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Abstract—First-level (L1) data cache access latency is crit-
ical to performance because it services the vast majority of
loads and stores. To keep L1 latency low while ensuring
low-complexity and simple-to-verify operation, current proces-
sors most-typically utilize a virtually-indexed physically-tagged
(VIPT) cache architecture. While VIPT caches decrease la-
tency by proceeding with cache access and address translation
concurrently, each cache way is constrained by the size of
a virtual page. Thus, larger L1 caches are highly-associative,
which degrades their access latency and energy. We propose
speculatively-indexed physically-tagged (SIPT) caches to enable
simultaneously larger, faster, and more efficient L1 caches. A
SIPT cache speculates on the value of a few address bits beyond
the page offset concurrently with address translation, maintain-
ing the overall safe and reliable architecture of a VIPT cache
while eliminating the VIPT design constraints. SIPT is a purely
microarchitectural approach that can be used with any software
and for all accesses. We evaluate SIPT with simulations of appli-
cations under standard Linux. SIPT improves performance by
8.1% on average and reduces total cache-hierarchy energy by
15.6%.

I. INTRODUCTION

The L1 cache is the most frequently accessed structure
in the memory hierarchy and therefore should have low
expected access latency. As such, the L1 cache presents
challenging tradeoffs between hit rate and access latency. Ac-
cess latency includes the virtual memory address translation
latency (TLB lookup), tag array access and matching, and the
data access itself. In order to push latency down, all three
components are ideally overlapped. Tag and data accesses are
overlapped by accessing all ways simultaneously and deliver-
ing only tag-matching data. Overlapping those two accesses
with address translation is more challenging because an ac-
cess can not start before the address is known. The simplest
cache design indeed performs translation before L1 access
begins. This design is called a physically-indexed physically-
tagged (PIPT) cache because virtual addresses (VAs) are not
used at all in the L1. While simple, the translation overhead
is not hidden and access latency is often considered too high.
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Current designs reduce latency and enable access and
translation overlap in one of two ways. The first relies only on
the offset bits of the VA for computing L1 array locations; the
offset bits are not translated and can hence be used at the same
time translation proceeds. Before data is delivered, the tag is
compared to the fully translated physical address (PA). This
virtually-indexed physically-tagged (VIPT) design is very ef-
fective, but constrains L1 design such that the total capacity of
each cache way is the system’s page size, which is commonly
just 4KiB. Thus, high-associativity caches are necessary to
attain a high hit rate because associativity determines the
cache size. This not only increases the access latency, but
also increases cache energy consumption. For example, Intel
reports that 12% - 45% of core power is consumed by private
caches[1].

The second solution is to translate virtual addresses (VAs)
before the L1 is filled, thus accessing the cache purely with
VAs. Such virtually-indexed virtually-tagged (VIVT) designs
eliminate the translation latency for accessing the cache.
However, relying purely on VAs for most memory accesses
(as most are L1 hits) presents significant complications for
cache management and coherence because software maps
multiple VAs to the same physical address (synonyms) and
may also map the same virtual address to multiple physical
addresses (homonyms). Prior work has developed solutions,
but the designs are more complicated than VIPT [2], [3].

Many current processors have adopted the simple and reli-
able VIPT design including, to the best of our knowledge, all
Intel x86 processors, IBM Power processors, and recent im-
plementations from ARM. In this focused paper, we propose
and evaluate a new option for cache indexing that relaxes the
size vs. associativity tradeoff of VIPT caches while retaining
the advantages of VIPT caches. Our speculatively-indexed
physically-tagged (SIPT) mechanism uses simple predictors
to accurately predict the cache index beyond the offset bits
and uses PAs for tag matches. Thus, larger lower-associativity
caches can be designed with just 1− 3 bits being predicted.
If SIPT predicts an incorrect cache index, the physical tag
mismatches and the cache is accessed again with the correct
bits from the now available PA. We show that misspeculation
rates are low and that performance and energy are improved.
The predictability of the few index bits may depend on the
mapping between virtual and physical memory. However, we



show that prediction accuracy is high even when physical
memory is stressed and virtual to physical mapping is arti-
ficially highly fragmented.

We present three variants of SIPT and evaluate them in
the L1 data cache of both out-of-order processors with a
three-level hierarchy and in-order processors with a two-
level cache hierarchy. The first variant simply assumes that
an additional 1− 3 address bits will remain the same after
translation and always accesses the cache with a speculative
index. Because of OS memory allocation schemes, this is
often true. However, misspeculation is frequent enough that
the extra L1 accesses limit speedup and energy efficiency.

Our second SIPT variant adds a speculation filter to predict
whether those additional 1− 3 bits are likely to remain the
same after translation. If the bits are predicted to change,
speculation is bypassed and the cache is only accessed
after translation. Our experiments show that the predictor
effectively curbs redundant accesses and improves energy,
while rarely bypassing what would be correct speculations.
Because some applications exhibit frequent accesses with bits
that change during translation, performance with speculation
bypassing lags that of an ideal cache.

The third SIPT variant goes further and instead of predict-
ing whether speculation should be bypassed or not, attempts
to predict the value of the 1− 3 bits after translation. We
design a BTB-like predictor for this purpose, which first
predicts whether a change is likely or not and then predicts
the bit values for those small number of accesses for which a
change is predicted. Our experiments show that this scheme
is surprisingly effective across all benchmarks, and improves
performance by 8.1% on average in a quad-core out-of-
order processor. This aggressive SIPT design comes quite
close to an ideal cache which is always accessed with the
correct full physical addresses. Moreover, we validate our
results with highly-fragmented memory. Unlike many pre-
dictors proposed for memory, SIPT does not rely on virtual
addresses, thus the prediction can start before the address is
generated and does not increase cache accessing latency.

The paper is organized as follows: Section II provides
detail about cache indexing options and discusses the most
closely related prior work; Section III presents motivating
experiments that demonstrate that VIPT caches significantly
constrain the design space; Sections IV, V, and VI describe
and evaluate the three SIPT variants; Section VII discusses a
few sensitivity studies; and Section VIII concludes the paper.

II. BACKGROUND

We discuss the fundamental tradeoffs between PIPT,
VIVT, and VIPT caches and then discuss, and contrast from,
prior work that is most relevant to SIPT.

A. PIPT Caches

PIPT caches work purely in the physical address space
and require that virtual addresses be translated prior to cache

access. PIPT caches are simple to design, validate, and verify.
PIPT caches are therefore very common in caches that are fur-
ther from the core because translation has already (typically)
occurred before they are accessed.

B. VIVT Caches

VIVT caches access L1 in the virtual address space and
avoid the latency of translation altogether. While this sounds
simple and appealing, VIVT caches for fully general-purpose
systems are, in fact, complex. The complexity stems from
how the operating system (OS) manages physical memory
and optimizes its use. It is common for the OS to map multi-
ple VAs to a single PA (synonyms). The OS may also assign
a VA to multiple PAs (homonyms), though only when these
homonyms are in different address spaces (e.g., processes).

Homonyms are easy to resolve by adding an address-
space identifier (ASID) to the tag (at the cost of somewhat
more expensive tags) or flushing the cache on a context
switch (overhead too high in general CPUs). Synonyms
are more challenging because the cache must ensure all
cached synonyms are always coherent (or always point to
the same physical cache line). Much research has been de-
voted to the synonym problem. Examples of such prior work
include the U-cache [4], Synonym Lookaside Buffer [5],
and Dynamic Synonym Remapping [6]. However, synonym
handling mechanisms are complex, increasing cost, design
effort, and importantly verification effort. Even with synonym
resolution at the L1, there are still implications for cache
coherence which further complicate the design or constrain
it to some specific coherence mechanisms [3], [2].

Even if all these problems are addressed and the design
and verification challenges are acceptable, some architecture-
and system-specific mechanisms require physically addressed
(tagged) caches, else they introduce even more complexity.
Examples include the x86 page walker [7] and Linux’s Direct
Access for files (DAX) [8].

Note that some designs that target scenarios with very high
TLB miss rates advocate for VIVT caches because the latency
of TLB misses can be very high. However, we are not aware
of modern commercial general-purpose CPUs that follow it,
though some accelerators, for which the driver tightly con-
trols synonyms, homonyms, and potential coherence pitfalls
have suggested the use of VIVT caches [2].

C. VIPT Caches

VIPT caches are appealing because they combine the
strong correctness and simple coherence guarantees of PIPT
caches with practically zero-latency translation. All addresses
have the full PA available through the tags for correctness and
coherence. At the same time, the latency of translation can be
fully hidden by accessing the cache arrays in parallel with
only the page offset bits that are never modified by address
translation. However, the important tradeoff made is the con-
straints on cache parameters. Specifically, each set is limited
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in capacity to a single virtual memory page. Therefore, the
cache capacity is coupled with its associativity: capacity =
#ways×4KiB, assuming common 4KiB page granularity. For
example, many current processors have 32KiB 8-way set-
associative caches [9], [10], [11]. While high associativity
reduces conflicts it also adds latency, which is potentially a
suboptimal design point when compared to a larger lower-
associativity cache (as we show later, associativity impacts
latency more than capacity). Furthermore, L1 cache access
energy is also coupled with associativity because all ways are
typically accessed in parallel to reduce latency.

D. Related Work

We discuss prior work relating to overcoming VIPT con-
straints by relying on the OS (page coloring and huge pages),
relying on additional hardware translation mechanisms (TLB
slice), prediction techniques to reduce the overheads of
highly-associative caches (way prediction) and hide access
latency (line prediction), hardware de-aliasing mechanisms to
eliminate synonyms within a cache, and hybrid VIVT/VIPT
caches.
Improving VIPT Caching with Page Coloring. With page
coloring, the software memory allocator applies memory
placement considerations, grouping and separating pages to
manage locality. The popular example usage of coloring is
placement to avoid cache set conflicts for pages that are
commonly in the same working set. This mechanism is imple-
mented in some operating systems, including FreeBSD [12]
and NetBSD [13].

This idea can be applied to constrain virtual to physical
mapping such that a VIPT cache can rely on more bits for
indexing. For example, all even frames may be mapped to
the bottom cache indices while odd frames are mapped to
the top indices. However, hardware must rely on software
and software must be aware of specific microarchitectural
details. This is challenging for correctness and is difficult to
maintain. One example of a commercial product that uses this
restriction for a VIPT cache is the ARMv6 architecture [14].

In contrast, SIPT only uses address locality as a hint
for improving performance and hardware always guarantees
correctness.
Hugepages. Hugepages [15], [16], [17] are an architectural
and OS mechanism for coarse-grained (e.g., 2MiB) pages.
They increase TLB reach to reduce TLB misses and improve
performance. With a 2MiB page, 21 bits are unchanged by
translation, relaxing the constraints on a VIPT L1. However,
for backward compatibility and performance reasons, hard-
ware cannot rely on all pages being huge [17], [15], [18].
TLB Slice. The TLB slice [19] is an alternative translation
lookaside buffer design used in MIPS R6000 microproces-
sors. The TLB slice is smaller and faster than a conventional
TLB because it only holds a few (4 − 8) physical page
number bits to index an uncommon PIVT (Physicals indexed,
virtually tagged) cache. However, the TLB slice simply uses

the physical bits of the last access for prediction. To achieve
reasonable performance, a primary VIVT cache is required
for shielding the TLB slice from most loads and stores.
Cache Way Prediction and Line Prediction. Way predic-
tion [20] has been proposed as a technique to lower the
overhead of accessing highly-associative caches. Instead of
accessing all ways in parallel (typical for L1), a single way
is predicted to hold the cache line being accessed. A correct
prediction saves the energy of accessing all ways in parallel.
If the prediction is incorrect, extra steps are required to
activate all ways, so average latency for an L1 access may
increase. A similar idea is to predict which bank of a multi-
banked cache contains the accessed data [21].

Like way and bank prediction, SIPT attempts to predict
where in the cache an address is stored. However, the mo-
tivation, insight, and actual mechanisms are quite different.
SIPT can perhaps be thought of as predicting a set and the
motivation is relaxing the constraints on VIPT cache design.

In fact, way prediction and SIPT are complementary. Low-
ering associativity with SIPT can improve way-prediction
accuracy. We discuss combining way prediction and SIPT in
Section VII and analyze the impact of one on the other.

The Alpha 21264 implemented a line predictor for the I-
cache [22]. It learns from branch history and predicts which
line contains the next instruction block. The processor fetches
and validates the predicted line before the branch/jump tar-
get is resolved to hide access latency and jump overhead.
However, the absence of similar chaining makes prediction
in D-cache difficult. Instead of prefetching, SIPT improves
the cache itself (lower latency, larger capacity, or both).
De-aliasing synonyms within cache. Some processors use
a design where the cache is indexed with a virtual address
(beyond page boundaries), but the tag is still physical. This
breaks the set-size constraint but requires additional mecha-
nisms to de-alias synonyms. The AMD Opteron [23] checks
all possible locations of aliases on every miss and evicts any
aliases before a fill. These accesses can add significant la-
tency, energy, and complexity, which SIPT avoids. The MIPS
R10000 similarly uses bits beyond the page size (bits 13:12)
to index its L1 cache, and also ensures no synonyms exist
before the cache is filled. Instead of checking all possible
alias locations, the R10000 adds the two VA bits to the L2
cache tag. The L2 controller uses these to evict aliases when
necessary.

SIPT differs significantly from these prior industry solu-
tions. SIPT does not rely on any VIVT addressing, not even
limited to a few bits. Instead, SIPT allows synonyms to be
cached and ensures correctness by always checking the full
tag on a lookup. Performance is improved by effectively
speculating when accesses are likely to succeed regardless
of possible changes between VA and PA and by successfully
predicting such changes.
Hybrid VIVT and VIPT Caches. Opportunistic virtual
caching (OVC) [9] dynamically adapts the L1 cache between
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VIVT and VIPT. Virtual addressing is used to reduce access
energy with lower-associativity sets. When used in physical-
addressing mode, the cache increases associativity to fulfill
VIPT constraints. OVC relies on software to identify memory
regions that have no synonyms (e.g., pages private to one
process). The region must be continuously monitored to
ensure no synonyms are created and that permissions remain
valid. Homonyms still need to be handled by flushing or by
extending the tag with an ASID.

SIPT is similar in its attempt to better trade off the benefits
of VIPT and VIVT. However, SIPT is a pure microarchitec-
tural technique with no address tracking and no OS interac-
tions. Like the VIVT mode of OVC, SIPT relaxes constraints
for VIPT caches, but SIPT does so for all accesses.

III. MOTIVATION

The motivation for SIPT is that VIPT constraints lead
to suboptimal L1 cache parameters (latency, capacity, and
associativity). We therefore simulate the effects of different
cache parameters and analyze their impact on the SPEC CPU
applications. We use Intel’s Haswell L1 parameters: 32KiB
capacity, 8-way set associative, and 4-cycle latency.

We motivate the need for SIPT and demonstrate its ef-
fectiveness in the context of data caches, leaving instruction
caches for future work. We believe SIPT will at least as well
for instruction caches as instruction working sets are typically
small compared to data (suggested by the high I-TLB hit rates
observed in prior work [24], [25]).

A. Impact of Capacity and Associativity on Latency

Methodology. We explore the capacity and associativity de-
sign space with Cacti 6.5 [26]. We simulate L1 caches with
the configurations and parameters summarized in Tab. I. We
present the latency of the different configurations normalized
to the latency of 32KiB 8-way baseline (Fig. 1). For each
capacity and associativity, we sweep the number of read ports
and the number of banks and show the range and mean of
relative latencies for each configuration.

We also use CACTI when we later evaluate the energy
of the cache hierarchy. We estimate total cache hierarchy
energy by considering both active and passive power (over
the duration of a simulation). For the L1 caches, we use high
performance transistors and configure the cache for concur-
rent tag and data array access across all ways. For the L2
and L3 caches, we use low static power transistors and access
the tag and data arrays sequentially. We consider the lower
level caches as well because modifying the L1 configuration
affects lower-level cache accesses. When averaging energy or
relative energy metrics, we use the arithmetic mean.
Analysis. While both capacity and associativity affect la-
tency, associativity has the greater impact. This is especially
the case when increasing associativity beyond 4 ways. For
example, we can reduce the latency of a 32KiB cache to 2
cycles by reducing its associativity to 2 ways, and that of

Technology 32 nm
Cache line size 64 Bytes

Capacity 16 KiB, 32 KiB, 64 KiB, 128 KiB
Associativity 2-way, 4-way, 8-way, 16-way, 32-way
Access mode Parallel data and tag access

Ports 1 or 2 for read, 1 for write
Banks 1, 2 or 4 banks

Tab. I: L1 cache configurations.
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Fig. 1: L1 latency (range and mean) relative to $32KiB 8-way
baseline.

a 64KiB cache to 3 cycles by reducing its associativity to
4 ways. However, these configurations are not possible with
VIPT and 4KiB pages because they need more index bits than
the 12 offset bits of the page.

Configurations that are not feasible with VIPT are shaded
light blue while those that are feasible are shaded dark blue.
Unfortunately, the most desirable configurations are infeasi-
ble. While CACTI is a rough model, we expect generally the
same trends (though different values) for real designs.

B. Impact of L1 Configuration on Performance

Methodology. Our analysis of L1 configurations shows that
there are significant tradeoffs in capacity, associativity, and
latency. The question we answer now is what impact these
tradeoffs have on application performance. We simulate ap-
plication performance with the cycle-based Macsim simu-
lator [27] coupled with DRAMSim2 [28]. Macsim’s trace
generator is modified to capture virtual address, physical
address, and page flags for every memory access. We use
Linux’s pagemap and kpageflags [29] interfaces to col-
lect physical page number and page-flag information (I.e.,
whether allocated as a Hugepage).

We run entire the SPEC CPU 2006 [30] suite with refer-
ence inputs, except for xalancbmk, namd, and dealII because
of simulation issues (though we do run xalancbmk from
SPEC 2017). We also include all SPEC CPU INT 2017 [31]
applications, except for gcc, omnetpp, and specrand is, In
addition to the large-memory footprint applications of SPEC
INT 2017 (>8GiB for many), we also evaluate large-memory
big-data applications: graph500 (graph processing) [32] and
DBx1000 with the ycsb workload (database) [33], each con-
figured to use more than 4GiB of memory. For each applica-
tion we collect 500 million instructions at a SimPoint [34].
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Fig. 2: IPC with various L1 cache configurations for an OOO core, normalized to the baseline L1.
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Fig. 3: IPC with various L1 cache configurations for an in-order core, normalized to the baseline L1.

While different applications exhibit different characteristics,
both big-data applications and the large-footprint SPEC 2017
applications are not outliers w.r.t. SPEC CPU 2016 appli-
cations. Because of space constraints, we show individual
results from a representative subset of applications, however,
we include all results in any average number.

We simulate both an OOO core with a 3-level cache
hierarchy and an in-order core with a 2-level cache hierarchy
with the configuration parameters summarized in Tab. II.
Based on the results shown in Fig. 1, we select four desirable
configurations (Tab. II). Note that these configurations are not
feasible due to the VIPT cache-indexing constrains. However,
we model them as ideal caches, assuming the index bits
are always correct. In addition, we add a 16KiB cache that
trade capacity for lower associativity (4-way) and latency (2-
cycle). We report IPC normalized to the baseline L1 and use
harmonic means for speedup averages.
Analysis. Fig. 2 shows the sensitivity of performance to L1
cache configuration on an OOO core with a 3-level cache
hierarchy. Latency has a significant impact and the configura-
tion with shortest latency (32KiB 2-way with 2-cycle latency)
performs best, except for xalancbmk 17, which exhibits mi-
nor benefits with a 64Kib 4-way L1. Overall, the low-latency
configuration can improve performance by 8.2% on average.
A 16KiB, 4-way latency cache, which also has a 2-cycle
latency and meets VIPT constraints, outperform the baseline
in some application (e.g., cactusADM) but overall performs
worse than baseline (1.5% slower on average).

However, with an in-order core (Fig. 3), the configuration
with balanced latency and capacity (64KiB 4-way with 3-
cycle latency) achieves the best performance improvement,

In-Order processor with Out-of-Order processor with
2-level cache hierarchy 3-level cache hierarchy

Core 2-wide, in-order 6-wide issue, OOO
3.0 Ghz 192-ROB, 3.0 GHz

TLB L1: 64-entry, 4KiB pages; 32-entry, 2 MiB pages, 2-cycle
L2: 1024-entry unified, 7-cycle

L1

Configuration Latency Energy per access Static power
32KiB 8-way VIPT 4-cycle 0.38 nJ 46 mW
32KiB 2-way SIPT 2-cycle 0.1 nJ 24 mW
32KiB 4-way SIPT 3-cycle 0.185 nJ 30 mW
64KiB 4-way SIPT 3-cycle 0.27 nJ 51 mW

128KiB 4-way SIPT 4-cycle 0.29 nJ 69 mW
Slow access in SIPT starts right after TLB access

L2
256 KiB, 8-way, 12-cycle,

None private, 0.13 nJ per access,
102 mW static power

LLC
1 MiB, 16-way, 20-cycle, 2 MiB 16-way, 25-cycle,
shared, 0.29 nJ per access, shared, 0.35 nJ per access,

532 mW static power 578 mW static power
DRAM 8-bank, 4-channel, DDR3, 16 GiB total

Note LLC size increase proportional to
core count for multi-core evaluation.

Tab. II: Simulated system configurations

13% on average. In some applications such as calculix and
exchange2 17, latency still shows noticeable impact, but
most applications benefit more from larger capacity. This
could be due to the absence of L2 caches and because an
in-order pipeline is less capable of hiding cache misses. As
expected, the performance degradation with a 16KiB 4-way
cache is much larger (11.3% worse than baseline on average).
While the performance improvements are significant, these
cache configurations are not feasible because of the VIPT
indexing constrains.
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IV. SPECULATIVELY INDEXED PHYSICALLY TAGGED
CACHES

The simplest variant of SIPT always speculatively accesses
the cache assuming that all necessary index bits will remain
the same after translation, including those beyond the page
granularity. SIPT, Like VIPT, performs address translation
in parallel to accessing the cache arrays (Step 1 in Fig. 4).
For performance, all ways are accessed together so that
overall latency can be reduced. After address translation, all
cache tags read in Step 1 are compared with the physical
address to select the correct cache line. At the same time,
SIPT compares those index bits that were speculated with
their values after address translation (Step 2 in Fig. 4). If
all speculated bits indeed are the same the “fast” access
completes (Step 3). If any of the speculated bits do not match,
the cache request must be repeated with the correct index
bits from the PA (Step 4), slowing down the access. Fast
accesses are as fast as a VIPT cache, or faster if the relaxed
design constraints enable a lower-latency configuration. A
slow access, on the other hand, only issues after address
translation like a PIPT cache. In addition every slow access
wastes energy and contends for the L1 cache port. Note
that there are no coherence implications because only the
L1 cache is accessed speculatively and no action (other than
another access) is taken on a misprediction (tag mismatch).

Core

L1	Cache

TLB

Index	
unchanged

Core

L1	Cache

Fast access Slow accessTLB

Index	
changed1 1

1 1

2 2
3 3

4
Wrong 

speculation

Fig. 4: SIPT cache access when speculated index is unchanged
(left) and changed (right).

A. Speculation Accuracy

Fig. 5 shows the percentage of memory accesses that are
speculated correctly, depending on how many speculative in-
dex bits are required. Each component of a stacked bar in the
figure represents fast accesses for the number of bits required
and all other accesses are slow. The most strict scenario,
hugepage includes only those accesses from huge pages (for
which 21 address bits are guaranteed not to change).1 While
some applications (e.g., libquantum and GemsFDTD) have
most accesses targeting transparently mapped huge pages,
many others have the vast majority of accesses to normal

1We run Linux 3.12 with transparent hugepage management turned on
and collect our traces on a system that is regularly used and which had an
uptime of weeks. We later discuss a system which is artificially extremely
fragmented.
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Fig. 5: Fraction of correct speculations vs. the number of index
bits that are speculated as unchanged.

4KiB pages. Those applications with a low correct specula-
tion rate are likely to suffer performance degradation with
SIPT compared to the VIPT baseline.

Reasonable L1 configurations, however, do not use 2MiB
ways (221) and only require 1−3 index bits beyond the page
granularity. In these scenarios, the correct prediction rate is
much higher overall. If only a single speculative index bit is
needed (e.g., for a 32KiB 4-way L1), all but seven applica-
tions (deepsjeng 17, CactusADM, calculix, graph500, ycsb,
xalancbmk 17, and gromacs), have majority fast accesses.

B. Naive SIPT Performance

To evaluate the performance of this naive version of SIPT,
which always speculates, we evaluate different SIPT con-
figurations with an OOO core, and compare to the baseline
L1. For brevity we only show the results for the 32KiB
2-way SIPT configuration (with 2 extra index bits), which
performs the best as an ideal cache in an OOO processor
(Section III). Fig. 6 summarizes the results and shows the
IPC normalized to the baseline, and compares with the ideal
cache. The figure also shows relative extra accesses due to
misspeculation

(
accessesSIPT

accessesbaseline
−1

)
.

SIPT caches with lower associativity and shorter latency
achieve IPC improvement in many applications; e.g., h264ref,
and perlbench, exhibit 7.3% and 8.9% IPC speedup. How-
ever, because speculative bits are used, naive SIPT suffers a
high misspeculations rate. For example, in some applications,
e.g., calculix and gromacs, less than 5% speculations succeed
with 2 extra index bits. When misspeculations happen, SIPT
generates slow accesses.

Similarly in Fig. 7, we show the relative energy
(

ESIPT
Ebaseline

)
of the whole cache hierarchy and also compare with the
ideal cache. Some applications such as libquantum and
GemsFDTD exhibit energy savings close to ideal. However,
many other applications exhibit significant gaps between
naive SIPT and ideal. On average, naive SIPT reduces total
cache energy to 74.4%, which is 8.5% worse than ideal.
We also show the relative dynamic energy

(
Edynamic

Ebaseline total

)
for both SIPT and baseline. SIPT reduces dynamic energy

6
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Fig. 6: IPC and additional L1 accesses with a naive SIPT
32KiB/2-way/2-cycle cache for an OOO core normalized to the
baseline L1.
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Fig. 7: Cache hierarchy energy of naive SIPT 32KiB/2-way/2-
cycle for an OOO core normalized to baseline.

significantly.
Overall, due to a high misspeculation rate, the naive SIPT

is far from ideal. We now aim to both reduce extra L1
accesses and increase the number of fast accesses.

V. MISSPECULATION PREDICTION

While the naive SIPT design is simple, speedup and energy
savings are hampered by misspeculation overheads. In this
section we evaluate a light-weight predictor that determines
whether a fast access is likely to succeed and speculation
should proceed, or whether cache access should wait until
after translation. Our goal is to make a speculate/no-speculate
binary decision early in the pipeline to hide its latency.
We present the evaluation of a small PC-based Perceptron
predictor [35]. We experimented with simpler counter-based
predictors, but their accuracy is inferior.

We base our Perceptron predictor design (Fig. 8) directly
on the smallest global-history configuration proposed by
Jimenez and Lin [35]. We add a global history register
x1x2...xh that tracks the last h speculation outcomes as ones
and zeros (fast access success or extra cache access failure).
The predictor itself has 64 entries each being a perceptron
of h+ 1 weights w0w1...wh. We use the memory operation
program counter (PC) to index the 64-entry predictor table.
Because we only use the PC, the prediction can be overlapped
with other pipeline stages.

Perceptron calculates a prediction (y) by performing a dot
product of the history and the weights of a specific entry in
the table plus a learned bias: y = w0 + [x1x2...xh] · [w1...wh].
If y is positive, we predict the index will not change and will
continue with a fast access using the speculative index. If y
is negative we bypass speculation and wait for the physical
address before accessing the cache. Other than the smaller
number of entries, all details, training algorithm, and other
parameters precisely follow those of Jimenez and Lin [35],
and we do not describe them in this paper.

We estimate the overhead of this perceptron predictor
at just 624B of storage and a small amount of logic (6b
weights, 13 weights per perceptron, 64 perceptrons). We
model perceptrons as RAM with Cacti [36] (Tab. I). The
dynamic energy for reading a perceptron is only 0.34% of
a baseline L1 cache access. The static power is only 0.0007%
of the baseline L1 cache. Song et al. [37] suggest a 32-
bit integer addition consumes 1

10 the energy of reading 32
bits from a register file. Since x1x2...xh are ones and zeros,
y = w0 +[x1x2...xh] · [w1...wh] is essentially adding h+1 (13
in our implementation) 6-bit integers and therefore estimated
to consume less energy than reading the perceptron. Training
consumes similar energy. This predictor introduces no extra
latency and only negligible area and energy overheads.

PC

Table

of

perceptrons

…
...

Selected	perceptron

Global	history

𝑥"𝑥# …… 𝑥%
Match:        1
Not match: 0

>=0: Speculate
<0:   Bypass

Outcome

Prediction

Training

𝑤'𝑤"𝑤# ……𝑤%

Fig. 8: Perceptron-based predictor.

We evaluate the predictor by considering 4 possible out-
comes. If the speculated bits are unchanged by translation
and the predictor decides to speculate, we call it correct
speculation. If the speculated bits are changed by translation
and the predictor decides to bypass, we call it correct bypass.
If the speculated bits are unchanged by translation but the
predictor chooses bypass, an opportunity for fast access was
squandered, we call this opportunity loss. Finally, if the
speculated bits are changed by translation and the predictor
chooses to speculate, an extra access is generated.

This simple perceptron predictor achieves more than 90%
accuracy in all applications; in fact most applications have far
fewer than 5% extra L1 accesses and negligible opportunity
loss (Fig. 9). We also evaluated the sensitivity of the predictor
parameters such as increasing the number of perceptrons and
increasing the history length. Our experiments did not show
strong sensitivity to these parameters, most likely because
the prediction rate is already high. We do not warm up
the predictor and the results include all mispredictions. We
also evaluated various counter-based predictors, but their
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Fig. 9: Breakdown into four possible prediction outcomes; each group of 3 bars represents 1, 2, and 3 speculated index bits (left to
right, respectively).

average accuracy is only ∼ 85% and not consistent across
applications. We omit the results for brevity and because the
perceptron already has low overhead.

While the predictor practically eliminates extra accesses
due to SIPT and thus saves significant energy, it fails to
reduce the extra latency from slow accesses and hence cannot
improve performance.

VI. PARTIAL INDEX PREDICTION

Intuitively, if the speculation bypass predictor is so ac-
curate at predicting whether speculative indexing can pro-
ceed, perhaps it can be extended to predict the actual post-
translation index value. Consider an SIPT design that requires
a single speculative index bit. In this case, if the bypass
predictor predicts to bypass, it is in effect indicating that the
speculative bit is most likely not remaining the same. There-
fore, flipping the bit in these cases will lead to the correct
post-translation index. Because the prediction accuracy is so
high, few extra accesses are added by this technique.

When there are multiple speculative tag bits, we need to
predict their exact values, which is generally hard because
with 3 speculative bits, it is likely that they may take any
of 8 possible values. This requires a complex predictor or
resulting many misspeculations. However, in the context of
SIPT, predicting values is doable because of spatial locality
in memory address mapping. Prior work [38], [39] establishes
that memory addresses are usually mapped in coarse-grained
blocks even without considering huge pages. And Pham et
al. [40], [41] suggests the spatial contiguity between the
virtual page numbers and physical page numbers.

Linux manages free pages using the buddy algorithm.
Free pages are grouped into 1,2,4, . . .1024 contiguous page
frames and page groups of each size are then stored in linked
lists. This scheme keeps the overhead of tracking free pages
low.

Consider the scenario in which a user program allocates
a large number of pages. This is common behavior when
programs set up data structures during their initialization. The
number of pages at fine-grained groups is unlikely to satisfy
such requests. As a result, the buddy algorithm has to break

large groups to satisfy bursts of memory allocation requests,
which can lead to a significant amount of contiguous physical
pages being mapped to a contiguous virtual address space.
Other allocators, such as slab and eager paging [38], maintain
contiguity explicitly. OS features such as Hugepages and
page coloring also increase the occurrence of contiguously
mapped memory blocks; page coloring tries to maintain the
same low-order address bits between the VA and PA to
maximize usage of the LLC.

VA

PA

A

A

B

B

delta delta

Fig. 10: Deltas between virtual and physical addresses are con-
stant within a single large block.

The fact that large contiguous blocks exist aids with
predicting speculative index bits. For all addresses in one
contiguous range (A and B for example in Fig. 10), the
delta between a virtual address and its corresponding physical
address is the same. Software may even optimize for SIPT,
though prediction rates are already high.

PC Table

of

deltas

…
...

Selected	delta

Virtual	address Index Speculated

Add delta to speculated index   

Fig. 11: The index delta buffer predicts the delta between the
speculative virtual address bits and corresponding physical ad-
dress bits.

The prediction benefits from, but does not solely rely on,
a coarse-grained memory mapping. Even when memory is
highly fragmented and lacks multi-page contiguity, or when
applications make only small allocations, deltas within each

8
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Fig. 12: Prediction accuracy of the combined predictor when attempting to predict 1, 2, and 3 speculative index bits (the left, middle,
and right bar within each group, respectively).

page are fixed. Thus only the first access to a page will
mispredict; there are typically many L1 accesses per page.

Instead of predicting a value, we predict the VA to PA delta,
which is the same for the entire range. Specifically for SIPT,
only the delta of the speculative partial tag bits is required. We
propose the index delta buffer (IDB) to predict these narrow
delta values. Similar to a branch target buffer (BTB), the IDB
is a PC-indexed table with each entry storing a (speculative)
index delta.

In addition to updating the prediction history, we also
update the expected deltas, which remain stable as long as
the same regions are accessed.2 To compute the speculative
index, we add the delta to the virtual address and truncate if
it overflows. Fig. 11 shows the design of IDB. For simplicity,
we keep the same number of IDB entries as the perceptron-
based bypass predictor. The storage overhead of IDB is very
small because each entry is the same size as the (already
small) number of speculative bits. The IDB is also accessed
during fetch or decode and is off the critical path. The pre-
dicted 3-bit delta is added to the VA after address generation.
The latency of the 3-bit add, which does not propagate the
carry, should not increase cycle latency.

A. Combined Speculation Bypass and Index-Bit Value Pre-
diction

Our overall index-bit predictor proceeds in two stages.
First, the perceptron predictor is queried. If perceptron pre-
dicts to speculate, the speculative index is used immediately.
If perceptron predicts to bypass speculation, the IDB is
queried and its predicted index bit values are used to access
the cache with a speculative index. Like naive SIPT, this com-
bined predictor always accesses the L1 before translation. As
long as IDB predicts correctly, slow accesses are converted
to fast ones. However, because we more aggressively access
the L1, more extra accesses are likely. When there is only one
speculative index bit, we do not use the IDB and follow the
intuitive reversed prediction technique explained earlier.

2Deltas may also change when memory is remapped explicitly with
munmap, by copy-on-write, or on major page faults. We find that such events
are very infrequent and omit the analysis for brevity. Our evaluation includes
configurations that are far-worse for IDB.

Fig. 12 presents the accuracy and effectiveness of the
combined speculation bypass and IDB predictor. We consider
three possible outcomes. The first is are correctly-speculated
fast access by the bypass predictor (in which case the IDB
is not accessed). The second is the fraction of accesses that
were predicted to bypass speculation and for which the IDB
predicted the correct speculative index bit values (IDB hits);
these would be slow accesses without the IDB that are fast
accesses with it. All remaining accesses are slow and generate
extra L1 accesses. Note that we also label as IDB hits those
fast accesses that use the reversed bypass prediction. As with
the perceptron bypass predictor, IDB consumes little area
and power. We estimate the total overhead of the combined
predictor at < 2% of L1 cache area and energy.

When only a single bit value needs to be predicted, over
90% (and usually close to 100%) of all accesses are fast
accesses. This is in contrast to the speculation bypass pre-
dictor alone, which leaves up to 80% of accesses waiting
for address translation to complete; all seven applications
with low speculation rate, now have majority fast accesses
(e.g., CactusADM and gromacs both go from under 20%
fast accesses to more than 95% fast accesses). With 2 and
3 speculative index bits, the combined predictor successfully
convert many slow accesses into fast ones. For example, gcc,
calculix and xz 17 exhibited nearly no fast accesses with the
bypass predictor because of poor locality between virtual and
physical address. With the IDB, however, more than 70% of
accesses are fast.

For brevity we discuss only the performance of the OOO
configurations in detail. In-order performance is presented as
a sensitivity study in Section VII. Fig. 13 shows that SIPT
with IDB approaches the performance of the ideal cache.
The IDB enables many more fast accesses and the slow L1
accesses do not significantly hamper performance. Overall,
the 32KiB 2-way SIPT cache (with 2 speculative index bits)
achieves an average (harmonic mean) of 5.9% IPC speedup,
only 2.3% away from ideal. In some applications (e.g.,
h264ref, cactusADM, calculix, leela 17, exchange2 17, and
gromacs), SIPT shows more than 10% performance improve-
ment and never underperforms baseline.
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Fig. 13: IPC and additional L1 accesses with a 32KiB/2-way/2-
cycle SIPT cache with IDB for an OOO core normalized to the
baseline L1.

Fig. 14 tells a similar story for energy that the SIPT with
combined predictor approaches the efficiency of an ideal
cache. The energy numbers are a bit further from ideal (2.4%)
than speedup because of the extra L1 accesses generated by
the aggressive index-bit value speculation.
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Fig. 14: Cache hierarchy energy with a 32KiB/2-way/2-cycle
SIPT+IDB for an OOO core normalized baseline.

Again, even we only show the result for the SIPT config-
uration that performs the best in Section III, the trend that
SIPT with combined speculation bypass and IDB prediction
yield speedup and energy saving very close to the ideal cache
configurations exist in all SIPT configurations.

B. Multicore Evaluation

We focus on single-core evaluation because the L1 is
so tightly integrated with the core. We also evaluate SIPT
in a multicore system. We simulate a quad-core processor
and also quadruple the capacity of the last-level cache. We
construct 11 multi-programmed workloads by mixing appli-
cations used in the single-core evaluation; every application
is used at least once and the workloads are listed in Tab. III.
We recycle traces until the last core completes its initial trace
to maintain a consistent level of resource contention. We
report sum-of-IPC speedup, which is a simple metric that
captures overall throughput improvement (speedup is relative
to the multicore with the baseline cache, not a single-threaded
baseline).

Mix0 h264ref, hmmer, perlbench, povray
Mix1 mcf, gcc, bwaves, cactusADM
Mix2 gobmk, calculix, GemsFDTD, gromacs
Mix3 astar, libquantum, lbm, zeusmp
Mix4 mcf, perlbench, leslie3d, milc
Mix5 h264ref, cactusADM, calculix, tonto
Mix6 gcc, libquantum, gamess, povray
Mix7 sjeng, omnetpp, bzip2, soplex
Mix8 graph500, ycsb, mcf, povray
Mix9 mcf 17, xalancbmk 17, x264 17, deepsjeng 17
Mix10 leela 17, exchange2 17, xz 17, xalancbmk 17

Tab. III: Multi-programmed workloads.
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Fig. 15: IPC, extra L1 accesses, and cache hierarchy energy
of SIPT with IDB for an OOO quad core; IPC and energy
normalized to the baseline L1 cache.

Fig. 15 examine SIPT for an OOO quad core. The most
obvious difference between the two sets of results is that
using application mixes decreases the variability in SIPT
impact between different workloads. This is expected. Also
as expected, using a multicore does not change any of the
conclusions about the benefits of SIPT for private L1 caches.

The 32KiB 2-way cache performs the best of all configura-
tions. Overall, the average IPC improvement is 8.1%, slightly
better than we observed with a single core. The reason for
the increased speedup is larger pressure on the LLC and
main memory, such that L1 cache performance has a greater
role. In fact, individual application speedup on each core is
nearly-identical to the single-core experiments. We expect
this because there is no sharing and no contention in this
multiprogrammed environment.

SIPT is also able to reduce the total cache energy, but to a
smaller degree than with a single core. We attribute this to the
longer overall run times resulting from interference at other
levels of the memory hierarchy; the static energy component
is relatively larger in the multicore so the impact of SIPT is
lessened.

VII. FURTHER DISCUSSION

A. Way Prediction

Way prediction [20] saves access energy compared to set
associative caches where all cachelines in the same set are
fetched in parallel. By predicting the data location within the
cache set, only the predicted cache line is fetched. If the pre-
diction is correct, no additional access latency is introduced.
When the prediction is wrong, a second access is required to
search the remaining cachelines in the set.
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Fig. 16: IPC normalized to the baseline L1 and way prediction accuracy. Each group from left to right: baseline L1 with way
prediction, 32KiB/2-way/2-cycle SIPT with IDB, and 32KiB/2-way/2-cycle SIPT with both IDB and way prediction.
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Fig. 17: Cache hierarchy energy normalized to the baseline L1. Each group from left to right: baseline L1 with way prediction,
32KiB/2-way/2-cycle SIPT with IDB, and 32KiB/2-way/2-cycle SIPT with both IDB way prediction.

We evaluate the simple way prediction mechanism de-
scribed in [20] that the MRU way in a set is always predicted.
A small amount of metadata (3 bit per set for an 8-way
set associative cache) is accessed before cache is accessed.
Although, fancy predictors may increase the accuracy of way
prediction, we find that the accuracy of this simple predictor
is already high and robust across applications. Unlike SIPT,
way prediction requires the virtual address, thus cannot be
fully overlapped with early pipeline stages. Employing more
complex metadata may introducing extra latency to cache
accesses. We stay with this simple prediction mechanism and
optimistically modeled no extra latency for accessing way
prediction metadata.

As mentioned in Section II, way prediction and SIPT are
complementary. We apply way prediction to both the baseline
and our 32KiB/2-way/2-cycle SIPT cache with combined
speculation bypass and IDB prediction. The results are shown
in Fig. 16. And Fig. 17 shows the normalized cache energy.
In addition to being ideally indexed, ideal caches also assume
way prediction always accesses the correct way. We model
the energy of way prediction by reducing the relative dynamic
energy according proportionally to the associativity (e.g.,
one-eighths of dynamic energy consumed in the baseline 8-
way cache on a way prediction hit).

When applied to the baseline cache, way prediction
achieves 89% accuracy and reduces cache energy by 24% on
average. However, the remaining misses still reduce perfor-

mance by 2% overall. When applied on top of SIPT, because
of reduced associativity (from 8 in baseline to 2 in SIPT),
the way prediction accuracy increases to 97.3% on average,
and there is only a 0.3% performance drop compared to
SIPT alone. At the same time, it saves 2.2% additional cache
energy (compare to SIPT alone), superior than ideal way
prediction. By reducing associativity to 2, SIPT alone already
saves significant cache energy, and there is only limited space
for further reduction. The saving from applying way predic-
tion on top of SIPT is very stable among all applications
because of the robust and high accuracy.

B. Predictability of Partial Index Bits

The efficiency of SIPT relies on the accuracy of partial
index-bit prediction. We evaluate SIPT with a regularly used
machine that has an uptime of weeks. However, this is not
necessarily the worst condition an application faces. We now
discuss a few sensitivity studies with more severe operating
conditions, including running applications with artificially
highly fragmented physical memory and with Linux’s trans-
parent huge page mechanism turned off (thus only fine-
grained 4KiB pages). We also include the impact of these
parameters on the performance of the in-order machine first
presented in Section III.
Fragmented Memory. On a long-running system with a
large number of co-running applications, the physical mem-
ory may be fragmented. When running applications on frag-
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mented physical memory, the lack of physical memory con-
tiguity may decrease the predictability of partial index bits.
We use a tool from Kwon et al. [42] to fragment memory
and quantify fragmentation using the unusable free space
index [43], a value between 0 (unfragmented) and 1 (highly
fragmented). Importantly, this index does not represent lack
of memory, but rather an inability to satisfy large contiguous

requests. It can be calculated with Fu( j) =
TotalFree−∑

i=n
i= j 2iki

TotalFree
where TotalFree is the size of the free space, 2n is the largest
allocation that can be satisfied, j is the order of the desired
allocation size (2MiB for THP), and ki is the number of free
page blocks of size 2i. We maintain an unusable free space
index > 0.95; an extreme level of fragmentation at nearly all
times and not representative of typical operation. Again, we
never run out of physical memory in any experiment.

To evaluate SIPT under highly fragmented physical mem-
ory, we repeat the same simulations we conducted before with
traces collected under this extreme condition.
4KiB pages. Most Linux distributions enable transparent
huge pages (THP) by default. We are aware that under certain
circumstances, THP hurts performance [44] and should be
disabled but believe this is not the general case. However,
an interesting question is what impact disabling THP has
on SIPT prediction accuracy and performance. Similarly, we
repeat the same simulations with THP disabled, which forces
all pages to 4KiB.
Removing > 4KiB contiguity. A more challenging (but
unrealistic) condition is to force zero contiguity beyond 4KiB
pages such that all 4KiB pages are mapped with different
deltas. This essentially eliminates all benefits from contigu-
ous memory mapping, thus IDB only works for references
within the exact same page. We force this in simulation by
tracking the page number of the last access for each IDB
entry. We then apply delta prediction only if the same page
is accessed and choose a random delta if a different page is
accessed; this mimics zero contiguity without modifying the
OS. Note that this scenario presents locality and randomness
that exceed that of any reasonable system and dynamic VA to
PA remappings.

Fig. 18 shows the average IPC, cache energy normalized to
the baseline, and the prediction accuracy (the percentage of
correct speculation and IDB hit) for all four SIPT configura-
tions on both OOO and in-order cores. As expected, running
with fragmented physical memory or disabling THP does
degrade the behavior of SIPT. However, the degradation is not
significant. For instance, with a 32KiB 2-way SIPT cache (2-
bit speculation) on OOO core, the prediction accuracy drops
from 86.7% to 84% when running with fragmented physical
memory, 83.1% when THP is disabled, and 73% when no
> 4KiB contiguity. The IPC improvement also drops from
5.9% to 5.3%, 4.8% and 3.8%, and cache energy increases
from 67.8% to 68.3%, 70% and 71.2%. A similar trend can
be observed in all SIPT configurations on both OOO and

in-order cores. As mentioned in Section VI, our prediction
mechanisms benefits from contiguous memory mapping but
does not solely rely on it. Using extremely fragmented mem-
ory or disabling THP has limited impact.
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Fig. 18: IPC, cache hierarchy energy, and prediction accuracy
on OOO and in-order core with various operating conditions;
IPC and energy normalized to the baseline L1.

C. Implications for Instruction Schedulers

Modern processors commonly support speculative
scheduling to enable back-to-back execution of dependent
instructions [45], [46]. The speculation relies on deterministic
instruction latencies with support for rare instruction replay
when latency varies for certain instructions. Load instruction
latency is variable because of cache misses and way
prediction and SIPT introduce another source of variability.
As suggested in [46], an ideal selective replay mechanism
(replay only necessary instructions) is not feasible for wide
issue OOO processors and replay mechanisms require
trading off design complexity (HW resources) and accuracy
(performance impact). SIPT is very accurate and can use
existing speculative-scheduling approaches to recover from
its rare mispredictions, which are a fraction of cache misses
that are already addressed by the scheduler.

Impact on the scheduler can be further reduced because
SIPT has a built-in confidence estimator. Similarly to prior
designs, expensive selective-replay resources can be reserved
for more challenging loads [45], [47], [46]. Loads that SIPT
predicts their speculated bits to be unchanged, an alternative
simpler replay mechanism with larger penalty can be used
instead of selective replay. In many applications (e.g. libquan-
tum, zeusmp) nearly all loads do not require selective replay.

VIII. CONCLUSION

We show that popular VIPT L1 cache indexing constrains
the cache design space, leading to a suboptimal L1 data cache
configuration. We argue that it is undesirable to adopt VIVT
caches, with their added hardware, design, and verification
complexity or expose hardware tradeoffs to software. Instead,
we develop a novel pure-microarchitecture mechanism that
relaxes design constraints for a physically-addressed L1.

12



Speculatively Indexed Physically Tagged cache indexing
allows arbitrary capacity and associativity. When the number
of index bits exceeds virtual page granularity, SIPT predicts
values for those speculative index bits. We discuss three ways
in which those index bits can be predicted and conclude that a
simple predictor, inspired by the perceptron and BTB branch
direction and target predictors, achieves very high prediction
accuracy at very low cost; less than 2% of L1 area and energy
and with a short latency that is hidden by the pipeline.

We demonstrate, through extensive experimentation, that
SIPT improves performance and saves energy. On average,
SIPT improves performance (IPC speedup) by 13.4% and
8.1% on in-order and out-of-order quad-core processors, re-
spectively. SIPT reduces the total cache hierarchy energy by
11.9% and 15.6% for those same designs. More importantly,
the design space is unconstrained, which may enable different
tradeoffs in other scenarios, such as more aggressive and
dynamic partitioning and power-management techniques.
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