
1

Spills, Fills, and Kills

An Architecture for Reducing Register-Memory Traffic

Mattan Erez Brian P. Towles William J. Dally

mattan.erez@stanford.edu btowles@stanford.edu billd@csl.stanford.edu

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract

In a typical integer application, 40% of all memory
references are generated by the compiler to: save and
restore register values at procedure boundaries, pass
parameters, and handle register allocation failures. We
remove these compiler memory references by augmenting
a conventional architecture with a spill name space and
separate spill, fill, and kill instructions to access this
space. These instructions facilitate compiler name
generation while allowing the hardware to take advantage
of two key properties of compiler references. First, there
is great locality in compiler references and a 128-entry
spill store is able to capture over 99% of all spills and
fills. Second, spills and fills use a simple addressing
mode that permits addresses to be resolved in the decode
stage of the pipeline, increasing ILP. The combination of
a reduction in memory traffic and an ILP increase results
in speedups of up to 40%.

1. Introduction

Modern processors strive to execute an increasing
number of instructions per cycle. This stresses an already
overburdened memory system and requires more ILP to
be extracted from the code. Both of these problems can
be addressed by specializing an architecture to deal with
two distinct categories of memory references: user
references, which are the set of memory references
explicitly programmed in a high-level language; compiler-
generated references, which are the product of the
compilation process and are inaccessible to the user. We
refer to this set of compiler references as spills and fills,
for memory writes and reads respectively.

The source of spill and fill operations is inadequate
support for compiler-generated variable names.
Architectures traditionally provide the compiler with a
register name space and a memory name space. If the
register space is too small or if names cannot be expressed
in terms of static registers, the compiler must use memory
names to represent these values. These memory names

are accessed using store and load instructions resulting in
spills and fills. Allowing the compiler to clearly delineate
between its spills and fills and user stores and loads,
enables the elimination of nearly all compiler-generated
references from the memory system, which account for
almost half of a program’s total memory references.

We introduce a spill name space to facilitate efficient
compiler naming and three new instructions that access
this space. Spill instructions bind a value with a name in
the spill space, fill instructions access values bound to
particular spill names, and kill instructions discard values
from the spill name space. Spilled values are kept in a
small spill store, allowing fast hardware access. Kills
indicate the last-use of a compiler name, which frees
storage space in the spill store and prevents spilled values
from being exposed to the memory system. The high
locality of spill-fill pairs combined with the last-use
information allows a 128-entry spill store to filter 99% of
all spilled values from the memory system.

 Spill, fill, and kill instructions use simplified indexing
compared to general load and store instructions. All three
instructions form variable names by specifying a constant
displacement from a spill-fill pointer register. This
enables the resolution of names early in the pipeline,
allowing fills to be satisfied before they reach the
execution stage, thus increasing effective ILP.

Taking maximal advantage of the spill, fill, and kill
instructions reduces memory traffic, increases ILP, and
provides a natural partition for several microarchitectural
structures. The resulting spill-fill-kill architecture (SFKA)
eliminates up to 45% of memory references with a small,
64-entry spill store, while providing a speedup of as much
as 40%.

The remainder of the paper is organized as follows. In
Section 2 we give a definition of spills and analyze their
distinct code properties. Section 3 presents the proposed
architecture, compiler modifications, and
microarchitecture. We describe our evaluation
methodology in Section 4 followed by experimental
results and discussion in Section 5. Comparisons to
related work appear in Section 6, followed by our

2

concluding remarks and future research directions in
Section 7.

2. Spill Definition and Related Code
Properties

2.1. Spill Definition

Compiler-generated memory references are necessary
for a set of three common occurrences in procedural
languages:

x� Register allocation failures occur when there are too

few architectural registers to hold the set of live
variables, and variables must be swapped between
registers and memory.

x� Register saves and restores occur across function
calls, allowing the body of a called function to access
the entire set of registers and decoupling the register
allocation of different functions.

x� Parameter passing allows function arguments to be
stored to a memory location if they cannot be passed
in registers.

Spills cannot be eliminated by simply increasing the
number of architectural registers. While additional
registers expand the static namespace, some variables
require dynamic names – names dependent on run-time
information. Since architectural registers are statically
named, the compiler conventionally relies on memory for
dynamic name generation, resulting in spills and fills. As
an example, consider the necessity of dynamic naming for
a recursive call (Figure 1). The value in register $r1 is
live when the recursive call is made. The child function
uses $r1 again, overwriting its previous value. To avoid
this, a store instruction is introduced that saves the value
into a unique memory location derived from the current
context (e.g.. the stack pointer). Other cases that require
dynamic naming include functions that may be called
from different code fragments, such as library functions,
and functions that accept a variable number of arguments.
Although compiler spills and fills are traditionally
translated to store and load instructions, they are
fundamentally different. Spills and fills are used as a
private naming mechanism, disjoint from all other
memory accesses. However, general memory operations
are subject to architectural restrictions, including ordering
and coherency, required for inter-thread and inter-process
communication. Also, while spills and fills require
dynamic names, their addressing needs are more limited
than general load and store instructions. All compiler-
generated references can be handled by specifying an
immediate displacement from a spill-fill pointer register,
similar in concept to a stack pointer.

There are two cases where the compiler cannot
guarantee disjointness, which are therefore excluded from

the set of spills and fills: variables whose names are
available to the user, through an operation such as the C
“address-of” (&) operator; all arrays, which require
indexing that is more general than the register plus
constant offset used to access elements on the stack and is
less amiable to hardware acceleration (Subsection ˜3.3.1).

Function()
 def r1
 ...
 use r1
 ...
 call Function()
 ...
 use r1
 ...
 return

Function()
 def r1
 ...
 use r1
 ...
 use r1
 ...
 return

Function()
 def r1
 ...
 use r1
 ...
 store [SP + offset], r1
 call Function()
 load r1, [SP + offset]
 ...
 use r1
 ...
 return

Function()
 def r1
 ...
 use r1
 ...
 use r1
 ...
 return

Figure 1: Example of dynamic naming

2.2. Spill Related Code Properties

Spills and fills can comprise a substantial fraction of a
program’s instructions. Figure 2 shows a categorization of
dynamic loads and stores into regular memory operations,
stack based memory operations (non-spills), and the three
spill / fill types. The data was gathered from the 8 integer
applications of the SPEC95 benchmark suite. The
programs were compiled with a modified version of GCC
[GCC] for the MIPS-like architecture of Simplescalar
[Burg97], which uses 32 general-purpose, integer
registers. The height of the bars represents the fraction of
memory stores/loads out of the total number of executed
instructions. Applications such as PERL and Vortex
show over half of their memory writes are spills and one-
third of their reads are fills. Vortex has an especially high
percentage of parameter passing since it frequently uses
large data structures as arguments to its functions.
M88ksim, IJPEG, and Compress show lower percentages
of spills and fills, from less than 1% to about 18%.
Compress in particular contains no function calls or
register allocation failures in its single inner loop, giving
no opportunity for spills.

The types of spills and fills seen in these programs are

partially dependent on the number of registers in the target
architecture. The percentages shown in Figure 2 reflect
the behavior for a particular thirty-two-register
architecture: save/restore spills and fills are more frequent
than register allocation failures. More available registers
lead to fewer register allocation failures, but more register

3

saves and restores are required for function calls.
Opposite trends occur with fewer registers.

0%

5%

10%

15%

20%

25%

30%

35%

compress

gcc go ijpeg li m88ksim
perl vortex

mean

%
 a

ll
in

st
ru

ct
io

n
s

store/load stack ST/LD save/restore reg. alloc. param passing

loads

stores

Figure 2: Memory operation classification

Spill-fill pairs have a high locality of reference, and over
99% of these references can be captured with 128 storage
locations. This is supported by the cumulative histogram
of the number of storage locations required to satisfy a
spill-fill pair (Figure 3). The vertical axis shows the
percentage of all spills for which the final matching fill
could be found within a structure containing a certain
number of storage locations varied along the horizontal
axis. The number of storage locations is calculated by
counting the number of live spills between every spill-fill
pair, where a spill is considered live until it is read by its
final matching fill. The figure shows data for several
SPEC95 applications as well as the average for all the
integer applications, weighted by the number of spills and
fills in each application (‘mean’ line).

0%

20%

40%

60%

80%

100%

1 10 100 1000

live spills between spill-fill pair

%
 s

p
ill

s

gcc ijpeg li m88ksim mean

Figure 3: Dynamic spill distance

3. Architecture

A simple addition to the processor ISA can enable the
compiler to communicate its intent for internally
generated references, and allow the hardware to take
advantage of the distinct properties of spills and fills. We
present ISA extensions in Subsection ˜3.1, describe the
necessary compiler modifications in Subsection 3̃.2, detail
the spill-fill-kill microarchitecture in Subsection 3̃.3, and
provide an alternate implementation in Subsection 3̃.4.

3.1. ISA Extensions

A set of extensions is provided for a standard RISC ISA
tailored to the needs of compiler name generation and
independent from the underlying implementation details.
The naming interface is organized like a traditional stack1,
which allows for minimal impact on compiler design.
The extensions specify a spill name-space, disjoint from
the user memory namespace, and provide instructions to
access it based on an immediate displacement from an
architectural spill-fill pointer register (SFP), analogous to
the stack pointer. Unlike a normal register, write access
to the SFP is restricted and only specific instructions are
allowed to modify it:

setsfp imm/reg Set SFP to an

immediate or register
value.

incsfp imm Increment/decrement
the SFP.

The setsfp and incsfp instructions provide all the

functionality the compiler requires to manage a stack. For
example, the SFP can be initialized with setsfp at the
beginning of each thread of execution and then modified
by incsfp as the compiler creates and releases names.
By restricting accesses to the SFP to these two
instructions, name generation is simplified and more
readily optimized in a hardware implementation
(Subsection 3̃.3.1).

Additional instructions facilitate allocation and use of
the compiler-generated names and their values:

spill reg, [sfp+imm] Bind the value from reg

with the specified name
fill [sfp+imm], reg Read value bound to the

specified name into reg.

kill [sfp+imm] The value bound to the
specified name can be
discarded.

fkill [sfp+imm], reg fill after which the
value can be discarded.

The spill and fill instructions are different from

store and load instructions. The only architectural
guarantee for spills and fills is provided for accesses with
the same name � a fill returns the value from the most
recent spill, unless a kill or fkill was encountered
after the spill. A spill does not write the value into a
memory location, but only binds the value with the
specified name. This allows the value associated with a

1 The data structure used is not a stack in the strict sense – a
small set of the top most elements, called a frame, can be
accessed randomly.

4

name to be discarded using a kill instruction. Store
instruction values, conversely, cannot be discarded
because they are subject to memory consistency and
coherency restrictions. Finally, spill names form a
logically separate address space from user accesses, but if
a spilled value must be written to memory, the name is
used as a full virtual address. A matching fill then
retrieves the value by using its own name as an address.

3.2. Compiler Modifications

Adapting a compiler to incorporate the ISA
modifications is straightforward. First, compiler-
generated memory accesses are marked in the stages they
are created: failures during register allocation, and register
save/restore and parameter passing during function call
insertion. Except for compiler-generated variables whose
names are available to the user or array variables
(Subsection 2̃.1), all accesses created in these stages are
noted as spills. These exception cases can be gathered
during the compiler’s parsing pass. Once all code
optimizations have occurred, any remaining, marked
compiler references are converted to spill and fill
instructions.

After all spills and fills have been generated, live
variable analysis is used to determine which fills can be
converted into fkill instructions. The lifetime of a
compiler-generated variable begins when it is first spilled
and the variable is considered “dead” after being used by
its last fill. The liveness of a particular variable is
dependent on control flow, so conversion of a fill to
fkill can also be control dependent. For example, if a
variable is live upon entry to a basic block and is dead
along all exit paths of that block, the last fill of that
variable in the block can be converted to a fkill (Figure
4a). However, it is also possible for a variable to be dead
along some, but not all, of the exit paths (Figure 4b). In
this case, an extra kill instruction should be inserted that
post-dominates the fill. There are several potential
locations for inserting these kill instructions. Two
possibilities are either along all the paths where the
variable is dead (Figure 4c) or in the return block, if the
function has a single exit point (Figure 4d).

INLOO�$

UHWXUQ

���

$�OLYH

$�GHDG

ILOO�$

UHWXUQ

���

$�OLYH
$�OLYH

$�GHDG

ILOO�$

UHWXUQ

NLOO�$

���

$�OLYH
$�OLYH

$�GHDG

ILOO�$

NLOO�$

UHWXUQ

���

$�OLYH
$�OLYH

$�GHDG

�D� �E� �F� �G�

Figure 4: Insertion of kill instructions

Conveying dead variable information incurs almost no
code size cost, since existing fill instructions can be
converted to fkill instructions for 99% of spilled values.
However, if code size is a primary concern, the kill
instructions can simply be left out since they are not
required for functional correctness. The resulting
performance impact is minimal because 99% of spilled
values are still eliminated with fkill instructions.

The SFP is initially set to the virtual address at the top
of the program’s stack with the setsfp instruction. Then
each compiler-generated reference is allocated a stack
entry relative to the SFP. Spilled values on the stack are
accessed with the spill and fill instructions, while any
remaining compiler references are also placed on the
stack, but accessed with load and store instructions. In
this way, a dense memory layout of spill and non-spill
values is achieved, and the addition of explicit spill and
fill instructions requires no additional virtual address
space. Finally, each procedure can require additional
stack space, so upon procedure calls and returns the SFP
is incremented and decremented using the incsfp
instruction.

3.3. Microarchitecture

There are many possible ways of implementing our
proposed ISA extensions, including simply treating fills as
loads and spills as stores. This section presents a spill-fill-
kill microarchitecture that fully exploits the properties of
fills, spills, and kills to increase performance by reducing
memory traffic and increasing ILP.

GHFRGH

/64

IHWFK

QDPH�JHQ�

UHQDPH

H[HFXWH

PHPRU\

ZULWHEDFN

UHWLUH

GHFRGH

/64

IHWFK

VSLOO�EXIIHU

UHQDPH

H[HFXWH

ZULWHEDFN

UHWLUH

PHPRU\

VWRUH���VSLOO�SLSHOLQH ORDG���ILOO�SLSHOLQH

VWRUH

VSLOO
VSLOO�WR
PHP

ORDG

ILOO�KLW

ILOO�PLVV

QDPH�JHQ�

VSLOO�VWRUH

VSLOO�EXIIHU

VSLOO�VWRUH

Figure 5: Architecture pipeline

Our microarchitecture is summarized in Figure 5
separated into a store/spill and load/fill pipeline. A
regular store proceeds from decode, through the load store
queue (LSQ) to address generation, is written back to the
LSQ when both address and data are available, and finally
is committed to memory when the store retires. A spill,
on the other hand, may forgo address generation in the
execution units since the restricted use of the SFP allows
the name generation to occur in the front-end (Subsection ˜
3.3.1). It is then allocated an entry in the speculative spill

5

buffer (3̃.3.2) instead of in the LSQ, and finally, when the
spill retires, its value is written to the spill store instead of
to memory (3̃.3.3). A spilled value is exposed to the
memory system only when a spill is evicted from the spill
store. A regular load is processed much like a store, but
must also undergo disambiguation before reading from
memory. A fill behaves quite differently. Like a spill, the
fill’s name is obtained before execution and is used to
query the spill store and speculative spill buffer in
parallel. On a hit, the fill skips execution and goes
directly to the writeback stage with the value obtained
from the spill store. If the name was not found, the fill
proceeds down the pipeline as a regular load with two
differences: 1) its address has already been calculated; 2)
it need not undergo disambiguation since its address is
guaranteed not to collide with any store (spills are not
written to memory as stores).

3.3.1. Hardware Name Generation

For the hardware to take full advantage of the compiler
information, it must discern spill names in an early
pipeline stage. This is achieved by employing a
simplified version of the register tracking technique
presented in [Beke00]. Register tracking allows
calculation of spill names relative to the SFP as early as
decode time with the addition of a simple adder to the
decode stage (or any other front-end stage).

The setsfp instruction sets the SFP with either an
immediate or register value. Once the SFP has been set,
updates to it are performed with incsfp instructions that
use an immediate operand. These incsfp instructions
can be “pre-executed” in the decode stage by adding the
immediate to the current SFP. Therefore, subsequent
references to the SFP can be resolved in the decode stage
as well. Using a register operand for setsfp requires
information to be passed from the execution stage to the
front-end, but since this is only required for process
initialization the processor can simply stall until this value
is ready without a noticeable performance impact.

3.3.2. Speculative Spill Buffer

The use of a spill store in conjunction with speculative
execution requires a speculative spill buffer (SSB) to store
speculatively processed spill instructions. Regular loads
and stores have similar requirements and the load store
queue (LSQ) already exists to deal with them. The SSB is
a simplified store buffer portion of the LSQ, which tracks
the order of spills and records their names and values.
Each entry of the SSB has a name field, value field, and a
value bit indicating whether the spilled value is ready.
Like a store buffer, the SSB is a prioritized CAM that
returns the most recent entry that matches a given name.

After a spill’s name is resolved through hardware name
generation, a SSB entry is allocated and tagged with the
name. Spills are not put in the LSQ’s store buffer, thus
reducing the pressure on this expensive resource. Also,

since spills are disjoint from loads, no disambiguation
between the SSB and loads in the LSQ needs to occur,
which provides an ILP increase by removing these false
dependencies. Spills then proceed to the rename stage to
determine their source data register. If that value is ready,
it is read from the register file, placed in the SSB, and the
entry’s value bit is set. Otherwise the name of the register
that will produce the value is recorded in the SSB and the
value bit is reset, indicating that this entry must be
updated when the value is produced.

A fill r eceives its name from the name generator and
queries the SSB and spill store in parallel. If a matching
entry is found in the spill store only, the value is read and
written back to the fill's destination register. This process
occurs in the front-end, thus having the same effect as a
zero-cycle operation for dependent instructions and ILP is
increased.

There are two possibilities for when a SSB entry
matches the fill. If the value bit is set, the spilled value is
immediately written into the fill's destination. Otherwise
the fill is issued as a register-to-register move instruction,
from the spill's source register (stored in the SSB entry) to
the fill's destination register. Dependent instructions can
use this value once the register move executes.

If the fill misses in both the SSB and spill store, it is
treated in a manner similar to a regular load. However,
the fill's virtual address, which is simply its name, has
been calculated in the front-end, and is already
disambiguated. Disambiguation is guaranteed since the
fill and store address spaces are kept disjoint by the
compiler, and any outstanding spill to the same address
would have resulted in a SSB hit.

The disjoint address spaces for spills and stores also
allows a natural partitioning of the traditional store buffer
into the store buffer and speculative spill buffer. This
may become important as these structures are prioritized
CAMs, which must grow significantly larger with each
generation to support the increased level of instruction
and memory level parallelism, and may become a cycle-
time limiter if not partitioned.

3.3.3. Spill Store

The spill store is used to filter spills before they are
issued to memory, and to provide efficient access to
recently spilled values. It is arranged as a fully-
associative or set-associative structure for holding spilled
values and is tagged by the spill names. Once a spill
retires, its speculative name and value are transferred from
the SSB and committed to the spill store without affecting
the memory system. Later fills read this value and make
it available to dependent instructions with low latency.
Most spills are kept from ever reaching the memory
system by taking advantage of the kill and fkill
instructions. Whenever a kill or fkill instruction is
retired, the spill store entry matching it is invalidated. In
general, there may be more live spill values than can be

6

held by the spill store. In this case, the least recently used
entry is evicted and written to actual memory for later
retrieval by a fill. The spill store uses a separate datapath
to the memory subsystem and the spill’s name as a virtual
memory address. In order to prevent the spill store from
stalling retirement, when a TLB or cache port is not
available, a high watermark can be used to govern early
eviction from the spill store utilizing free memory slots.

The spill store does add extra state to the processor,
which potentially increases the overhead of a context
switch. This only applies to context switches that affect
the virtual address mapping (i.e. a process switch) because
the compiler generates unique spill names for each thread
within a single address space. When the virtual address
space is changed, the data in the spill store must be
written to memory to prevent aliasing within the new
address space. An extension to the spill store could
eliminate this problem by adding a process ID field to
each entry. Thus, a name match must include the process
ID, but the structure is not flushed on a process switch.

3.4. Alternative Microarchitectures

 The microarchitecture presented in Subsection 3̃.3 takes
full advantage of the compiler information by adding
storage locations for the spilled values. An alternate
architecture is based on the observation that all spilled
values reside in some physical register at spill time. We
propose to use these physical registers as a logical spill
store and speculative spill buffer.

The spill alias table (SAT), much like the register alias
table used for register renaming [Dief99], maps spill
names to the physical registers containing the spilled
values. When a spill instruction is encountered the source
data register of the spill is associated with the spill name
in the SAT. A later fill performs an associative lookup for
its name in the SAT and uses the returned physical
register. If a fill occurs from a live physical register (a
register that may still be referenced directly by future
instructions) the fills destination can be remapped to it
using the physical register reuse method of [Jour98].
Physical register reuse allows reallocating a physical
register as the destination of a later instruction, provided it
is guaranteed to produce the same value. If the physical
register is no longer live and has not been re-allocated as a
new destination register, it can be used immediately as the
destination register of the fill, and the source of any
dependent instructions. To delay the re-allocation of these
spilled values, physical registers that do not hold spilled
values should be allocated first (by keeping two free-lists
for instance).

The speculative state of the SSB is now kept in a
speculative spill alias table (SSAT), similar to the
speculative register alias table (SRAT), and in the
physical registers containing the spilled values. Like the
SRAT, the SSAT is checkpointed on every branch, and
can be recovered once a branch misprediction is detected.

The complication of this scheme lies in actually writing
spilled values to memory when a spill physical register
must be re-allocated. The only way to write to memory is
by injecting a store instruction that must use the register
as its source, thus stalling the allocation stage.

4. Methodology
The compiler modifications discussed in Subsection 3̃.2

were incorporated into GCC 2.6.3 [GCC]. Changes to
GCC included marking of spill/fill memory references,
live variable analysis for insertion of kill instructions, and
code generation for the new instructions. In the cases
where fkill instructions could not be used to indicate
the last use of a spilled value, the compiler inserted kill
instructions at the function exit point. GCC was targeted
for the Simplescalar PISA, a MIPS-like architecture with
32 general-purpose registers. The resulting binaries were
simulated using the execution driven Simplescalar Toolset
[Burg97].

We used the eight integer applications of the SPEC95
benchmark suite. These applications do not particularly
stress the register allocation failure spills, but do have
many function calls with their associated spills and fills.
Each program was executed for 100 million instructions
of warm-up after which 100 million additional
instructions were used to produce the results.

First, relevant code properties that were mostly
independent of the microarchitectural details were
analyzed. The Simplescalar functional simulator was
used to collect these code properties and ascertain ILP.
To determine ILP, an idealized, non-pipelined, execution
engine was simulated. All dependencies were honored,
but all instructions, including memory operations,
executed in a single cycle. ILP was measured as the
number of instructions that were issued every cycle from a
fixed-size instruction window. The fetch unit was also
idealized, refilling the instruction window at the start of
every cycle. Instructions directly dependent on a fill
executed on the same cycle as the fill.

Finally, to illustrate the spill-fill-kill architecture in a
more concrete context, the Simplescalar out-of-order
simulator was modified to handle spill and fill instructions
and to include a speculative spill buffer and spill store.
The baseline architecture was a 4-wide, 64-deep
instruction-window machine, with a 15-bit gshare branch
predictor, and five pipeline stages. A relatively large
four-way, 64KB, first level data cache backed by a 1MB
unified second level cache was used to minimize any
second-order interference effects of stack accesses, which
could have been advantageous when spills were
eliminated from the memory system. No additional space
was provided for the SSB and the total size of the LSQ
and SSB remained constant. A 64 entry, fully-associative,
spill store was used, providing a good tradeoff of extra
state and coverage. Also, since we found that additional

7

Filtered Fills

85%

90%

95%

100%

gcc go ijpeg li m88ksim perl vortex mean

%
fil

ls

Filtered Spills

75%

80%

85%

90%

95%

100%

gcc go ijpeg li m88ksim perl vortex mean

%
sp

ill
s

�D� �E�

spill store size
32

64 256
128

Figure 6: Fraction of fills and spills satisfied by the spill store

kill instructions provided little benefit over fkill
instructions they were not inserted into the code used for
performance evaluation.

5. Results

5.1. Code Properties

The classification of memory reference instructions into
spill/fill types was presented in Subsection 2̃.2, as well as
the number of live spills metric (figures 2 and 3). We
now proceed with code properties that apply specifically
to the spill-fill-kill architecture (SFKA). Since Compress
has no spills it is not depicted in any of the figures in this
section. However, the data gathered for Compress is
taken into account when calculating the mean values.

Figure 6a shows the fill hit rate – the fraction of all fills
that are captured by the spill store and do not go to the
memory subsystem. The horizontal axis is divided into
groups of growing spill store size from 32 to 256 entries,
and the vertical axis is the fill hit rate. The hit rate is quite
high, approximately 91%, for a small store of only 32
locations, and saturates at over 99% with 128 storage
locations. Figure 6b shows the fraction of all spills that
were successfully eliminated by a fkill or kill
instruction. That is, the final use of the spilled value
occurred while the value was still in the spill store, and it
was successfully filtered from memory. Again, with only
32 storage locations an 88% spill reduction rate is
observed, and increasing the storage to 128 captures over
99% of spills. Note that over 99% of the values killed
were by a fkill instruction, where kill instructions
increased the code size by at most 0.5%, and less than 1%
to the number of instructions fetched. Therefore, not
inserting kill instructions is the better option for this
configuration and applications.

Figure 7 depicts the same results in a different manner,
as the number of memory operations that were removed
from the memory subsystem. Again, the horizontal axis
shows growing spill store size, and the vertical axis shows
the fraction of memory operations removed. Each bar has

four parts, the bottom two are for memory writes (writes
that went to memory and the ones filtered out), and the
top two are for memory reads. With 32 entries, 35% of all
memory operations were satisfied by the spill store (45%
of writes and 28% of reads), and little benefit is seen
beyond 128 entries that capture 38.5% of all memory
operations (53% of writes and 31% of reads).

Figure 8 presents the ILP increase due to partial memory
disambiguation and early resolution of fills. The vertical
axis is the harmonic mean of the available ILP in the
benchmarks, measured using the idealized execution
engine. Along the horizontal axis the scheduling window
size, memory disambiguation mechanism, and use of
SFKA are varied. Note the very high ILP rates possible
due to idealized execution, perfect branch prediction, and
instruction fetch. Without performing perfect memory
disambiguation (in perfect disambiguation loads only wait
for prior stores to the same address), the SFKA increased
ILP by 13-17% as the window size was increased. With
perfect memory disambiguation higher ILP was available
and using explicit spill, fill, and kill instructions allowed
up to a 31% increase in mean ILP and over 50% in some
applications (GCC and Vortex). An interesting
observation is that the SFKA provided little
disambiguation. Without full memory disambiguation
many loads could not proceed and impeded ILP
extraction.

0%

20%

40%

60%

80%

100%

gcc

go ijpeg

li m
88ksim

perl

vortex

m
ean

%
 m

em
o

ry
 o

pe
ra

tio
ns

writes writes reduced reads reduced readsspill store size
−

Figure 7: Memory operations serviced by the spill
store

8

ž

−ž

−

ž

no disambig. perf. disambig.

IL
P

without spills with spills

˜̃ ˜ ˜˜̃ ˜˜̃ ˜˜̃ ˜ ˜˜˜̃ ˜˜̃ ˜˜̃ ˜ −̃ ˜˜˜̃ ˜˜̃ ̃ ˜˜̃ ˜̃ ˜˜̃ ˜˜̃ ˜˜̃ ˜̃ ˜̃ ˜˜̃ ˜ ̃ ˜˜̃ ˜ −̃ ˜˜˜̃ ˜ ˜̃ ˜˜̃ ˜

scheduling window size

Figure 8: Harmonic mean of ILP increases

5.2. Speedup Analysis

We chose several configurations to show that the SFKA
allows significant speedups for the microarchitecture
simulated by Simplescalar. These experiments
demonstrated that the measured code property benefits of
Subsection 2̃.2 lead to speedups in execution, but were not
meant as a study of the various implementation tradeoffs
involved.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

gcc go ijpeg li m88ksim perl vortex mean

sp
ee

d
u

p
 v

s.
 n

o
 d

is
am

b
ig

. /
 n

o
 s

p
ill

s

4-wide 4-wide Perf. BP 8-wide 8-wide Perf. BP

disambig.

spill mech.

Figure 9: Speedup vs. machine width

Figure 9 shows the speedup from using the SFKA, for
varying machine issue widths and scheduling window
sizes. Each group of eight bars is sub-divided into two
groups: the left four bars are for speedup due to perfect
memory disambiguation, and the right bars are for
speedup gained with SFKA. Each four-bar group
represents growing machine width with the left most bar
corresponding to the 4-wide, 64-deep baseline
configuration, the second bar to the same configuration
with perfect branch prediction, and the two right bars to
an 8-wide, 128-deep machine with gshare and perfect
branch prediction respectively. We simulated perfect
branch prediction to shift the bottlenecks towards the
memory system, thus better exposing the advantages of
using SFKA. The speedup was calculated for each of the
four machine configurations independently, where the
baseline for each configuration was the same machine
without both memory disambiguation and SFKA. The
memory access reduction and ILP increase observed

above lead to substantial speedups ranging from 5 to 40%,
whereas the established technique of memory
disambiguation improved performance by less than 1% on
all configurations simulated. The greater speedups
achieved on the wider machine indicate that the extra
exposed ILP plays an important part in the speedups
achieved, since these configurations provide more
performance headroom when ILP can be extracted from
the application. Because the graphs display speedup on
different baseline configurations, the performance
advantage of the SFKA can decrease as the baseline
performance improves.

In order to isolate the effects of effective memory
bandwidth increase from ILP increase, the number of
available L1 cache ports was varied (Figure 10). Again,
the speedup was calculated for each port configuration by
measuring performance with and without the SFKA. As
expected, the speedup decreased for configurations with
more available memory ports, since the pressure on this
resource was decreased regardless of the SFKA.
However, the speedup remained considerable (15% on
average) indicating that the extra ILP was beneficial.
M88ksim, for example, benefited most from the increased
memory bandwidth (shown by the sharp decline in
speedup as memory ports are added). Whereas Vortex’s
performance was improved mainly by increasing ILP,
since even with as many memory ports as issue slots a
20% speedup was observed. Another advantage of the
small spill store is that its access time is lower than that of
a typical first level cache, but all the experiments shown
here assume a single cycle latency for the first level cache.

0%

5%

10%

15%

20%

25%

30%

gcc go ijpeg li m88ksim perl vortex mean

sp
ee

d
u

p
 v

s.
 n

o
 d

is
am

b
ig

. /
 n

o
 s

p
ill

s

1 port 2 ports 4 ports

Figure 10: Speedup vs. memory bandwidth

6. Related Work
In this section we will briefly describe other work

related to register spilling. Subsection ˜6.1 is dedicated to
hardware–software interaction approaches that deal
primarily with facilitating save/restore and parameter
passing spills and fills. Ideas focused mostly on register
allocation failure spills are addressed in Subsection ˜6.2.
Finally, hardware only mechanisms designed to alleviate
the spill problem are described in Subsection 6̃.3.

9

6.1. Save/Restore Handling

The original work on RISC recognized the importance
of providing architectural support for high-level languages
and particularly for procedure call/return. Patterson and
Sequin suggested overlapped register windows to
facilitate call save/restore and function [Patt81], an idea
similar to the multiple register banks in the BBN C/70
[Kral80] and implemented in the SPARC architecture
[Weav94]. In essence, each time a call is made, a fresh
set of registers is presented to the new context, inherently
saving the previous set without explicit memory
operations. “Spills” of register windows occur when all
windows have been used, and since the liveness of
particular elements is unknown, the entire register
window must be stored to memory. Two key
disadvantages of register windows are: register frames are
of fixed size, regardless of the actual usage in the called
function; the physical register file size grows with the
number of frames supported, limiting scalability.

Variable size register frames, are similar to register
windows, but address the drawback associated with their
fixed size. On a function call, an allocate instruction is
used to create a register frame in a large physical register
file, which provides room for several frames. When
registers wrap around to the beginning of the register file,
which is organized as a circular buffer, the old values are
spilled to memory by the hardware. This mechanism was
implemented in the Am29000 [AMD87], and more
recently in the Intel IA64 architecture [Inte00]. In IA64,
the register stack engine works in the background saving
and restoring registers as needed. A drawback of these
techniques is that working set of architectural registers is
expressed using an offset from a current window pointer.
The problem of scalability is not directly addressed due
the large size of the physical register file.

Shifting register windows is a variant of variable size
windows, which removes the need for calculating a
register's name from the current window pointer, and
provides a mechanism for secondary storage to deal with
scalability [Russ93]. Spills and fills to memory are
handled by the hardware and occur as single memory
accesses, not as entire frames. This requires the hardware
to provide memory for spilled values, but the work does
not discuss how this memory is allocated, or how a
swapped-out context can later reload its values. The
SFKA addresses all the drawbacks above while providing
the same functionality, as well as handling register
allocation and parameter passing spills, at the expense of
adding explicit save/restore instructions.

Several other enhancements to register windows such as
Threaded Windows ([Quam88]) and Multi Windows
([Scho95]) have been suggested in the context of multi-
threaded architectures for dynamic management of many
live contexts.

Huguet and Lang describe a mechanism to reduce
save/restore traffic for a non-windowed register file
[Hugu91]. The compiler performs inter-procedural
register allocation to minimize register name overlap
between caller and callee procedures. In addition, the
hardware tracks which registers are in use by the caller to
reduce the number of restores required after a call return.

[Mart97] proposed using dead value information, passed
from the compiler using a kill instruction (a kill here is for
an architectural register and not a dynamic compiler
name), to reduce save / restore traffic to memory. Their
idea is similar to [Hugu91] in that the callee only saves
registers that are needed by the caller (still live in the
caller context). Eliminating restores is more complex and
involves additional hardware structures.

The Named-State Register File (NSF), which was
introduced to facilitate fine grain multi-threading, is
organized as a content addressable memory, where each
register is named relative to its context [Nuth95]. As a
result, there are no fixed frames and every context uses as
many registers as needed, requiring additional instructions
to manage the context-to-memory mapping. Each register
is uniquely named, so the hardware can dynamically spill
and fill values on demand, allowing the NSF to handle all
spill types.

6.2. Register Allocation Failure Handling

The straightforward solution to the register allocation
failure problem is to add more architectural registers, but
this leads to implementation problems due to the
increased instruction word size. In register connection
[Kiyo93], instructions are introduced to dynamically re-
map register identifiers (e.g. $r13). The compiler has
access to more architectural registers at the expense of
additional instructions to manipulate the register re-
mapping. Alternatively, Lozano and Gao observed that
the live ranges of many variables are entirely contained
within the instruction window [Loza95]. They suggest
that only variables with long live ranges get assigned
architectural register names, and short-lived variables get
instruction window based names. Both techniques
increase the number of available static names, and do not
address the problem of dynamic naming.

The concept of compiler controlled memory (CCM) was
described in [Coop98], where the hardware provides a
predefined memory structure for compiler use only. The
idea is similar to the 16k compiler controlled SRAM of
the Cray 2 [Simm88]. The compiler modification
suggested is to use this memory as a store for spilled
values. The paper does not discuss how a CCM can be
used with dynamic naming but has features in common
with our approach, such as a disjoint name space for
compiler and user memory references.

10

6.3. Hardware Only Schemes

Although not strictly hardware only, the stack cache
suggested in [Ditz82] dynamically allocates registers to
values at the top of a hardware stack. More recently the
idea was adapted to the picoJava processor [Ocon97].
Since these stack-based approaches lack architectural
registers, explicit register allocation failure and register
saves and restores are avoided. To prevent parameter
passing spills, the stack frames of the caller and callee are
overlapped.

In [Mosh97] and [Tyso97] mechanisms are presented
that dynamically and speculatively detect store-load pairs.
This information is then used both for memory
disambiguation and for bypassing the store-load chain,
allowing values to be forwarded directly from the
producer to the consumer. [Mosh97] also notes the high
temporal locality of many store-load pairs, and suggests
the transient value cache, which is a structure similar to
our spill store, but requires speculative access. Although
they do not consider this in their papers, many of the
predictable communication paths are likely to be spill-fill
pairs dealt with by our static approach.

Cho et al. observes that access to local variables (all
automatic variables) are decoupled from regular memory
references [Cho98]. Based on this observation they
suggest partitioning the memory related microarchitecture
between a traditional load store queue and a local value
queue, both of which have separate first level caches.
They perform simulation studies on the potential of this
technique based on perfect hardware classification of
loads and stores into regular and local value references.
They also abstractly discuss a compiler-architecture
interaction approach, but do not provide a detailed
mechanism for communicating the required information,
and cannot guarantee that the decoupled accesses are truly
to disjoint address spaces.

[Beke00] deals with early address resolution of loads
and stores to the stack. They suggest a way for the
hardware to safely track the value of the stack pointer
register in an early pipeline stage. The address is then
used to disambiguate some of the loads and to issue these
loads earlier, which provides more effective ILP.
Complications arise due to the fact that the stack pointer
can be modified in any way, unlike our technique which
restricts updates to the SFP, and provisions are made for
when it becomes untrackable. The approach is later
extended to track all registers, and to provide a separate
stack cache used in parallel to the first level cache. This
stack cache must be snooped by regular memory accesses
since it is not guaranteed to be disjoint from regular loads.

7. Conclusions and Future Work

This paper identified two distinct sources of memory
accesses: compiler-generated memory references, referred

to as spills and fills, and user references. Analysis of the
SPEC95 integer applications showed that a large fraction
of a program’s memory operations are spills and fills, and
only a small amount of storage is required to hold nearly
all spilled values. Based on these code properties, the
spill-fill-kill architecture was proposed to improve
cooperation between the compiler and the hardware, and
provide a unified mechanism to deal with spills and fills
through a set of ISA extensions. The new spill, fill, and,
kill instructions were tailored for compiler-generated
references, while preserving an abstract view of the
underlying hardware details.

We modified GCC to take advantage of the ISA
extensions and provided hardware constructs to exploit
the newly provided information. The spill store was
introduced as a specialized hardware structure that filters
spill and fill references from memory. A small spill store
of only 128 entries removed up to 45% of the memory
references, while satisfying over 99% of the spills and
fills. The speculative spill buffer extended the
functionality of the spill store to support speculative
execution, and also created a natural partitioning of
microarchitectural structures such as the load-store queue.
Finally, hardware name generation was integrated into
the processor’s front-end, which allowed fills to be
serviced early in the pipeline, making their results
available immediately to dependent instructions.
Consequently, the dynamically extracted ILP increased by
a factor of two or more. Hardware name generation could
increase the effective execution bandwidth by saving load
address calculations, and provided a measure of memory
disambiguation. The improved code properties also
translated into significant execution benefits, where some
programs exhibited a speedup of over 40%.

The introduction of an intermediate spill name space
between the static register name space and the completely
general memory name space has uses beyond the
elimination of compiler references. For example, a
separate name space can be used as the target of high-
latency memory loads. This allows a larger number of
outstanding references than possible using a register name
space. In a multiprocessor, a separate name space can
hold data that is private to a given process and thus not
subject to the consistency and coherency policies that
must be applied to potentially shared data. Shielding
private data in this manner reduces the load on the
consistency mechanisms and eliminates a major source of
false sharing. Developing techniques for compilers to
identify and group the characteristics of these and other
memory accesses, along with corresponding hardware
mechanisms to capitalize on this information, is a source
of future research.

11

References
[AMD87] "Am29000 User’s Manual," Advanced Micro

Devices, 1987.
[Beke00] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan,

M. Kalaev, and R. Ronen, “Early Load Address
Resolution via Register Tracking,” ISCA 27,
June 2000.

[Burg97] D.C. Burger and T. M. Austin, “The
Simplescalar toolset, version 2.0”, Technical
Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[Cho98] S. Cho, P-C Yew, and G. Lee, “Decoupling
Local Variable Accesses in a Wide-Issue
Superscalar Processor,” ISCA 26, June 1998.

[Coop98] K. Cooper and T. Harvey, “Compiler-Controlled
Memory,” ASPLOS VIII, October 1998.

[Dief99] K Diefendorff, "PC Processor
Microarchitecture", Microprocessor Report, Vol.
13 No. 9, July 12, 1999.

[Ditz82] D. Ditzel and R. McLellan, “Register Allocation
for Free: The C Machine Stack Cache,” ASPLOS
I, 1982.

[GCC] The GNU Project, “GCC Online
Documentation”,

 http://www.gnu.org/software/gcc/onlinedocs/ .
[Hugu91] M. Huguet and T. Lang, "Architectural Support

for Reduced Register Saving / Restoring in
Single-Window Register Files," ACM
Transactions on Computer Systems, Vol 9, No 1,
February 1991.

[Inte00] "Intel IA-64 Architecture - Software Developer's
Manual," Intel Corp., July 2000.

[Jour98] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar,
and A. Yoaz, “A Novel Renaming Scheme to
Exploit Value Temporal Locality through
Physical Register Reuse and Unification,”
MICRO 31, December 1998.

[Kiyo93] T. Kiyohara, S. Mahlke, W. Chen, R.
Bringmann, R. Hank, S. Anik, and W-M Hwu,
“Register Connection: A New Approach to
Adding Registers into Instruction Set
Architectures”, ISCA 20, 1993.

[Kral80] M. Kraley, R. Rettberg, P. Herman, R. Bressler,
and A. Lake, "Design of a User-
microprogrammable Building Block," 13th
Annual Workshop on Microprogramming,
December 1980.

[Loza95] L. Lozano C. and Guang Gao, "Exploiting
Short-Lived Variables in Superscalar
Processors," MICRO 28, Novemeber 1995.

[Mart94] M. Martin, A. Roth, and C. Fischer, "Exploiting
Dead Value Information," MICRO 30,
December 1997.

[Mosh97] A. Moshovos and G. Sohi, “Streamlining Inter-
operation Memory Communication via Data
Dependence Prediction,” MICRO 30, December
1997.

[Nuth95] P. Nuth and W. Dally, “The Named-State
Register File: Implementation and
Performance,” HPCA 1, January 1995.

[Ocon97] J. M. O'Connor and M. Tremblay, "picoJava-I:
The Java Virtual Machine in Hardware," IEEE
Micro, Vol 17 No 2, March-April 1997.

[Patt81] D. Patterson and C. Sequin, “RISC I: A Reduced
Instruction Set VLSI Computer,” ISCA 8, 1981.

[Quam88] D. J. Quammen, D. R. Miller, and D. Tabak,
“Register Window Management for
Multitasking Applications,” 21st Hawaii
International Conference on System Sciences,
1988.

[Russ93] G. Russel and P. Shaw, “Shifting Register
Windows,” IEEE Micro, Vol. 13, No. 4, August
1993.

[Scho95] T. Scholz and M. Schafers, “An Improved
Dynamic Register Array Concept for High-
Performance RISC Processors”, 28th Hawaii
International Conference on System Sciences,
1995.

 [Simm88] M. L. Simmons and H. J. Wasserman,
“Performance Comparison of the Cray-2 and
Cray X-MP/416,” Supercomputing ’88, 1988.

[Tyso97] G. Tyson and T. Austin, "Improving the
Accuracy and Performance of Memory
Communication through Renaming," MICRO
30, December 1997.

[Weav94] D. Weaver and T. Germand, "The SPARC
Architecture Manual," SPARC International,
PTR Prentice Hall, 1994.

