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Abstract 

In a typical integer application, 40% of all memory 
references are generated by the compiler to: save and 
restore register values at procedure boundaries, pass 
parameters, and handle register allocation failures.  We 
remove these compiler memory references by augmenting 
a conventional architecture with a spill name space and 
separate spill, fill, and kill instructions to access this 
space. These instructions facilitate compiler name 
generation while allowing the hardware to take advantage 
of two key properties of compiler references.  First, there 
is great locality in compiler references and a 128-entry 
spill store is able to capture over 99% of all spills and 
fills.  Second, spills and fills use a simple addressing 
mode that permits addresses to be resolved in the decode 
stage of the pipeline, increasing ILP.  The combination of 
a reduction in memory traffic and an ILP increase results 
in speedups of up to 40%. 

1. Introduction 

Modern processors strive to execute an increasing 
number of instructions per cycle.  This stresses an already 
overburdened memory system and requires more ILP to 
be extracted from the code.  Both of these problems can 
be addressed by specializing an architecture to deal with 
two distinct categories of memory references: user 
references, which are the set of memory references 
explicitly programmed in a high-level language; compiler-
generated references, which are the product of the 
compilation process and are inaccessible to the user.  We 
refer to this set of compiler references as spills and fills, 
for memory writes and reads respectively. 

The source of spill and fill operations is inadequate 
support for compiler-generated variable names.  
Architectures traditionally provide the compiler with a 
register name space and a memory name space.  If the 
register space is too small or if names cannot be expressed 
in terms of static registers, the compiler must use memory 
names to represent these values.  These memory names 

are accessed using store and load instructions resulting in 
spills and fills.  Allowing the compiler to clearly delineate 
between its spills and fills and user stores and loads, 
enables the elimination of nearly all compiler-generated 
references from the memory system, which account for 
almost half of a program’s total memory references. 

We introduce a spill name space to facilitate efficient 
compiler naming and three new instructions that access 
this space.  Spill instructions bind a value with a name in 
the spill space, fill instructions access values bound to 
particular spill names, and kill instructions discard values 
from the spill name space.  Spilled values are kept in a 
small spill store, allowing fast hardware access.  Kills 
indicate the last-use of a compiler name, which frees 
storage space in the spill store and prevents spilled values 
from being exposed to the memory system.  The high 
locality of spill-fill pairs combined with the last-use 
information allows a 128-entry spill store to filter 99% of 
all spilled values from the memory system. 

  Spill, fill, and kill instructions use simplified indexing 
compared to general load and store instructions.  All three 
instructions form variable names by specifying a constant 
displacement from a spill-fill pointer register.  This 
enables the resolution of names early in the pipeline, 
allowing fills to be satisfied before they reach the 
execution stage, thus increasing effective ILP.   

Taking maximal advantage of the spill, fill, and kill 
instructions reduces memory traffic, increases ILP, and 
provides a natural partition for several microarchitectural 
structures. The resulting spill-fill-kill architecture (SFKA) 
eliminates up to 45% of memory references with a small, 
64-entry spill store, while providing a speedup of as much 
as 40%. 

The remainder of the paper is organized as follows.  In 
Section 2 we give a definition of spills and analyze their 
distinct code properties.  Section 3 presents the proposed 
architecture, compiler modifications, and 
microarchitecture. We describe our evaluation 
methodology in Section 4 followed by experimental 
results and discussion in Section 5.  Comparisons to 
related work appear in Section 6, followed by our 
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concluding remarks and future research directions in 
Section 7. 

2. Spill Definition and Related Code 
Properties 

2.1. Spill Definition 

Compiler-generated memory references are necessary 
for a set of three common occurrences in procedural 
languages: 

 
x� Register allocation failures occur when there are too 

few architectural registers to hold the set of live 
variables, and variables must be swapped between 
registers and memory.   

x� Register saves and restores occur across function 
calls, allowing the body of a called function to access 
the entire set of registers and decoupling the register 
allocation of different functions. 

x� Parameter passing allows function arguments to be 
stored to a memory location if they cannot be passed 
in registers. 

 
Spills cannot be eliminated by simply increasing the 
number of architectural registers.  While additional 
registers expand the static namespace, some variables 
require dynamic names – names dependent on run-time 
information.  Since architectural registers are statically 
named, the compiler conventionally relies on memory for 
dynamic name generation, resulting in spills and fills. As 
an example, consider the necessity of dynamic naming for 
a recursive call (Figure 1).  The value in register $r1 is 
live when the recursive call is made.  The child function 
uses $r1 again, overwriting its previous value.  To avoid 
this, a store instruction is introduced that saves the value 
into a unique memory location derived from the current 
context (e.g.. the stack pointer).  Other cases that require 
dynamic naming include functions that may be called 
from different code fragments, such as library functions, 
and functions that accept a variable number of arguments. 
Although compiler spills and fills are traditionally 
translated to store and load instructions, they are 
fundamentally different.  Spills and fills are used as a 
private naming mechanism, disjoint from all other 
memory accesses.  However, general memory operations 
are subject to architectural restrictions, including ordering 
and coherency, required for inter-thread and inter-process 
communication. Also, while spills and fills require 
dynamic names, their addressing needs are more limited 
than general load and store instructions.  All compiler-
generated references can be handled by specifying an 
immediate displacement from a spill-fill pointer register, 
similar in concept to a stack pointer. 

There are two cases where the compiler cannot 
guarantee disjointness, which are therefore excluded from 

the set of spills and fills: variables whose names are 
available to the user, through an operation such as the C 
“address-of” (&) operator; all arrays, which require 
indexing that is more general than the register plus 
constant offset used to access elements on the stack and is 
less amiable to hardware acceleration (Subsection ˜3.3.1). 

 
Function()
  def   r1
  ...
  use   r1
  ...
  call  Function()
  ...
  use   r1
  ...
  return

Function()
  def   r1
  ...
  use   r1
  ...
  use   r1
  ...
  return

Function()
  def   r1
  ...
  use   r1
  ...
  store [SP + offset], r1
  call  Function()
  load  r1, [SP + offset]
  ...
  use   r1
  ...
  return

Function()
  def   r1
  ...
  use   r1
  ...
  use   r1
  ...
  return

 

Figure 1: Example of dynamic naming 

2.2. Spill Related Code Properties 

Spills and fills can comprise a substantial fraction of a 
program’s instructions. Figure 2 shows a categorization of 
dynamic loads and stores into regular memory operations, 
stack based memory operations (non-spills), and the three 
spill / fill types.  The data was gathered from the 8 integer 
applications of the SPEC95 benchmark suite. The 
programs were compiled with a modified version of GCC 
[GCC] for the MIPS-like architecture of Simplescalar 
[Burg97], which uses 32 general-purpose, integer 
registers.  The height of the bars represents the fraction of 
memory stores/loads out of the total number of executed 
instructions.   Applications such as PERL and Vortex 
show over half of their memory writes are spills and one-
third of their reads are fills.  Vortex has an especially high 
percentage of parameter passing since it frequently uses 
large data structures as arguments to its functions.  
M88ksim, IJPEG, and Compress show lower percentages 
of spills and fills, from less than 1% to about 18%.  
Compress in particular contains no function calls or 
register allocation failures in its single inner loop, giving 
no opportunity for spills. 

 
The types of spills and fills seen in these programs are 

partially dependent on the number of registers in the target 
architecture. The percentages shown in Figure 2 reflect 
the behavior for a particular thirty-two-register 
architecture: save/restore spills and fills are more frequent 
than register allocation failures.  More available registers 
lead to fewer register allocation failures, but more register 
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saves and restores are required for function calls.  
Opposite trends occur with fewer registers. 
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Figure 2: Memory operation classification 

Spill-fill pairs have a high locality of reference, and over 
99% of these references can be captured with 128 storage 
locations.  This is supported by the cumulative histogram 
of the number of storage locations required to satisfy a 
spill-fill pair (Figure 3).  The vertical axis shows the 
percentage of all spills for which the final matching fill 
could be found within a structure containing a certain 
number of storage locations varied along the horizontal 
axis.  The number of storage locations is calculated by 
counting the number of live spills between every spill-fill 
pair, where a spill is considered live until it is read by its 
final matching fill.  The figure shows data for several 
SPEC95 applications as well as the average for all the 
integer applications, weighted by the number of spills and 
fills in each application (‘mean’ line). 
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Figure 3: Dynamic spill distance 

3. Architecture 

A simple addition to the processor ISA can enable the 
compiler to communicate its intent for internally 
generated references, and allow the hardware to take 
advantage of the distinct properties of spills and fills.  We 
present ISA extensions in Subsection ˜3.1, describe the 
necessary compiler modifications in Subsection 3̃.2, detail 
the spill-fill-kill microarchitecture in Subsection 3̃.3, and 
provide an alternate implementation in Subsection 3̃.4. 

3.1. ISA Extensions 

A set of extensions is provided for a standard RISC ISA 
tailored to the needs of compiler name generation and 
independent from the underlying implementation details. 
The naming interface is organized like a traditional stack1, 
which allows for minimal impact on compiler design.  
The extensions specify a spill name-space, disjoint from 
the user memory namespace, and provide instructions to 
access it based on an immediate displacement from an 
architectural spill-fill pointer register (SFP), analogous to 
the stack pointer.  Unlike a normal register, write access 
to the SFP is restricted and only specific instructions are 
allowed to modify it: 

 
setsfp imm/reg Set SFP to an 

immediate or register 
value. 

incsfp imm Increment/decrement 
the SFP. 

 
The setsfp and incsfp instructions provide all the 

functionality the compiler requires to manage a stack.  For 
example, the SFP can be initialized with setsfp at the 
beginning of each thread of execution and then modified 
by incsfp as the compiler creates and releases names.  
By restricting accesses to the SFP to these two 
instructions, name generation is simplified and more 
readily optimized in a hardware implementation 
(Subsection 3̃.3.1). 

Additional instructions facilitate allocation and use of 
the compiler-generated names and their values: 

 
spill reg, [sfp+imm] Bind the value from reg 

with the specified name  
fill  [sfp+imm], reg Read value bound to the 

specified name into reg. 

kill [sfp+imm] The value bound to the 
specified name can be 
discarded. 

fkill [sfp+imm], reg fill after which the 
value can be discarded. 

 
The spill and fill instructions are different from 

store and load instructions.  The only architectural 
guarantee for spills and fills is provided for accesses with 
the same name � a fill returns the value from the most 
recent spill, unless a kill or fkill was encountered 
after the spill.  A spill does not write the value into a 
memory location, but only binds the value with the 
specified name.  This allows the value associated with a 

                                                        
1 The data structure used is not a stack in the strict sense – a 
small set of the top most elements, called a frame, can be 
accessed randomly. 
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name to be discarded using a kill instruction.  Store 
instruction values, conversely, cannot be discarded 
because they are subject to memory consistency and 
coherency restrictions.  Finally, spill names form a 
logically separate address space from user accesses, but if 
a spilled value must be written to memory, the name is 
used as a full virtual address.  A matching fill then 
retrieves the value by using its own name as an address. 

3.2. Compiler Modifications 

Adapting a compiler to incorporate the ISA 
modifications is straightforward.  First, compiler-
generated memory accesses are marked in the stages they 
are created: failures during register allocation, and register 
save/restore and parameter passing during function call 
insertion.  Except for compiler-generated variables whose 
names are available to the user or array variables 
(Subsection 2̃.1), all accesses created in these stages are 
noted as spills.  These exception cases can be gathered 
during the compiler’s parsing pass.  Once all code 
optimizations have occurred, any remaining, marked 
compiler references are converted to spill and fill 
instructions.  

After all spills and fills have been generated, live 
variable analysis is used to determine which fills can be 
converted into fkill instructions.  The lifetime of a 
compiler-generated variable begins when it is first spilled 
and the variable is considered “dead” after being used by 
its last fill.  The liveness of a particular variable is 
dependent on control flow, so conversion of a fill to 
fkill can also be control dependent.  For example, if a 
variable is live upon entry to a basic block and is dead 
along all exit paths of that block, the last fill of that 
variable in the block can be converted to a fkill (Figure 
4a).  However, it is also possible for a variable to be dead 
along some, but not all, of the exit paths (Figure 4b).  In 
this case, an extra kill instruction should be inserted that 
post-dominates the fill.  There are several potential 
locations for inserting these kill instructions.  Two 
possibilities are either along all the paths where the 
variable is dead (Figure 4c) or in the return block, if the 
function has a single exit point (Figure 4d).  
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Figure 4: Insertion of kill instructions 

Conveying dead variable information incurs almost no 
code size cost, since existing fill instructions can be 
converted to fkill instructions for 99% of spilled values. 
However, if code size is a primary concern, the kill 
instructions can simply be left out since they are not 
required for functional correctness.  The resulting 
performance impact is minimal because 99% of spilled 
values are still eliminated with fkill instructions. 

The SFP is initially set to the virtual address at the top 
of the program’s stack with the setsfp instruction.  Then 
each compiler-generated reference is allocated a stack 
entry relative to the SFP.  Spilled values on the stack are 
accessed with the spill and fill instructions, while any 
remaining compiler references are also placed on the 
stack, but accessed with load and store instructions.  In 
this way, a dense memory layout of spill and non-spill 
values is achieved, and the addition of explicit spill and 
fill instructions requires no additional virtual address 
space.  Finally, each procedure can require additional 
stack space, so upon procedure calls and returns the SFP 
is incremented and decremented using the incsfp 
instruction. 

3.3. Microarchitecture 

There are many possible ways of implementing our 
proposed ISA extensions, including simply treating fills as 
loads and spills as stores.  This section presents a spill-fill-
kill microarchitecture that fully exploits the properties of 
fills, spills, and kills to increase performance by reducing 
memory traffic and increasing ILP.  
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Figure 5: Architecture pipeline 

Our microarchitecture is summarized in Figure 5 
separated into a store/spill and load/fill pipeline.  A 
regular store proceeds from decode, through the load store 
queue (LSQ) to address generation, is written back to the 
LSQ when both address and data are available, and finally 
is committed to memory when the store retires.  A spill, 
on the other hand, may forgo address generation in the 
execution units since the restricted use of the SFP allows 
the name generation to occur in the front-end (Subsection ˜
3.3.1). It is then allocated an entry in the speculative spill 
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buffer (3̃.3.2) instead of in the LSQ, and finally, when the 
spill retires, its value is written to the spill store instead of 
to memory (3̃.3.3).  A spilled value is exposed to the 
memory system only when a spill is evicted from the spill 
store.  A regular load is processed much like a store, but 
must also undergo disambiguation before reading from 
memory.  A fill behaves quite differently.  Like a spill, the 
fill’s name is obtained before execution and is used to 
query the spill store and speculative spill buffer in 
parallel.  On a hit, the fill skips execution and goes 
directly to the writeback stage with the value obtained 
from the spill store.  If the name was not found, the fill 
proceeds down the pipeline as a regular load with two 
differences: 1) its address has already been calculated; 2) 
it need not undergo disambiguation since its address is 
guaranteed not to collide with any store (spills are not 
written to memory as stores). 

3.3.1. Hardware Name Generation 

For the hardware to take full advantage of the compiler 
information, it must discern spill names in an early 
pipeline stage.  This is achieved by employing a 
simplified version of the register tracking technique 
presented in [Beke00].  Register tracking allows 
calculation of spill names relative to the SFP as early as 
decode time with the addition of a simple adder to the 
decode stage (or any other front-end stage).  

The setsfp instruction sets the SFP with either an 
immediate or register value.  Once the SFP has been set, 
updates to it are performed with incsfp instructions that 
use an immediate operand.  These incsfp instructions 
can be “pre-executed” in the decode stage by adding the 
immediate to the current SFP.  Therefore, subsequent 
references to the SFP can be resolved in the decode stage 
as well.  Using a register operand for setsfp requires 
information to be passed from the execution stage to the 
front-end, but since this is only required for process 
initialization the processor can simply stall until this value 
is ready without a noticeable performance impact. 

3.3.2. Speculative Spill Buffer 

The use of a spill store in conjunction with speculative 
execution requires a speculative spill buffer (SSB) to store 
speculatively processed spill instructions.  Regular loads 
and stores have similar requirements and the load store 
queue (LSQ) already exists to deal with them.  The SSB is 
a simplified store buffer portion of the LSQ, which tracks 
the order of spills and records their names and values.  
Each entry of the SSB has a name field, value field, and a 
value bit indicating whether the spilled value is ready.  
Like a store buffer, the SSB is a prioritized CAM that 
returns the most recent entry that matches a given name. 

After a spill’s name is resolved through hardware name 
generation, a SSB entry is allocated and tagged with the 
name.  Spills are not put in the LSQ’s store buffer, thus 
reducing the pressure on this expensive resource.  Also, 

since spills are disjoint from loads, no disambiguation 
between the SSB and loads in the LSQ needs to occur, 
which provides an ILP increase by removing these false 
dependencies.  Spills then proceed to the rename stage to 
determine their source data register.  If that value is ready, 
it is read from the register file, placed in the SSB, and the 
entry’s value bit is set.  Otherwise the name of the register 
that will produce the value is recorded in the SSB and the 
value bit is reset, indicating that this entry must be 
updated when the value is produced. 

A fill r eceives its name from the name generator and 
queries the SSB and spill store in parallel.  If a matching 
entry is found in the spill store only, the value is read and 
written back to the fill's destination register.  This process 
occurs in the front-end, thus having the same effect as a 
zero-cycle operation for dependent instructions and ILP is 
increased. 

There are two possibilities for when a SSB entry 
matches the fill.  If the value bit is set, the spilled value is 
immediately written into the fill's destination.  Otherwise 
the fill is issued as a register-to-register move instruction, 
from the spill's source register (stored in the SSB entry) to 
the fill's destination register.  Dependent instructions can 
use this value once the register move executes. 

If the fill misses in both the SSB and spill store, it is 
treated in a manner similar to a regular load.  However, 
the fill's virtual address, which is simply its name, has 
been calculated in the front-end, and is already 
disambiguated.  Disambiguation is guaranteed since the 
fill and store address spaces are kept disjoint by the 
compiler, and any outstanding spill to the same address 
would have resulted in a SSB hit. 

The disjoint address spaces for spills and stores also 
allows a natural partitioning of the traditional store buffer 
into the store buffer and speculative spill buffer.  This 
may become important as these structures are prioritized 
CAMs, which must grow significantly larger with each 
generation to support the increased level of instruction 
and memory level parallelism, and may become a cycle-
time limiter if not partitioned. 

3.3.3. Spill Store 

The spill store is used to filter spills before they are 
issued to memory, and to provide efficient access to 
recently spilled values.  It is arranged as a fully-
associative or set-associative structure for holding spilled 
values and is tagged by the spill names.  Once a spill 
retires, its speculative name and value are transferred from 
the SSB and committed to the spill store without affecting 
the memory system.  Later fills read this value and make 
it available to dependent instructions with low latency.  
Most spills are kept from ever reaching the memory 
system by taking advantage of the kill and fkill 
instructions.  Whenever a kill or fkill instruction is 
retired, the spill store entry matching it is invalidated.  In 
general, there may be more live spill values than can be 
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held by the spill store.  In this case, the least recently used 
entry is evicted and written to actual memory for later 
retrieval by a fill.  The spill store uses a separate datapath 
to the memory subsystem and the spill’s name as a virtual 
memory address.  In order to prevent the spill store from 
stalling retirement, when a TLB or cache port is not 
available, a high watermark can be used to govern early 
eviction from the spill store utilizing free memory slots. 

The spill store does add extra state to the processor, 
which potentially increases the overhead of a context 
switch.  This only applies to context switches that affect 
the virtual address mapping (i.e. a process switch) because 
the compiler generates unique spill names for each thread 
within a single address space.  When the virtual address 
space is changed, the data in the spill store must be 
written to memory to prevent aliasing within the new 
address space.  An extension to the spill store could 
eliminate this problem by adding a process ID field to 
each entry.  Thus, a name match must include the process 
ID, but the structure is not flushed on a process switch.  

3.4. Alternative Microarchitectures 

 The microarchitecture presented in Subsection 3̃.3 takes 
full advantage of the compiler information by adding 
storage locations for the spilled values.  An alternate 
architecture is based on the observation that all spilled 
values reside in some physical register at spill time.  We 
propose to use these physical registers as a logical spill 
store and speculative spill buffer.   

The spill alias table (SAT), much like the register alias 
table used for register renaming [Dief99], maps spill 
names to the physical registers containing the spilled 
values.  When a spill instruction is encountered the source 
data register of the spill is associated with the spill name 
in the SAT.  A later fill performs an associative lookup for 
its name in the SAT and uses the returned physical 
register.  If a fill occurs from a live physical register (a 
register that may still be referenced directly by future 
instructions) the fills destination can be remapped to it 
using the physical register reuse method of [Jour98].  
Physical register reuse allows reallocating a physical 
register as the destination of a later instruction, provided it 
is guaranteed to produce the same value.  If the physical 
register is no longer live and has not been re-allocated as a 
new destination register, it can be used immediately as the 
destination register of the fill, and the source of any 
dependent instructions.  To delay the re-allocation of these 
spilled values, physical registers that do not hold spilled 
values should be allocated first (by keeping two free-lists 
for instance).   

The speculative state of the SSB is now kept in a 
speculative spill alias table (SSAT), similar to the 
speculative register alias table (SRAT), and in the 
physical registers containing the spilled values.  Like the 
SRAT, the SSAT is checkpointed on every branch, and 
can be recovered once a branch misprediction is detected.  

The complication of this scheme lies in actually writing 
spilled values to memory when a spill physical register 
must be re-allocated.  The only way to write to memory is 
by injecting a store instruction that must use the register 
as its source, thus stalling the allocation stage. 

4.  Methodology 
The compiler modifications discussed in Subsection 3̃.2 

were incorporated into GCC 2.6.3 [GCC].  Changes to 
GCC included marking of spill/fill memory references, 
live variable analysis for insertion of kill instructions, and 
code generation for the new instructions.  In the cases 
where fkill instructions could not be used to indicate 
the last use of a spilled value, the compiler inserted kill 
instructions at the function exit point.  GCC was targeted 
for the Simplescalar PISA, a MIPS-like architecture with 
32 general-purpose registers. The resulting binaries were 
simulated using the execution driven Simplescalar Toolset 
[Burg97]. 

We used the eight integer applications of the SPEC95 
benchmark suite.  These applications do not particularly 
stress the register allocation failure spills, but do have 
many function calls with their associated spills and fills.  
Each program was executed for 100 million instructions 
of warm-up after which 100 million additional 
instructions were used to produce the results. 

First, relevant code properties that were mostly 
independent of the microarchitectural details were 
analyzed.  The Simplescalar functional simulator was 
used to collect these code properties and ascertain ILP.  
To determine ILP, an idealized, non-pipelined, execution 
engine was simulated.  All dependencies were honored, 
but all instructions, including memory operations, 
executed in a single cycle.  ILP was measured as the 
number of instructions that were issued every cycle from a 
fixed-size instruction window.  The fetch unit was also 
idealized, refilling the instruction window at the start of 
every cycle.  Instructions directly dependent on a fill 
executed on the same cycle as the fill. 

Finally, to illustrate the spill-fill-kill architecture in a 
more concrete context, the Simplescalar out-of-order 
simulator was modified to handle spill and fill instructions 
and to include a speculative spill buffer and spill store.  
The baseline architecture was a 4-wide, 64-deep 
instruction-window machine, with a 15-bit gshare branch 
predictor, and five pipeline stages.  A relatively large 
four-way, 64KB, first level data cache backed by a 1MB 
unified second level cache was used to minimize any 
second-order interference effects of stack accesses, which 
could have been advantageous when spills were 
eliminated from the memory system.  No additional space 
was provided for the SSB and the total size of the LSQ 
and SSB remained constant.  A 64 entry, fully-associative, 
spill store was used, providing a good tradeoff of extra 
state and coverage.  Also, since we  found  that  additional 
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Figure 6: Fraction of fills and spills satisfied by the spill store

kill instructions provided little benefit over fkill 
instructions they were not inserted into the code used for 
performance evaluation. 

5. Results 

5.1. Code Properties 

The classification of memory reference instructions into 
spill/fill types was presented in Subsection 2̃.2, as well as 
the number of live spills metric (figures 2 and 3).  We 
now proceed with code properties that apply specifically 
to the spill-fill-kill architecture (SFKA).  Since Compress 
has no spills it is not depicted in any of the figures in this 
section.  However, the data gathered for Compress is 
taken into account when calculating the mean values. 

Figure 6a shows the fill hit rate – the fraction of all fills 
that are captured by the spill store and do not go to the 
memory subsystem.  The horizontal axis is divided into 
groups of growing spill store size from 32 to 256 entries, 
and the vertical axis is the fill hit rate.  The hit rate is quite 
high, approximately 91%, for a small store of only 32 
locations, and saturates at over 99% with 128 storage 
locations. Figure 6b shows the fraction of all spills that 
were successfully eliminated by a fkill or kill 
instruction.  That is, the final use of the spilled value 
occurred while the value was still in the spill store, and it 
was successfully filtered from memory.  Again, with only 
32 storage locations an 88% spill reduction rate is 
observed, and  increasing the storage to 128 captures over 
99% of spills.  Note that over 99% of the values killed 
were by a fkill instruction, where kill instructions 
increased the code size by at most 0.5%, and less than 1% 
to the number of instructions fetched.  Therefore, not 
inserting kill instructions is the better option for this 
configuration and applications. 

Figure 7 depicts the same results in a different manner, 
as the number of memory operations that were removed 
from the memory subsystem.  Again, the horizontal axis 
shows growing spill store size, and the vertical axis shows 
the fraction of memory operations removed.  Each bar has 

four parts, the bottom two are for memory writes (writes 
that went to memory and the ones filtered out), and the 
top two are for memory reads. With 32 entries, 35% of all 
memory operations were satisfied by the spill store (45% 
of writes and 28% of reads), and little benefit is seen 
beyond 128 entries that capture 38.5% of all memory 
operations (53% of writes and 31% of reads). 

Figure 8 presents the ILP increase due to partial memory 
disambiguation and early resolution of fills.  The vertical 
axis is the harmonic mean of the available ILP in the 
benchmarks, measured using the idealized execution 
engine.  Along the horizontal axis the scheduling window 
size, memory disambiguation mechanism, and use of 
SFKA are varied.  Note the very high ILP rates possible 
due to idealized execution, perfect branch prediction, and 
instruction fetch.  Without performing perfect memory 
disambiguation (in perfect disambiguation loads only wait 
for prior stores to the same address), the SFKA increased 
ILP by 13-17% as the window size was increased.  With 
perfect memory disambiguation higher ILP was available 
and using explicit spill, fill, and kill instructions allowed 
up to a 31% increase in mean ILP and over 50% in some 
applications (GCC and Vortex).  An interesting 
observation is that the SFKA provided little 
disambiguation.  Without full memory disambiguation 
many loads could not proceed and impeded ILP 
extraction. 
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Figure 7: Memory operations serviced by the spill 
store 
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5.2. Speedup Analysis 

We chose several configurations to show that the SFKA 
allows significant speedups for the microarchitecture 
simulated by Simplescalar.  These experiments 
demonstrated that the measured code property benefits of 
Subsection 2̃.2 lead to speedups in execution, but were not 
meant as a study of the various implementation tradeoffs 
involved. 
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Figure 9: Speedup vs. machine width 

Figure 9 shows the speedup from using the SFKA, for 
varying machine issue widths and scheduling window 
sizes.  Each group of eight bars is sub-divided into two 
groups: the left four bars are for speedup due to perfect 
memory disambiguation, and the right bars are for 
speedup gained with SFKA.  Each four-bar group 
represents growing machine width with the left most bar 
corresponding to the 4-wide, 64-deep baseline 
configuration, the second bar to the same configuration 
with perfect branch prediction, and the two right bars to 
an 8-wide, 128-deep machine with gshare and perfect 
branch prediction respectively.  We simulated perfect 
branch prediction to shift the bottlenecks towards the 
memory system, thus better exposing the advantages of 
using SFKA.  The speedup was calculated for each of the 
four machine configurations independently, where the 
baseline for each configuration was the same machine 
without both memory disambiguation and SFKA.  The 
memory access reduction and ILP increase observed 

above lead to substantial speedups ranging from 5 to 40%, 
whereas the established technique of memory 
disambiguation improved performance by less than 1% on 
all configurations simulated.  The greater speedups 
achieved on the wider machine indicate that the extra 
exposed ILP plays an important part in the speedups 
achieved, since these configurations provide more 
performance headroom when ILP can be extracted from 
the application.  Because the graphs display speedup on 
different baseline configurations, the performance 
advantage of the SFKA can decrease as the baseline 
performance improves. 

In order to isolate the effects of effective memory 
bandwidth increase from ILP increase, the number of 
available L1 cache ports was varied (Figure 10).  Again, 
the speedup was calculated for each port configuration by 
measuring performance with and without the SFKA.  As 
expected, the speedup decreased for configurations with 
more available memory ports, since the pressure on this 
resource was decreased regardless of the SFKA.  
However, the speedup remained considerable (15% on 
average) indicating that the extra ILP was beneficial.  
M88ksim, for example, benefited most from the increased 
memory bandwidth (shown by the sharp decline in 
speedup as memory ports are added). Whereas Vortex’s 
performance was improved mainly by increasing ILP, 
since even with as many memory ports as issue slots a 
20% speedup was observed.  Another advantage of the 
small spill store is that its access time is lower than that of 
a typical first level cache, but all the experiments shown 
here assume a single cycle latency for the first level cache. 
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Figure 10: Speedup vs. memory bandwidth 

6. Related Work 
In this section we will briefly describe other work 

related to register spilling.  Subsection ˜6.1 is dedicated to 
hardware–software interaction approaches that deal 
primarily with facilitating save/restore and parameter 
passing spills and fills.  Ideas focused mostly on register 
allocation failure spills are addressed in Subsection ˜6.2.  
Finally, hardware only mechanisms designed to alleviate 
the spill problem are described in Subsection 6̃.3.   
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6.1. Save/Restore Handling 

The original work on RISC recognized the importance 
of providing architectural support for high-level languages 
and particularly for procedure call/return.  Patterson and 
Sequin suggested overlapped register windows to 
facilitate call save/restore and function [Patt81], an idea 
similar to the multiple register banks in the BBN C/70 
[Kral80] and implemented in the SPARC architecture 
[Weav94].  In essence, each time a call is made, a fresh 
set of registers is presented to the new context, inherently 
saving the previous set without explicit memory 
operations.   “Spills” of register windows occur when all 
windows have been used, and since the liveness of 
particular elements is unknown, the entire register 
window must be stored to memory.  Two key 
disadvantages of register windows are: register frames are 
of fixed size, regardless of the actual usage in the called 
function; the physical register file size grows with the 
number of frames supported, limiting scalability.   

Variable size register frames, are similar to register 
windows, but address the drawback associated with their 
fixed size.  On a function call, an allocate instruction is 
used to create a register frame in a large physical register 
file, which provides room for several frames.  When 
registers wrap around to the beginning of the register file, 
which is organized as a circular buffer, the old values are 
spilled to memory by the hardware.  This mechanism was 
implemented in the Am29000 [AMD87], and more 
recently in the Intel IA64 architecture [Inte00].  In IA64, 
the register stack engine works in the background saving 
and restoring registers as needed.  A drawback of these 
techniques is that working set of architectural registers is 
expressed using an offset from a current window pointer.  
The problem of scalability is not directly addressed due 
the large size of the physical register file.   

Shifting register windows is a variant of variable size 
windows, which removes the need for calculating a 
register's name from the current window pointer, and 
provides a mechanism for secondary storage to deal with 
scalability [Russ93].  Spills and fills to memory are 
handled by the hardware and occur as single memory 
accesses, not as entire frames.  This requires the hardware 
to provide memory for spilled values, but the work does 
not discuss how this memory is allocated, or how a 
swapped-out context can later reload its values. The 
SFKA addresses all the drawbacks above while providing 
the same functionality, as well as handling register 
allocation and parameter passing spills, at the expense of 
adding explicit save/restore instructions. 

Several other enhancements to register windows such as 
Threaded Windows ([Quam88]) and Multi Windows 
([Scho95]) have been suggested in the context of multi-
threaded architectures for dynamic management of many 
live contexts. 

Huguet and Lang describe a mechanism to reduce 
save/restore traffic for a non-windowed register file 
[Hugu91].  The compiler performs inter-procedural 
register allocation to minimize register name overlap 
between caller and callee procedures.  In addition, the 
hardware tracks which registers are in use by the caller to 
reduce the number of restores required after a call return. 

[Mart97] proposed using dead value information, passed 
from the compiler using a kill instruction (a kill here is for 
an architectural register and not a dynamic compiler 
name), to reduce save / restore traffic to memory.  Their 
idea is similar to [Hugu91] in that the callee only saves 
registers that are needed by the caller (still live in the 
caller context).  Eliminating restores is more complex and 
involves additional hardware structures. 

The Named-State Register File (NSF), which was 
introduced to facilitate fine grain multi-threading, is 
organized as a content addressable memory, where each 
register is named relative to its context [Nuth95].  As a 
result, there are no fixed frames and every context uses as 
many registers as needed, requiring additional instructions 
to manage the context-to-memory mapping.  Each register 
is uniquely named, so the hardware can dynamically spill 
and fill values on demand, allowing the NSF to handle all 
spill types.   

6.2. Register Allocation Failure Handling 

The straightforward solution to the register allocation 
failure problem is to add more architectural registers, but 
this leads to implementation problems due to the 
increased instruction word size.  In register connection 
[Kiyo93], instructions are introduced to dynamically re-
map register identifiers (e.g. $r13).   The compiler has 
access to more architectural registers at the expense of 
additional instructions to manipulate the register re-
mapping.  Alternatively, Lozano and Gao observed that 
the live ranges of many variables are entirely contained 
within the instruction window [Loza95].  They suggest 
that only variables with long live ranges get assigned 
architectural register names, and short-lived variables get 
instruction window based names.  Both techniques 
increase the number of available static names, and do not 
address the problem of dynamic naming. 

The concept of compiler controlled memory (CCM) was 
described in [Coop98], where the hardware provides a 
predefined memory structure for compiler use only.  The 
idea is similar to the 16k compiler controlled SRAM of 
the Cray 2 [Simm88].  The compiler modification 
suggested is to use this memory as a store for spilled 
values.  The paper does not discuss how a CCM can be 
used with dynamic naming but has features in common 
with our approach, such as a disjoint name space for 
compiler and user memory references. 
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6.3. Hardware Only Schemes 

Although not strictly hardware only, the stack cache 
suggested in [Ditz82] dynamically allocates registers to 
values at the top of a hardware stack.  More recently the 
idea was adapted to the picoJava processor [Ocon97].  
Since these stack-based approaches lack architectural 
registers, explicit register allocation failure and register 
saves and restores are avoided.  To prevent parameter 
passing spills, the stack frames of the caller and callee are 
overlapped. 

In [Mosh97] and [Tyso97] mechanisms are presented 
that dynamically and speculatively detect store-load pairs.  
This information is then used both for memory 
disambiguation and for bypassing the store-load chain, 
allowing values to be forwarded directly from the 
producer to the consumer. [Mosh97] also notes the high 
temporal locality of many store-load pairs, and suggests 
the transient value cache, which is a structure similar to 
our spill store, but requires speculative access. Although 
they do not consider this in their papers, many of the 
predictable communication paths are likely to be spill-fill 
pairs dealt with by our static approach. 

Cho et al. observes that access to local variables (all 
automatic variables) are decoupled from regular memory 
references [Cho98].  Based on this observation they 
suggest partitioning the memory related microarchitecture 
between a traditional load store queue and a local value 
queue, both of which have separate first level caches.  
They perform simulation studies on the potential of this 
technique based on perfect hardware classification of 
loads and stores into regular and local value references.   
They also abstractly discuss a compiler-architecture 
interaction approach, but do not provide a detailed 
mechanism for communicating the required information, 
and cannot guarantee that the decoupled accesses are truly 
to disjoint address spaces. 

[Beke00] deals with early address resolution of loads 
and stores to the stack.  They suggest a way for the 
hardware to safely track the value of the stack pointer 
register in an early pipeline stage.  The address is then 
used to disambiguate some of the loads and to issue these 
loads earlier, which provides more effective ILP.  
Complications arise due to the fact that the stack pointer 
can be modified in any way, unlike our technique which 
restricts updates to the SFP, and provisions are made for 
when it becomes untrackable. The approach is later 
extended to track all registers, and to provide a separate 
stack cache used in parallel to the first level cache.  This 
stack cache must be snooped by regular memory accesses 
since it is not guaranteed to be disjoint from regular loads. 

7. Conclusions and Future Work 

This paper identified two distinct sources of memory 
accesses: compiler-generated memory references, referred 

to as spills and fills, and user references.  Analysis of the 
SPEC95 integer applications showed that a large fraction 
of a program’s memory operations are spills and fills, and 
only a small amount of storage is required to hold nearly 
all spilled values.  Based on these code properties, the 
spill-fill-kill architecture was proposed to improve 
cooperation between the compiler and the hardware, and 
provide a unified mechanism to deal with spills and fills 
through a set of ISA extensions.  The new spill, fill, and, 
kill instructions were tailored for compiler-generated 
references, while preserving an abstract view of the 
underlying hardware details. 

We modified GCC to take advantage of the ISA 
extensions and provided hardware constructs to exploit 
the newly provided information.   The spill store was 
introduced as a specialized hardware structure that filters 
spill and fill references from memory.  A small spill store 
of only 128 entries removed up to 45% of the memory 
references, while satisfying over 99% of the spills and 
fills.  The speculative spill buffer extended the 
functionality of the spill store to support speculative 
execution, and also created a natural partitioning of 
microarchitectural structures such as the load-store queue.  
Finally, hardware name generation was integrated into 
the processor’s front-end, which allowed fills to be 
serviced early in the pipeline, making their results 
available immediately to dependent instructions.  
Consequently, the dynamically extracted ILP increased by 
a factor of two or more.  Hardware name generation could 
increase the effective execution bandwidth by saving load 
address calculations, and provided a measure of memory 
disambiguation.  The improved code properties also 
translated into significant execution benefits, where some 
programs exhibited a speedup of over 40%. 

The introduction of an intermediate spill name space 
between the static register name space and the completely 
general memory name space has uses beyond the 
elimination of compiler references.  For example, a 
separate name space can be used as the target of high-
latency memory loads.  This allows a larger number of 
outstanding references than possible using a register name 
space.  In a multiprocessor, a separate name space can 
hold data that is private to a given process and thus not 
subject to the consistency and coherency policies that 
must be applied to potentially shared data.  Shielding 
private data in this manner reduces the load on the 
consistency mechanisms and eliminates a major source of 
false sharing.  Developing techniques for compilers to 
identify and group the characteristics of these and other 
memory accesses, along with corresponding hardware 
mechanisms to capitalize on this information, is a source 
of future research. 
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