applying injection-point over-
provisioning on two cores in parallel. Green crosses denote masked faults and red ones are errors that change
the architectural state.

evaluation is still slow because the number of trials remains
large.

4.1 Inefficiency of Simple Random
Sampling

The conventional sampling algorithm (simple random sam-
pling) is embarrassingly parallel, yet is inefficient in terms
of collecting errors that are observable at the applications
level. Figure 5a shows an example of simple random sampling
in which each application run is provided with one random
fault injection point (a random dynamic instruction instance
for instruction-level error injection). In this example, eight
application runs end up collecting only two observable errors.
In general, the higher the fault masking rate, the more Monte
Carlo trials are needed, which enormously wastes resources.
We propose an acceleration technique to reduce the number
of application runs required for error injection campaigns.

4.2 Injection-Point Overprovisioning

This technique is based on the observation that masked faults
do not change the architectural state (i.e., are invisible to
applications). Unlike simple random sampling which provides
only one injection point per application run, our proposed
Injection-Point Overprovisioning technique provides multiple
potential injection points, sorted by injection time. If a fault is
masked at an early injection point, we evaluate the next point
until an error is generated or until all injection points for the
run are exhausted. Once injection succeeds in manifesting an
architecturally-visible error, all remaining points are passed
to the next run to ensure that the sampling is unbiased.

Figure 5b demonstrates the idea of injection-point overpro-
visioning with the same set of injection points as shown in
Figure 5a for simple random sampling. Injection-point over-
provisioning reduces the number of applications runs from
8 to 2 in this example. Note that injection-point overprovi-
sioning increases the injection overhead per run because it

performs multiple injections. However, as long as the per-run
injection overhead is negligible compared to the overhead
of running the application itself, the overall evaluation time
will be improved. We demonstrate this analytically in Sec-
tion 4.2.2.

Injection-point oversampling is easily generalized to ma-
chines with parallel architectures and still reaches the same
level of parallelism as simple random sampling. Figure 5c
shows an example of parallel overprovisioning on two cores
with the same set of injection points. Note that dependencies
only exist between application runs that execute back-to-
back on the same core, while runs on different cores are
independent. A synchronization mechanism among cores is
needed to terminate the entire error injection campaign when
it collects enough errors to claim statistical significance, but
this synchronization is infrequent.

4.2.1 Implementation. We implement injection-point over-
provisioning with the master-worker parallel pattern. The
master thread is responsible for generating and updating the
batch of injection points associated with each core and for
synchronizing worker threads upon termination.

We adopt the two-phase error injection workflow consisting
of a profiling and an injection phase as in prior work [5, 6].
The profiling phase simply determines the range of injection
points, while the injection phase does fault/error injection
with the injection-point overprovisioning technique.

In the injection phase, the master thread initializes each
batch with N points randomly drawn within the range deter-
mined in the profiling phase. It then launches a worker thread
for each core that performs fault injection to the specified
application. Next, each worker thread injects faults at points
specified in its batch until an error is generated or until the
batch is exhausted, and then records the remaining points (if
any). When a worker thread on core Ci is done, the master
thread updates the batch associated with core Ci by either
passing the remaining points or generating a new batch of

SC ’19, November 17–22, 2019, Denver, CO, USA Chun-Kai Chang, Wenqi Yin, and Mattan Erez

points. Once the total number of collected errors reaches the
target, the master thread waits until all worker threads finish
before terminating the injection phase.

Note that the efficiency of the proposed technique depends
on the batch size N and other factors, which we discuss next.

4.2.2 Analytical Modeling. Our goal is to understand when
injection-point overprovisioning outperforms simple random
sampling. To this end, we derive a first-order analytical model
for the cost of generating an error relative to application
execution time.

Assume that at each injection point, the fault masking
rate is an i.i.d. Bernoulli random variable with masking-
probability P . Let α be the injection overhead normalized
to the execution time of the application. The cost of using
simple random sampling is then formulated as in Equation 1.
The first term is the cost of injecting a fault for each applica-
tion run and the second term is the mean number of fault
injections (equal to the number of application runs) needed
to generate an error. For instance, if P is 50%, it takes two
runs on average to generate one error.

CSRS = (1 + α)× (
1

1− P
) (1)

The cost of injection-point overprovisioning (with N points
per run) can be formulated as in Equation 2, based on the
law of total probability. The first term is the expected cost if
the first injection leads to an error. 1

N
is the expected relative

cost of running until the injection point because the injection
points are generated uniformly across time. The second term
is the cost if the first injection is masked but the second
injection results in an error, and so on.

CIPO = (1− P)(
1

N
+ α) + P (1− P)(

2

N
+ 2α)

+ . . .+ PN−1(1− P)(
N

N
+Nα)

= (
1

N
+ α)× (

1− (1 +N −NP)PN

1− P
)

(2)

We define the speedup of overprovisioning as the ratio of
CSRS to CIPO. If speedup is greater than 1, then injection-
point overprovisioning outperforms simple random sampling.
We sweep the parameters in both equations and plot speedup
in Figure 6. When injection overhead is small (e.g., α ≤ 0.1),
injection-point overprovisioning outperforms simple random
sampling by at least 4X in most cases, and speedup increases
with the batch size (N). However, when the masking rate
(P) is less than 0.2, or when the injection overhead is large
(e.g., α = 1), injection-point overprovisioning is worse than
simple random sampling.

In reality, the fault masking rate depends on multiple
factors (including circuits, operating condition, input data,
etc.). Thus, it is not as simple as a Bernoulli random vari-
able. We present the experimental results for the benefits of
injection-point overprovisioning in Section 6.1.

4.2.3 Optimization with Checkpoint-Restart. Injection-point
overprovisioning can be further improved with the aid of

5 10 15
Batch Size

10−1

100

M
as

ki
ng

 R
at

e

CSRS/CPO (α = 1E-03)

5 10 15
Batch Size

10−1

100

M
as

ki
ng

 R
at

e

CSRS/CPO (α = 1E-02)

5 10 15
Batch Size

10−1

100

M
as

ki
ng

 R
at

e

CSRS/CPO (α = 1E-01)

5 10 15
Batch Size

10−1

100

M
as

ki
ng

 R
at

e

CSRS/CPO (α = 1E+00)

<1

2

4

>10

<1

2

4

>10

<1

2

4

>10

<1

2

4

>10

Figure 6: Speedup of injection-point overprovision-
ing as a function of the batch size, the masking rate,
and injection overhead. X-axis is the batch size (N),
and y-axis the masking rate (P). α is the injection
overhead normalized to execution time of the appli-
cation.

low-overhead checkpoint-restart. The idea is to reduce the
overhead of running applications toward injection points by
fastforwarding to the nearest checkpoint before each injection
point. Note that this optimization helps only when the over-
head of restarting is small compared to application execution
time. We leave the analysis for future work.

5 EVALUATION METHODOLOGY

Our evaluation consists of the following parts: (1) assessing
the benefits of injection-point overprovisioning, (2) charac-
terizing the timing error models at the instruction level, (3)
evaluating the impact of error models on the resilience of
applications, and (4) conducting sensitivity studies of appli-
cation resilience to droop profiles and pipeline occupancy.

5.1 Error Models

In this work, we focus on timing errors resulting from tran-
sient voltage droops (i.e., dI

dt
droops), but the tool and frame-

work can be used to study other types of timing errors as
well. We compare the proposed high-fidelity error model using
just-in-time error generation to two well-known low-fidelity
error models.

5.1.1 High-Fidelity Timing Error Models. Recall that the error
manifestation process of timing errors is very complex and
depends on the following factors: (1) the circuit structure,
(2) the operating condition, (3) the variation’s profile, and
(4) the history of input values to the circuit.

Circuits and Operating Conditions. We inject errors to
arithmetic units because those circuits are more prone to tim-
ing errors according to previous work [28, 29]. We synthesize

Assessing The Impact of Timing Errors on HPC Applications SC ’19, November 17–22, 2019, Denver, CO, USA

Table 1: Circuits and their fault injection overhead.

Circuit Depth Mean Std.

INT-ADD 1 0.39s 0.003

INT-MUL 3 4.80s 0.112

FP-ADD 3 1.59s 0.011
FP-MUL 3 3.95s 0.026

FP-DIV 1 4.15s 0.029

gate-level netlists of integer and floating-point adders and
multipliers using Synopsys tools (Design Compiler and De-
signWare Library) with Synopsys’s SAED 32nm technology,
optimized for performance. The pipeline depths are tuned
to match Intel’s Broadwell processors based on the latency
data from [30]. After carefully verifying the netlists, we use
OpenTimer to obtain the critical path of each circuit and set
the clock frequency as 400MHz. The nominal voltage of the
cell library is 1.05V and temperature is set to 25°C. Table 1
lists the circuits studied in this paper. Notice that these
circuits can be different from those designed and optimized
for commodity processors, but the developed tool is generic
enough to evaluate other circuits as well.

Droop Profile. Other than the nominal 1.05V voltage, we
use two other voltage levels (0.85V and 0.78V) to model
droops. We model single-cycle droops and multi-cycle droops
that persist for the maximum pipeline depths (i.e., 3 cycles
for the circuits under test).

Pipeline Occupancy. The number of instructions affected
by a voltage droop depends on the droop’s duration and the
occupancy of the affected pipeline. In general, for a pipelined
circuit of depth D, the maximal number of instructions af-
fected by a T -cycle droop is D+T −1. We model the extreme
cases to understand whether accurate modeling of pipeline
occupancy is necessary:

• Low occupancy: only one instruction in the pipeline
throughout duration of the droop.

• High occupancy: the pipeline is fully utilized.

For each droop magnitude, the combination of droop du-
ration and pipeline occupancy leads to four error groups:

• Single-cycle Low-occupancy (SL): a single-cycle
droop affects a low-occupancy pipeline.

• Multi-cycle Low-occupancy (ML): a multi-cycle
droop affects a low-occupancy pipeline.

• Single-cycle High-occupancy (SH): a single-cycle
droop affects a high-occupancy pipeline.

• Multi-cycle High-occupancy (MH): a multi-cycle
droop affects a high-occupancy pipeline.

Figure 7 illustrates the four error groups for a 3-stage
pipeline. In this example, SL affects one instruction at a
random stage. ML affects the same instruction in three con-
secutive cycles at different stages. SH affects three instruc-
tions simultaneously in one cycle. MH affects five instructions
in total across three cycles. For each instruction, the error

I1 NOP NOP

NOP I1 NOP

NOP NOP I1

S1 S2 S3

or

or

I3 I2 I1

S1 S2 S3

I1 NOP NOP

NOP I1 NOP

NOP NOP I1

S1 S2 S3

t

t	+	1

t	+	2

I3 I2 I1

I4 I3 I2

I5 I4 I3

S1 S2 S3

t

t	+	1

t	+	2

Single-
Cycle

Multi-
Cycle

Low-Occupancy High-Occupancy

Figure 7: Illustration of error groups for a 3-stage
pipeline. Data flow from stage 1 (S1) to stage 3 (S3).

group determines which stages are affected by the droop. Re-
call that in our design we use fault-enable signals to control
which stages to inject (Figure 3). For instance, when the
ML error group is specified, I1 is affected by the multi-cycle
droop in three consecutive stages. Thus, fault-enable signals
corresponding to those stages are set.

The error models are:

• Single-bit flip (RB1): randomly flips a single bit,
shown to be a good approximation of high-fidelity
arithmetic errors due to particle strikes [6].

• Previous value (PREV): models a severe voltage
droop which causes timing violation at all output pins
and thus latches the output value of the previous in-
struction using the same execution unit [31].

• Decreasing voltage to 0.85V (0.85V): generates
a timing error resulting from a droop that decreases
the voltage to 0.85V. It consists of four error groups
(Figure 7).

• Decreasing voltage to 0.78V (0.78V): generates a
timing error resulting from a droop that decreases the
voltage to 0.78V. It also consists of four error groups.

5.1.2 Experimental Settings. We assume that timing faults
occur randomly and uniformly in this work (e.g., when hard-
ware error-mitigation techniques fail due to an unexpectedly
strong voltage droop). In each experiment, we inject an er-
ror into a random instruction’s output operand with one
of the four error models listed above. For each model, we
use injection-point overprovisioning to collect 2000 random
errors. This ensures a margin of measurement error around
2.2% for a confidence level of 95% [32]. Based on Figure 6,
we set the batch size (N) to 10. For SIMD instructions, we
inject timing faults to all SIMD lanes because they usually
share the same power delivery network.

SC ’19, November 17–22, 2019, Denver, CO, USA Chun-Kai Chang, Wenqi Yin, and Mattan Erez

Table 2: Benchmarks, their input, average execution
time, and how we classify SDCs.

Input
Native
Time

Time w/
Injection

SDC Criteria

FT Class A 3.5s 23.4s Failed verification
LU Class A 29.3s 201.8s Failed verification
MG Class B 5.8s 46.7s Failed verification
CG Class A 1.2s 7.6s Failed verification

CoMD default 5.7s 33.8s
Potential energy
> 10−10 [34]

LULESH default 22.1s 130.5s
MaxAbsDiff
> 10−8 [36]

5.2 Benchmarks and Outcome
Classification

We use six serial scientific kernels and proxy applications:
FT and LU and CG and MG from NPB [33], CoMD [34], and
LULESH [35]. Table 2 summarizes the benchmarks, their input,
native execution time per experiment, execution time with
injection overhead, and how we classify injection outcomes
as SDCs. We compile all benchmarks with gcc 4.8.5 using
the original building scripts.

As in prior work [6], injection outcomes are classified into
three primary categories:

• Masked: the injected error is masked by application,
with output identical to the error-free run.

• Detected Uncorrectable Error (DUE): errors that
crash or hang the program are categorized as DUEcrsh.
Errors that result in obviously erroneous application
output (e.g., output is not finite or mismatch in matrix
size) are also in this category and denoted as DUEtest.

• Silent Data Corruption (SDC): the program ends
normally with output errors that are hard to detect.

5.3 Testbed

We develop the injector on a single-node machine that runs
OpenSUSE 42.3 and then conduct error injection experiments
on the Lonestar5 supercomputer at TACC.

6 EVALUATION RESULTS

6.1 Injection-Point Overprovisioning

Figure 8 shows the speedup of injection-point overprovision-
ing for different error groups under different droop magni-
tudes. Note that the maximum speedup is 7X (for LULESH

in the setting with 0.85V and the SL error group). Speedup
is highest for the SL error group (i.e., voltage droop affects
only one instruction at a random stage). In this case, timing
errors are more likely to be logically masked at later pipeline
stages, and thus the fault-masking rates are higher. Also,
speedup is higher when droop magnitude is lower (0.85V)
because the fault-masking rate is higher (mostly due to tem-
poral masking). On average, for the weaker droops (0.85V),

SL ML SH MH
0
1
2
3
4
5
6
7
8

Sp
ee

du
p

0.85V
CG
LU
CoMD
FT

MG
LULESH
GMEAN

SL ML SH MH
0
1
2
3
4
5
6
7
8

Sp
ee

du
p

0.78V
CG
LU
CoMD
FT

MG
LULESH
GMEAN

Figure 8: Speedup of injection-point overprovision-
ing for high-fidelity timing error injection. Speedup
here is defined as the ratio of evaluation time using
simple random sampling to injection-point overpro-
visioning. Top: 0.85V; Bottom: 0.78V. X-axis: four
error groups (Figure 7).

speedup of injection-point overprovisioning is 4.7X, 2.2X,
2.2X, 1.7X for the SL, ML, SH, MH error groups, respec-
tively. For stronger droops (0.78V), speedup is 3.0X, 1.8X,
1.8X, 1.6X, respectively.

In terms of resource savings due to injection-point overpro-
visioning, we save 2,943 core-hours for the entire evaluation in
this work. The original resource requirement for simple ran-
dom sampling was 5,585 core-hours. Notice that the savings
can be even higher if one needs higher accuracy (i.e., observ-
ing more errors). In this work, our accuracy is around 2%.
The projected savings for a 1% of accuracy target is 13,978
core-hours for the same set of experiments. The resource
requirement would be 26,527 core-hours if simple random
sampling is used.

6.2 Injection Outcome and Analysis

In this section, we present the characteristics of timing errors
at the instruction level and the injection outcome at the
application level.

6.2.1 Instruction-level error patterns. We characterize how
many bits of the circuit output are flipped (Figure 9) and
which bits are more likely to be flipped (Figure 10). Note
that distributions are application-dependent.

Observation 1: timing errors that corrupt arithmetic cir-
cuits tend to flip multiple lower-significance bits.

Assessing The Impact of Timing Errors on HPC Applications SC ’19, November 17–22, 2019, Denver, CO, USA

FT LU MG CG CoMD LULESH
0.8

5V
-M

L

0.7
8V

-M
L

PR
EV RB1

0.8
5V

-M
L

0.7
8V

-M
L

PR
EV RB1

0.8
5V

-M
L

0.7
8V

-M
L

PR
EV RB1

0.8
5V

-M
L

0.7
8V

-M
L

PR
EV RB1

0.8
5V

-M
L

0.7
8V

-M
L

PR
EV RB1

0.8
5V

-M
L

0.7
8V

-M
L

PR
EV RB1

 0%

 20%

 40%

 60%

 80%

100%

Ra
ti

o

No. of Flipped Bits at Circuit Output
4+
3
2
1

Figure 9: Distributions of the number of flipped bits
at circuit output (simple error models vs. the high-
fidelity ML timing error group).

According to Figure 9, timing errors flip multiple bits in
most cases (> 80%). The fact that timing errors tend to flip
lower-significance bits is due to value locality at the higher-
significance bits. In other words, the higher-significance bits
rarely transition between previous output and current output
at the circuit level. Therefore, even though higher-significance
bits are more likely to experience timing violation, the latched
values are still correct.

Note that PREV in some cases (e.g., CG and LULESH) flips
fewer bits than the high-fidelity model. This is due to the
fact that errors generated by PREV exhibit a different in-
struction mix when compared with the high-fidelity model;
PREV essentially injects errors into some instructions that
never generate an error when using a higher-fidelity model.
Although circuits with lower complexity (e.g., integer adders)
are less sensitive to timing errors, PREV can still corrupt
results generated by such simple circuits because it lacks
timing information.

6.2.2 Application-level injection outcomes. Figure 11 shows
the distributions of error injection outcomes using different
error models. Recall that RB1 is shown to be a good ap-
proximation of high-fidelity arithmetic errors due to particle
strikes [6]. Therefore, we can use it as a proxy to compare
timing errors with errors due to particle strikes.

Observation 2: timing errors rarely lead to DUEs.

Compared to RB1 and PREV, high-fidelity timing errors
rarely lead to DUEs. This observation is related to previous
results at the instruction level: lower-significance bits are more
likely to be flipped. On the other hand, since RB1 flips each
bit with equal likelihood, it tend to flip higher-significance
bits and causes more segmentation faults. LULESH is the only
application in which high-fidelity timing errors result in some
DUEs. It turns out that most DUEs are bus errors (i.e.,
unaligned memory accesses) instead of segmentation faults.

Observation 3: timing errors result in low SDC ratio.

High-fidelity errors cause fewer SDCs compared with RB1
and PREV. This is also related to the results at the in-
struction level. For instance, for floating-point instructions,
flipping lower-significance bits leads to changes in the signifi-
cand field, which has less impact compared to the exponent

FT

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.85V-ML (64-bit)

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.78V-ML (64-bit)

LU

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.85V-ML (64-bit)

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.78V-ML (64-bit)

MG

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.85V-ML (64-bit)

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.78V-ML (64-bit)

CG

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.85V-ML (64-bit)

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.78V-ML (64-bit)

CoMD

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.85V-ML (64-bit)

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.78V-ML (64-bit)

LULESH

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.85V-ML (64-bit)

0 10 20 30 40 50 60
Bit positions

0.00
0.02
0.04
0.06
0.08
0.10

Ra
ti

o

0.78V-ML (64-bit)

Figure 10: Distribution of bit-flip positions at circuit
output with input from each benchmark under the
ML error group. Note that these are not distribu-
tions of positions with timing violation.

field. We expect that SDC ratios would be even smaller for
weaker droops (e.g., droops that decreases the voltage to
0.9V). If we compare the SDC ratios between RB1 and high-
fidelity timing errors, the maximum difference occurs in FT

where the SDC ratio of RB1 is 10% and those of 0.78V and
0.85V are 3% and 0%, respectively.

Observation 2 and observation 3 indicate that it is plausible
to save power by reducing guardbands if the user can tolerate
some DUEs and SDCs. However, such decisions must be
made carefully as timing errors can occur when the processor
is in kernel mode as well. The evaluation of kernel mode is
beyond the scope of this work.

SC ’19, November 17–22, 2019, Denver, CO, USA Chun-Kai Chang, Wenqi Yin, and Mattan Erez

FT LU MG CG CoMD LULESH
0.8

5V
-M

L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1

0.8
5V

-M
L

0.7
8V

-M
L
PR

EV RB1
 0%

 20%

 40%

 60%

 80%

100%

O
ut

co
m

e
Ra

ti
o

Reliability Outcome Distribution

SDC
DUEtest
DUEcrsh
Masked

Figure 11: Injection outcome distributions (simple
error models vs. the high-fidelity ML timing error
group). Results of other error groups are in Fig-
ure 12.

Observation 4: neither RB1 nor PREV is a good approxi-
mation for high-fidelity timing errors.

Both RB1 and PREV result in pessimistic results compared
with high-fidelity timing errors. RB1 overestimates DUE ratio
by at least 7% in all cases and it overestimates SDC ratio
by 5.7% and 3.6% for 0.85V and 0.78V, respectively. PREV
greatly overestimates both DUE ratio and SDC ratio in all
applications.

6.3 Sensitivity Studies

Figure 12 shows the sensitivity studies of injection outcome
distributions to droop profiles and pipeline occupancy.

First, we observe that SDC ratio increases with droop
magnitude since stronger droops are more likely to flip higher-
significance bits. Second, for the same droop magnitude, three
error groups (SL, ML, and SH) lead to similar distributions
(error bars are overlapped). This also means that for single-
cycle droops (SL and SH), injection outcomes depend only
on droop magnitude. Note that MH leads to higher SDC
ratio than ML since it not only affects more instructions but
also affects them multiple times. The maximum difference of
SDC ratio between MH and the other three groups is 3.5%
in MG with 0.78V. Therefore, for evaluating the impact of
multi-cycle droops on applications, more accurate modeling
for pipeline occupancy is needed.

Observation 5: for single-cycle droops, injection outcomes
depend only on droop magnitude, while for multi-cycle
droops, injection outcomes depend on both droop magnitude
and pipeline occupancy.

7 RELATED WORK

In terms of evaluating the resilience of HPC applications
against hardware errors, much prior work assumes parti-
cle strikes as the fault model [1, 4–6, 37, 38], though re-
searchers have pointed out that circuit timing uncertainty
poses challenges on designing systems with high power effi-
ciency [14, 15, 39]. In this section, we first summarize existing
resilience evaluation techniques and draw an analogy between
assessing the resilience of applications against timing faults

vs. particle strikes. Then, we discuss state-of-the-art error
models for timing errors. Finally, we compare the proposed
injection-point overprovisioning technique with other acceler-
ation techniques.

Hardware-based. Evaluation methodology such as beam
tests can quantify the rate and the impact of radiation effects
on applications [38, 40]. This methodology is highly accurate
and more realistic because real devices are used. The anal-
ogous methodology for evaluating timing errors is directly
undervolting or overclocking commercial processors [41–44].
Disadvantages of this methodology include high cost and
inability to precisely control the fault locations of interest.
The tool used in this work is not of this type.

Software-based. Methods that use software to perform
fault/error injection at various abstraction layers fall in this
category (including this work). These methods can target spe-
cific layers of interest with different fault/error models. For
instance, faults/errors can be injected into applications [38],
the operating system [45, 46], the architecture level [1, 3, 5],
the micro-architecture level [25, 26], RTL gate level [2, 6, 11],
etc. Also, they are more flexible because the injection sub-
strate is decoupled from the fault/error models such that
tools can be repurposed to model different types of faults.

However, software-based methods have a fidelity problem
because (1) they can only inject faults/errors into the layer(s)
modeled by software and (2) the fault/error model assumed
may be different from reality. As a result, prior work adopts
hierarchical injection to balance injection speed and accuracy
by integrating injectors at different levels [6, 10, 11]. The
tool used in this work spans across the instruction level, RTL
gate level, and circuit level.

Timing-error modeling. There are two categories of timing
error models: (1) pre-characterization and (2) just-in-time
error generation. Models based on pre-characterization as-
sume a specific set of circuit implementations and derive an
error model based on circuit-level fault injection. The de-
rived error model usually incurs low overhead but they suffer
from at least one of the following issues: (a) inflexibility in
terms of circuit implementations, (b) assuming timing errors
are independent between output pins of circuits, (c) using
pseudo-random input vectors to train an error model, or (d)
high overhead due to circuit transformation.

CrashTest [47] emulates timing errors by adding additional
logic to the original design and thus incurs high overhead.
Therefore, usage of FPGA is required. Another issue of the
technique is that the set of flip-flops affected by timing faults
is not selected based on toggled paths (Figure 1). Authors of
b-HiVE [7] point out the importance of taking computation
history into account. They derive the fault probability of each
output pin for ALU circuits of OpenSPARC T1. The work
by Constantin et al. [8] is similar to b-HiVE but provides
fine-grained control over fault probabilities. Both work use
pseudo-random input to train their models and assume that
timing errors between circuit endpoints are independent.
CLIM [9] uses machine learning to build timing error models

Assessing The Impact of Timing Errors on HPC Applications SC ’19, November 17–22, 2019, Denver, CO, USA

FT LU MG CG CoMD LULESH

0.
85

V-
SI

M
0.

85
V-

M
L

0.
85

V-
SH

0.
85

V-
M

H
0.

78
V-

SI
M

0.
78

V-
M

L
0.

78
V-

SH
0.

78
V-

M
H

0.
85

V-
SI

M
0.

85
V-

M
L

0.
85

V-
SH

0.
85

V-
M

H
0.

78
V-

SI
M

0.
78

V-
M

L
0.

78
V-

SH
0.

78
V-

M
H

0.
85

V-
SI

M
0.

85
V-

M
L

0.
85

V-
SH

0.
85

V-
M

H
0.

78
V-

SI
M

0.
78

V-
M

L
0.

78
V-

SH
0.

78
V-

M
H

0.
85

V-
SI

M
0.

85
V-

M
L

0.
85

V-
SH

0.
85

V-
M

H
0.

78
V-

SI
M

0.
78

V-
M

L
0.

78
V-

SH
0.

78
V-

M
H

0.
85

V-
SI

M
0.

85
V-

M
L

0.
85

V-
SH

0.
85

V-
M

H
0.

78
V-

SI
M

0.
78

V-
M

L
0.

78
V-

SH
0.

78
V-

M
H

0.
85

V-
SI

M
0.

85
V-

M
L

0.
85

V-
SH

0.
85

V-
M

H
0.

78
V-

SI
M

0.
78

V-
M

L
0.

78
V-

SH
0.

78
V-

M
H

 0%
 20%
 40%
 60%
 80%
100%

O
ut

co
m

e
Ra

ti
o

Reliability Outcome Distributions (Sensitivity Studies)

SDC
DUEtest
DUEcrsh
Masked

Figure 12: Injection outcome distribution for sensitivity studies of droop magnitude and error groups.

and shows high accuracy compared with gate-level simulation,
but it has the inflexibility issue and using pseudo-random
input to train their model.

On the other hand, models that rely on just-in-time error
generation are more generic but they incur higher overhead [6,
11]. However, they do not suffer from the aforementioned
issues because they perform just-in-time simulation with
circuit input from applications to generate errors. Also, user
has full control over the circuits, its operating condition, and
the profiles of timing faults (e.g., magnitude and duration).
The tool used in this work falls in this category. Note that
although just-in-time error generation has been used to model
hardware faults due to particle strikes, to the best of our
knowledge, this work is the first that models timing errors
and evaluates their end-to-end effects on applications thanks
to recent open-source campaigns in the EDA community.

Acceleration techniques. The work by Chang et al. [6] pro-
poses nested Monte Carlo to accelerate hierarchical injec-
tion by sampling different physical fault sites to generate
an unmasked fault at an injection point. The method is
not applicable for injecting timing errors hierarchically be-
cause there is only one fault site in our case. However, our
injection-point overprovisioning can be used to accelerate
their experiments. Also, our approach is orthogonal to tech-
niques that prune faults potentially leading to the same
injection outcome [26, 48] and techniques based on hardware
acceleration [2, 47].

8 CONCLUSION

We show that injection-point overprovisioning saves evalua-
tion time and resources for timing error injection experiments.
The method can be applied to other experiments that use
hierarchical injection. Additionally, we build an open-source
instruction-level timing error injector that generates high-
fidelity errors on demand at runtime with low overhead. Using
the tool, we find that timing errors tend to flip multiple lower-
significance bits due to value locality in applications. When

timing errors corrupt the architectural state of HPC appli-
cations, they rarely lead to DUEs and SDCs, indicating the
plausibility of saving power by reducing guardbands without
significantly degrading the correctness of applications. We
also demonstrate that two synthetic error models, single-bit
flips and previous values, do not represent high-fidelity timing
errors that affect arithmetic units.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Award Numbers DE-
SC0014097 and DE-SC0014098, program manager Lucy Now-
ell. The authors thank the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for supporting
the simulation environment.

REFERENCES
[1] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vulner-

abilities in extreme-scale scientific applications using a binary
instrumentation tool,” in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage
and Analysis, p. 57, IEEE Computer Society Press, 2012.

[2] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for ro-
bust system design,” in Proceedings of the 50th Annual Design
Automation Conference, p. 101, ACM, 2013.

[3] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying
the accuracy of high-level fault injection techniques for hardware
faults,” in 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 375–382, IEEE,
2014.

[4] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu, “F-sefi: A
fine-grained soft error fault injection tool for profiling application
vulnerability,” in Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, pp. 1245–1254, IEEE, 2014.

[5] G. Georgakoudis, I. Laguna, D. Nikolopoulos, and M. Schulz, “Re-
fine: Realistic fault injection via compiler-based instrumentation
for accuracy, portability and speed,” in Proceedings of SC17,
Denver, CO, USA, November, 2017, IEEE.

[6] C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez,
“Evaluating and accelerating high-fidelity error injection for hpc,”
in In the Proceedings of the ACM/IEEE International Confer-
ence on High-Performance Computing, Networking, Storage,
and Analysis (SC18), (Dallas, TX), November 2018.

SC ’19, November 17–22, 2019, Denver, CO, USA Chun-Kai Chang, Wenqi Yin, and Mattan Erez

[7] G. Tziantzioulis, A. Gok, S. Faisal, N. Hardavellas, S. Ogrenci-
Memik, and S. Parthasarathy, “b-hive: A bit-level history-based
error model with value correlation for voltage-scaled integer and
floating point units,” in Proceedings of the 52nd Annual Design
Automation Conference, p. 105, ACM, 2015.

[8] J. Constantin, Z. Wang, G. Karakonstantis, A. Chattopadhyay,
and A. Burg, “Statistical fault injection for impact-evaluation of
timing errors on application performance,” in Proceedings of the
53rd Annual Design Automation Conference, p. 13, ACM, 2016.

[9] X. Jiao, A. Rahimi, Y. Jiang, J. Wang, H. Fatemi, J. P. De Gyvez,
and R. K. Gupta, “Clim: A cross-level workload-aware timing
error prediction model for functional units,” IEEE Transactions
on Computers, vol. 67, no. 6, pp. 771–783, 2018.

[10] S. Mirkhani, M. Lavasani, and Z. Navabi, “Hierarchical fault
simulation using behavioral and gate level hardware models,”
in Proceedings of the 11th Asian Test Symposium (ATS’02),
pp. 374–379, IEEE, 2002.

[11] M.-L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari, and
S. V. Adve, “Accurate microarchitecture-level fault modeling for
studying hardware faults,” in High Performance Computer Archi-
tecture, 2009. HPCA 2009. IEEE 15th International Symposium
on, pp. 105–116, IEEE, 2009.

[12] T.-W. Huang and M. D. Wong, “Opentimer: A high-performance
timing analysis tool,” in Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, pp. 895–902,
IEEE Press, 2015.

[13] H. Cherupalli and J. Sartori, “Graph-based dynamic analysis:
Efficient characterization of dynamic timing and activity distribu-
tions,” in Computer-Aided Design (ICCAD), 2015 IEEE/ACM
International Conference on, pp. 729–735, IEEE, 2015.

[14] V. J. Reddi and M. S. Gupta, “Resilient architecture design for
voltage variation,” Synthesis Lectures on Computer Architecture,
vol. 8, no. 2, pp. 1–138, 2013.

[15] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in
nanometer cmos integrated systems: A survey of techniques from
circuits to software,” Proceedings of the IEEE, vol. 104, no. 7,
pp. 1410–1448, 2016.

[16] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware,
B. Brock, J. A. Tierno, and J. B. Carter, “Active management
of timing guardband to save energy in power7,” in 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 1–11, IEEE, 2011.

[17] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopou-
los, P. Lawthers, and S. Das, “Harnessing voltage margins for
energy efficiency in multicore cpus,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 503–516, ACM, 2017.

[18] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Ku-
mar, S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, et al.,
“Underdesigned and opportunistic computing in presence of hard-
ware variability,” IEEE Transactions on Computer-Aided Design
of integrated circuits and systems, vol. 32, no. 1, pp. 8–23, 2013.

[19] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho,
K. Skadron, M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, et al.,
“Clear: C ross-l ayer e xploration for a rchitecting r esilience-
combining hardware and software techniques to tolerate soft errors
in processor cores,” in Proceedings of the 53rd Annual Design
Automation Conference, p. 68, ACM, 2016.

[20] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith,
G.-Y. Wei, and D. Brooks, “Voltage smoothing: Characterizing
and mitigating voltage noise in production processors via software-
guided thread scheduling,” in Proceedings of the 2010 43rd An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 77–88, IEEE Computer Society, 2010.

[21] R. Bertran, A. Buyuktosunoglu, P. Bose, T. J. Slegel, G. Salem,
S. Carey, R. F. Rizzolo, and T. Strach, “Voltage noise in multi-
core processors: Empirical characterization and optimization op-
portunities,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 368–380, IEEE, 2014.

[22] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law
through energy efficient integrated circuits,” Proceedings of the
IEEE, vol. 98, no. 2, pp. 253–266, 2010.

[23] S. Williams, “Icarus verilog,” 2006. http://iverilog.icarus.com/.
[24] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware

design processing toolkit for verilog hdl,” in International Sym-
posium on Applied Reconfigurable Computing, pp. 451–460,
Springer, 2015.

[25] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of
microarchitecture-level reliability assessment: Throughput
and accuracy,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
pp. 69–78, IEEE, 2016.

[26] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “Merlin:
Exploiting dynamic instruction behavior for fast and accurate mi-
croarchitecture level reliability assessment,” in ACM SIGARCH
Computer Architecture News, vol. 45, pp. 241–254, ACM, 2017.

[27] D. Harris and N. Weste, “Cmos vlsi design,” Pearson Education,
Inc, 2010.

[28] A. Rahimi, L. Benini, and R. K. Gupta, “Analysis of instruction-
level vulnerability to dynamic voltage and temperature variations,”
in 2012 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1102–1105, IEEE, 2012.

[29] Y. Kim, L. K. John, I. Paul, S. Manne, and M. Schulte, “Per-
formance boosting under reliability and power constraints,” in
Computer-Aided Design (ICCAD), 2013 IEEE/ACM Interna-
tional Conference on, pp. 334–341, IEEE, 2013.

[30] A. Fog, “Optimization manual 4 instruction tables,” Copenhagen
University College of Engineering, Software Optimization Re-
sources, http://www.agner.org/optimize,(1996-2017), pp. 215–
230.

[31] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman, “Enerj: Approximate data types for safe and
general low-power computation,” in ACM SIGPLAN Notices,
vol. 46, pp. 164–174, ACM, 2011.

[32] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Sta-
tistical fault injection: Quantified error and confidence,” in Pro-
ceedings of the Conference on Design, Automation and Test in
Europe, pp. 502–506, European Design and Automation Associa-
tion, 2009.

[33] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasin-
ski, R. S. Schreiber, et al., “The nas parallel benchmarks,” The
International Journal of Supercomputing Applications, vol. 5,
no. 3, pp. 63–73, 1991.

[34] ExMatEx, “Comd: Classical molecular dynamics proxy applica-
tion.” https://github.com/ECP-copa/CoMD.

[35] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and
changes,” Tech. Rep. LLNL-TR-641973, August 2013.

[36] B. Fang, P. Wu, Q. Guan, N. DeBardeleben, L. Monroe, S. Blan-
chard, Z. Chen, K. Pattabiraman, and M. Ripeanu, “Sdc is in
the eye of the beholder: A survey and preliminary study,” in De-
pendable Systems and Networks Workshop, 2016 46th Annual
IEEE/IFIP International Conference on, pp. 72–76, IEEE, 2016.

[37] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher,
and P. Bose, “Understanding the propagation of transient errors
in hpc applications,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 1–12, IEEE, 2015.

[38] D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn,
I. Koren, P. Navaux, and P. Rech, “Experimental and analytical
study of xeon phi reliability,” in Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, p. 28, ACM, 2017.

[39] J. Torrellas, “Extreme-scale computer architecture: Energy effi-
ciency from the ground up,” in Proceedings of the conference on
Design, Automation & Test in Europe, p. 200, European Design
and Automation Association, 2014.

[40] C.-Y. Cher, M. S. Gupta, P. Bose, and K. P. Muller, “Under-
standing soft error resiliency of blue gene/q compute chip through
hardware proton irradiation and software fault injection,” in
SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
pp. 587–596, IEEE, 2014.

[41] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage
margins by leveraging on-chip ecc in itanium ii processors,” in
ACM SIGARCH Computer Architecture News, vol. 41, pp. 297–
307, ACM, 2013.

[42] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J.
Reddi, “Safe limits on voltage reduction efficiency in gpus: a
direct measurement approach,” in Microarchitecture (MICRO),
2015 48th Annual IEEE/ACM International Symposium on,
pp. 294–307, IEEE, 2015.

[43] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopou-
los, P. Lawthers, and S. Das, “Harnessing voltage margins for
energy efficiency in multicore cpus,” in Proceedings of the 50th

http://iverilog.icarus.com/
https://github.com/ECP-copa/CoMD

Assessing The Impact of Timing Errors on HPC Applications SC ’19, November 17–22, 2019, Denver, CO, USA

Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 503–516, ACM, 2017.

[44] K. Parasyris, P. Koutsovasilis, V. Vassiliadis, C. D. Antonopoulos,
N. Bellas, and S. Lalis, “A framework for evaluating software on
reduced margins hardware,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), pp. 330–337, IEEE, 2018.

[45] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari:
A flexible software-based fault and error injection system,” IEEE
Transactions on computers, vol. 44, no. 2, pp. 248–260, 1995.

[46] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and
O. Spinczyk, “Fail*: Towards a versatile fault-injection exper-
iment framework,” in ARCS 2012, pp. 1–5, IEEE, 2012.

[47] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar,
V. Bertacco, and T. Austin, “Crashtest: A fast high-fidelity fpga-
based resiliency analysis framework,” in 2008 IEEE International
Conference on Computer Design, pp. 363–370, IEEE, 2008.

[48] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: Exploiting application-level fault equivalence to analyze
application resiliency to transient faults,” in ACM SIGPLAN
Notices, vol. 47, pp. 123–134, ACM, 2012.

	Abstract
	1 Introduction
	2 Background
	2.1 Timing Errors of Digital Circuits
	2.2 Impact of Timing Errors on HPC Systems

	3 Timing Error Injection
	3.1 The Instruction-Level Injector
	3.2 The Gate-Level Injector
	3.3 Limitations

	4 Accelerating Instruction-Level Timing Error Injection
	4.1 Inefficiency of Simple Random Sampling
	4.2 Injection-Point Overprovisioning

	5 Evaluation Methodology
	5.1 Error Models
	5.2 Benchmarks and Outcome Classification
	5.3 Testbed

	6 Evaluation Results
	6.1 Injection-Point Overprovisioning
	6.2 Injection Outcome and Analysis
	6.3 Sensitivity Studies

	7 Related Work
	8 Conclusion
	References

