
Virtualized and Flexible ECC for Main Memory

Doe Hyun Yoon

Electrical and Computer Engineering Department
The University of Texas at Austin

doehyun.yoon@gmail.com

Mattan Erez

Electrical and Computer Engineering Department
The University of Texas at Austin

mattan.erez@mail.utexas.edu

Abstract

We present a general scheme for virtualizing main memory error-
correction mechanisms, which map redundant information needed
to correct errors into the memory namespace itself. We rely on
this basic idea, which increases flexibility to increase error pro-
tection capabilities, improve power efficiency, and reduce system
cost; with only small performance overheads. We augment the vir-
tual memory system architecture to detach the physical mapping of
data from the physical mapping of its associated ECC information.
We then use this mechanism to develop two-tiered error protection
techniques that separate the process of detecting errors from the
rare need to also correct errors, and thus save energy. We describe
how to provide strong chipkill and double-chip kill protection us-
ing existing DRAM and packaging technology. We show how to
maintain access granularity and redundancy overheads, even when
using ×8 DRAM chips. We also evaluate error correction for sys-
tems that do not use ECC DIMMs. Overall, analysis of demanding
SPEC CPU 2006 and PARSEC benchmarks indicates that perfor-
mance overhead is only 1% with ECC DIMMs and less than 10%

using standard Non-ECCDIMM configurations, that DRAM power
savings can be as high as 27%, and that the system energy-delay
product is improved by 12% on average.

Categories and Subject Descriptors B.3.4 [Memory Struc-
tures]: Reliability, Testing and Fault Tolerance—Error-Checking

General Terms Reliability, Design

Keywords fault tolerance, error correction, memory systems, re-
liability

1. Introduction

Nearly all applications in all segments are requiring larger and
larger main memory capacities, increasing the cost of the memory
system. This is particularly true for commercial servers, supercom-
puters, and other shared environments. One aspect that drives the
cost up, is the need to tolerate errors and faults in DRAM with
as little impact as possible on performance, efficiency, and avail-
ability. Today’s solutions are to use DRAM modules that can store
redundant information and apply error-correcting codes (ECCs) to

This work is supported in part by donations from the Intel corporation.

(c) ACM, 2010. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution.

The definitive version was published in the proceedings of ASPLOS’10,
March 13–17, 2010, Pittsburgh, Pennsylvania, USA.

detect and correct errors. These ECC DIMMs (dual in-line mem-
ory modules) require a larger number of DRAM chips and I/O
pins, which increases both price and power consumption. In fact,
in some systems, the power required to operate main memory is
50% of the system power [18, 30]. To make things worse, recent
trends show an increased relative likelihood of entire DRAM chips
malfunctioning [13, 34], requiring even more stringent protection
than just tolerating single bit errors. In this paper, we explore co-
operative operating-system and hardware techniques that maintain
or improve current error protection levels, while reducing cost and
energy.

Typically, the ECC DIMMs are used to provide single-bit-error-
correction and double-bit-error-detection (SEC-DED) for each
DRAM rank, and do so without impacting memory system per-
formance. Tolerating failures of entire DRAM chips requires the
use of chipkill correct, which “spreads” a DRAM access across
multiple chips and uses a wide ECC to allow strong error toler-
ance [5, 12, 40]. The downside of chipkill is that it either increases
memory access granularity, requiring more energy and restricting
possible DRAM configurations, or increases the required level of
redundancy, which again, increases cost [3]. The added protection
is, unfortunately, needed in systems that are increasingly sensitive
to energy and cost, such as large-scale servers that demand high
availability and protection guarantees. For example, large installa-
tions have reported that system outages due to DRAM errors are
600 times higher unless chipkill is used [20]. Providing chipkill
protection in current DRAM packaging technology is expensive
and requires the use of×4 DRAM configuration (will be discussed
in Section 2.2). These narrow chips consume roughly 30% more
energy for a given total DIMM capacity as more efficient ×8 con-
figurations [6]. This extra overhead is added to all the memory in
these large capacity systems, which may be multiple terabytes if
a memory extension appliance is used [24, 44]. We offer a funda-
mentally different approach to storing and manipulating redundant
DRAM storage, which brings flexibility and generality to memory
error protection.

Our architecture virtualizes the storage of redundant informa-
tion, using mechanisms that are similar to virtual memory manage-
ment [35]. We allow the system to dynamically choose the loca-
tion of redundant data, instead of always storing redundant infor-
mation in dedicated and aligned DRAM chips. We explore map-
pings in which some or all of the redundant information shares
the same physical address space as the data it protects. This ap-
proach gives us great flexibility in accessing and manipulating ECC
information and enables a single system design to be tuned and
adapted to a particular usage scenario, or even a particular appli-
cation or data array. To demonstrate the potential of the Virtual-
ized ECC approach, we describe schemes ranging from low-cost
protection, which uses Non-ECC DIMMs, up to double-chipkill
techniques for high availability systems. We also show how vir-
tualization enables us to maintain protection capability even when

1

varying the DRAM configuration between×4,×8, and×16 chips.
We evaluate each configuration in detail and discuss its impact on
performance and improvements in power consumption and energy-
delay product (EDP). Performance is degraded because effective
data bandwidth is lower when the same pins are shared to trans-
fer both data and redundant information. Our evaluation uses ap-
plications from the SPEC CPU 2006 [37] and PARSEC suites [7]
that have high memory access demands, as well as targeted micro-
benchmarks.

If ECC DIMMs are available, we develop a range of techniques
that are based on a two-tiered memory protection approach [33, 48,
49]. The main innovation of Virtualized ECC is dynamic adaptiv-
ity: Virtualized ECC can dynamically map redundant information
and vary error protection level based on user or system needs. In
two-tiered protection, the extra chips of the ECC DIMMs are used
to store error-detection information only while the full redundant
information required for correction is mapped as data. Error detec-
tion is performed on every DRAM access, but it only requires a sub-
set of the total redundant information, which reduces energy con-
sumption. The full redundancy is only needed on the very rare case
that an error is detected, or for DRAM writes. Because the error
correction information shares the DRAM namespace with the data,
we can cache it to avoid some of the degradation in performance re-
sulting from the added accesses. The flexibility of Virtualized ECC
enables us to achieve very strong protection, even when relying on
×8 DRAM chips, which is not possible with a one-tier scheme. We
show that EDP for chipkill can be improved by 12% and that per-
formance is hardly impacted, dropping by only 1 − 2%. We also
describe a double-chipkill technique that can protect against two
entire DRAM chips failing using standard DIMMs.

In addition, our low-cost schemes enable error correction for
systems that do not use specialized ECC DIMMs. We modify the
OS to allocate storage for redundant information as necessary and
associate it with the data through an architectural interface. The
memory controller then performs two accesses for each DRAM
read or write, one for the data and one for the ECC information.
We show that this approach only degrades performance by 3− 9%

on average and no more than 10 − 25%, while reducing power
consumption because fewer DRAM chips are used. Overall, the
system EDP can be improved by up to 12% when using ×8 and
×16 DRAMs.

We make four important contributions:

• We present a general OS/architecture mechanism for virtual-
izing DRAM ECC protection and decoupling the mapping of
redundant information from the mapping of the data.

• We develop two-tiered protection for DRAM and show how to
improve reliability guarantees and reduce the power consump-
tion of the DRAM system, by using wider-access configura-
tions.

• We provide a flexible error protection mechanism that can adapt
error protection level to match application, user, and system
needs.

• We describe how to provide ECC protection for systems with
standard Non-ECC DIMMs without requiring changes to data
mapping, and evaluate the performance and power impact using
a variety of protection levels and DRAM configurations.

The rest of the paper is organized as follows: Section 2 provides
background on memory systems and DRAM error protection; Sec-
tion 3 details the architecture and OS requirements as well as the
protection schemes; Section 4 presents our evaluation; Section 5
discusses related work; and Section 6 concludes the paper.

2. Background

In this section we very briefly describe modern memory systems
and error protection techniques including chipkill correct. We fo-

cus on commodity DDRx DRAM based systems since a vast ma-
jority of computing platforms including high-end servers uses such
devices.

2.1 Memory Systems

Modern computers hide the complexity involved in designing
memory systems from the programmer. Virtual memory abstracts
nearly all memory system details, including resource allocation
and virtual to physical mapping, and provides an illusion of a flat
and uniform address space to software. Physical memory is, how-
ever, composed of memory channels, each with multiple memory
modules. In the rest of this subsection, we briefly review memory
system organization, from DRAM chips to memory modules, since
they are closely related to memory error protection as described
in Section 2.2. A more complete description of memory systems is
available in [21].

An individual DRAM chip has address/command input pins,
bi-directional data pins, as well as data storage. A single DRAM
chip has a narrow external data path, typically 4, 8, or 16 bits wide
(referred to as ×4, ×8, or ×16, respectively), and multiple chips
operate together to form a wide data path – a rank. For example, a
64-bit wide rank is composed of 16 ×4 DRAMs, 8 ×8 DRAMs,
or 4 ×16 DRAMs. A rank is the minimum logical device that a
memory controller can control individually, hence all DRAM chips
in a rank are addressed simultaneously.

A memory module, or a DIMM, is a physical device that has,
typically, 1 to 8 ranks; a standard 64-bit wide DIMM is also re-
ferred to a Non-ECC DIMM to differentiate it from an ECC DIMM
explained in Section 2.2. DIMMs (also ranks) in a memory chan-
nel share the physical address/command and data buses, but only
one rank is addressed at any given time to avoid bus conflicts.
Depending on the type of DRAM chips used, DIMMs are classi-
fied into ×4 DIMMs, ×8 DIMMs, and ×16 DIMMs. A DIMM
with wider DRAMs (×8 or ×16), if total capacity is the same,
has fewer DRAM chips and consumes less power [6], hence ×8

or ×16 DIMMs are preferred. Systems that require high relia-
bility/availability, however, favor ×4 DIMMs; especially systems
with chipkill correct as explained in the next subsection.

2.2 Memory Error Protection

Main memory is a major source of system malfunctions due to
both soft errors and device failures. Traditional memory error pro-
tection applies ECC uniformly across the whole memory. We first
discuss the commonly used single-bit-error-correcting and double-
bit-error-detecting (SEC-DED) protection scheme that uses ECC
DIMMs, then move on to stronger chipkill correct and its related
module design.

The SEC-DED code [17, 19] typically uses 8 bits of ECC to
protect 64 bits of data. To do so, an ECC DIMM with a 72-bit
wide data path is used, where the additional DRAM chips are used
to store both the data and the redundant information. An ECC
DIMM is constructed using 18 ×4 chips (×4 ECC DIMM) or 9

×8 chips (×8 ECCDIMM), but there is no×16 ECCDIMM. Note
that an ECC DIMM only provides additional storage for redundant
information, but that actual error detection/correction takes place
at the memory controller, yielding the decision of error protection
mechanism to system designers.

High-end servers require an even stronger error protection
mechanism that can tolerate a device failure, chipkill correct [12].
Chipkill correct trades off a larger access granularity to maintain
12.5% storage redundancy. As a result chipkill correct can cur-
rently only use ×4 ECC DIMMs as explained below.

The error code for chipkill correct is a single-symbol-error-
correcting and double-symbol-error-detecting (SSC-DSD) code. It
uses Galois Field (GF) arithmetic [25] with b-bit symbols to tol-

2

x4 x4 x4 x4 x4 x4 x4 x4 x4

x4 x4 x4 x4 x4 x4 x4 x4 x4

Memory

Controller

144-bit wide data path

- Data: 128 bits

- ECC: 16 bits Address/Cmd bus

DDR2 x4 ECC-DIMM

x4 x4 x4 x4 x4 x4 x4 x4 x4

x4 x4 x4 x4 x4 x4 x4 x4 x4

DDR2 x4 ECC-DIMM

Figure 1: Baseline chipkill correct DRAM configuration (grey DRAMs are dedi-

cated to ECC storage).

erate up to an entire chip failing in a memory system. The 3-
check-symbol error code [10] is the most efficient SSC-DSD code
in terms of redundancy overhead. The code-word length of the 3-

check-symbol code is, however, limited to 2
b

+ 2 symbols, so it
is a poor match for ×4 configuration; using ×4 DRAMs leads to
a granularity mismatch that results in data words that are 60 bits
long - a non power of two (3 4-bit check symbols can correct a
symbol error in 15 data symbols). Instead, the 4-check-symbol er-

ror code [9] is used for ×4 DRAMs, where the 4
th check sym-

bol allows a longer code-word. Four 4-bit check symbols provide
SSC-DSD protection for 32 4-bit data symbols, resulting in an ac-
cess granularity of 128 bits of data with 16 bits of redundant in-
formation; this wide data-path is implemented using two ×4 ECC
DIMMs in parallel as shown in Figure 1. This organization is used
by the Sun UltraSPARC-T1/T2 [40] and the AMD Opteron [5]. We
use this ×4 chipkill configuration as the baseline throughout this
study. This chipkill memory system works well with DDR2 using
minimum burst of 4; the minimum access granularity is 64B (4
transfers of 128bits). It is, however, problematic with DDR3 or fu-
ture memory systems with longer burst leading larger access gran-
ularity [3].

Wider DRAMs (×8 and ×16) can use the 3-check-symbol
code, since the maximum code-word length increases with 8- or
16-bit symbol. Supporting chipkill with ×8 and ×16 is, however,
impractical. First of all, chipkill using ×16 DRAMs is not possible
unless we design a custom ×16 ECC DIMM, which is expensive.
Even for ×8 configuration, it requires trading off storage overhead
with DRAM access granularity, which may lower performance.
Maintaining the same access granularity for a ×8 configuration
increases the fraction of redundant data to at least 18.5% [3] (128-
bit data and 24-bit ECC), and it also requires a custom ×8 ECC
DIMM having 16 ×8DRAMs for data and 3×8DRAMs for ECC,
that then increases costs. Maintaining the same (or less) 12.5%
ECC storage overhead, on the other hand, will double the DRAM
burst size (256-bit data and 24-bit ECC). Note that burst 4 in DDR2
increases the access granularity to 128B for a 256-bit data path, and
that DDR3 with burst 8 makes it 256B.

In summary, uniform error protection is transparent to software,
but comes at a cost of additional storage and data pins for redundant
information. Supporting chipkill exacerbates the inefficiencies by
constraining memory module design to use a less energy efficient
×4 configuration. In constrast to uniform error protection, Virtual-
ized ECC, with two-tiered error protection and redundant storage
virtualization, relaxes DIMM constraints even for chipkill, and en-
ables flexible error protection.

VA space

VA

PA space

PA

Data ECC

Application

Program

(a) Conventional architecture

Application

Program

VA space PA space

Data T1EC

T2EC

EA

VA
PA

(b) Virtualized ECC architecture

Figure 2: High-level view of memory accesses in a conventional virtual mem-

ory with fixed ECC, and Virtualized ECC with a two-tiered flexible protection

scheme.

3. Virtualized ECC Architecture

The main innovation of Virtualized ECC is that it allows great flex-
ibility in choosing the protection method and level, even dynam-
ically. The idea is to enable the tuning of the protection scheme
based on the needs of a specific system configuration, changes in
environmental conditions, or potentially different requirements of
different applications or data. Virtualized ECC offers an opportu-
nity to tailor memory protection levels and avoid the need to uni-
formly pay the overhead for worst-case scenarios [46]. We start
by giving a high-level overview and then go into the details of the
various components, including the interaction with the cache hi-
erarchy (Section 3.1), examples of possible protection techniques
(Section 3.2), and the OS virtual memory interface (Section 3.3).

There are two basic mechanisms underlying Virtualized ECC:
an augmented virtual memory (VM) interface that allows a sepa-
rate virtual-to-physical mapping for data and for its associated re-
dundant ECC information; and a generalization of DRAM ECC
into a two-tiered protection mechanism, where a tier-one error
code (T1EC) is used to detect errors on every access and a tier-
two error code (T2EC) is only needed when an error is actually
detected [33, 48, 49]. Figure 2 compares traditional VM, with its
fixed relation between data and ECC, and the decoupled two-tier
approach of Virtualized ECC. Traditional VM (Figure 2(a)) trans-
lates a virtual address from the application namespace to a physical
address in DRAM. A DRAM access then retrieves or writes both
the data and the ECC information, which is stored aligned with the
data in the dedicated ECC DRAM chips.

Figure 2(b) gives an example of a flexible mapping enabled by
Virtualized ECC, in which a portion of the redundant information,
the T1EC, is aligned with the data, but the T2EC part is mapped
to a different physical address that shares the same namespace and
storage devices as the data. The OS and hardware memory man-
agement unit (MMU), maintain the pair of mappings and ensure
that data and ECC are always matched and up to date (Section 3.3).
Thus, less total data is accessed on a read in Virtualized ECC than
in the conventional approach, because T2EC is only touched on the
very rare event of an error. Data writes, however, may have higher
overhead in Virtualized ECC, because the ECC data needs to be
updated, hence, requiring a second DRAM access, and the reduced
system cost comes at a potential performance overhead. To mitigate
this detrimental effect, we propose to utilize the processor cache to
reduce the amount of ECC traffic and discuss this in detail in the
following subsection. Another advantage of the decoupled mapping
and two-tiered approach is that different memory pages can have
different protection types. For example, clean pages do not require
any T2EC storage, and thus the overall degree of redundancy in the
memory system can be adjusted dynamically, increasing the effec-
tive memory capacity.

3

B A

B

A

Data T1EC Data T1EC

LLC

DRAM Rank 0 Rank 1

ECC Address

Translation Unit

C

CT2EC for

Rank 1 data

T2EC for

Rank 0 data

0000

0080

0100

0180

0200

0280

0300

0380

0400

0480

0500

0580

0040

00c0

0140

01c0

0240

02c0

0340

03c0

0440

04c0

0540

05c0

Rd: 0x00c01Wr: 0x01802

PA: 0x01803

EA: 0x05504

Wr: 0x05405

Figure 3: Operations of DRAM and LLC for accessing a two-tiered Virtualized

ECC configuration.

3.1 Cache-DRAM Interface

The cache filters requests from the core to the DRAM system
and can also help in improving the performance of Virtualized
ECC. Because we store redundant information in the same physical
namespace as data, we can cache ECC information on the chip
and improve ECC access bandwidth using the same principles
that make caches advantageous for data. Unlike application data,
however, ECC is only accessed by the memory controller when it
needs to address off-chip DRAM, and is not shared among multiple
processor cores. Thus, the redundant information is stored in the
cache level to which the memory controller has direct access –
the last-level cache (LLC) bank to which it is attached. Because
of this arrangement, ECC information does not participate in any
coherence protocol and is kept up to date by the memory controller.
Virtualized ECC does not require significant changes from the
existing cache interface, with the additional hardware being the
ECC address translation unit (described in Section 3.3) and the
ability to maintain and write back partially valid cache lines. The
latter property is necessary because the cache has up to date ECC
information only for data that is generated on-chip (in two-tiered
DRAMECC).We describe this property in greater detail below and
address the different operations needed for two-tiered protection
and for implementing ECC with Non-ECC DIMMs.

3.1.1 Two-Tiered DRAM ECC

Figure 3 shows our two-tiered Virtualized ECC on top of a generic
memory system configuration with a last-level cache connected
to two ranks of DRAM with dedicated ECC chips. We use ECC
chips to store a T1EC code, which can detect all errors of interest
but cannot correct them without the additional information of the
T2EC. The T2EC is mapped to the data DRAM chips such that data
and its associated T2EC are in two different DRAM ranks.

Circled numbers in the text below refer to operations shown in
Figure 3. Handling a fill into the LLC on a cache miss follows the
same operations as in a conventional system; a data burst and its
aligned T1EC are fetched from main memory and error detection
is carried out (1©). The difference from a conventional system is
that any detected errors cannot be immediately corrected. Evicting
a dirty line and writing it back to DRAM (2©), however, requires
additional operations when compared to a conventional hierarchy.

A

A

Data Data

LLC

DRAM Rank 0 Rank 1

ECC Address

Translation Unit

B

BT2EC for

Rank 1 data

0000

0080

0100

0180

0200

0280

0300

0380

0400

0480

0500

0580

0040

00c0

0140

01c0

0240

02c0

0340

03c0

0440

04c0

0540

05c0

Rd: 0x01801

PA: 0x01802

EA: 0x05503

Rd: 0x05404

C

C

T2EC for

Rank 0 data

Wr: 0x01405

D

PA: 0x00c06

EA: 0x05107

D

Rd: 0x05108

Figure 4: Operations of DRAM and LLC for accessing Virtualized ECC in a Non-

ECC DIMM configuration.

The memory controller must update the T2EC information asso-
ciated with the evicted line, which starts with translating the data
address to the location of the ECC address (EA) (3© and 4©). If
the translated EA is already in the LLC, it is simply updated in
place. Otherwise, we allocate an LLC line to hold the T2EC. We
do not need to fetch any information from memory, because T2EC
is only read when an error is detected. Any writes, render the prior
information obsolete. Thus, we compute the new T2EC and write
into the LLC along with a mask that indicates what portion of the
LLC line contains valid T2EC information. As we explain later,
our coding schemes use T2ECs that are 16 − 128 bits long, and
thus require very few additional valid bits. Depending on the exact
ECC used to protect the LLC itself, it may even be possible to re-
purpose the LLC ECC bits to store the valid mask. We can ignore
errors in a T2EC line in the LLC because there is no need to add
a third level of redundancy and protect T2EC information from er-
rors. This mask is used when a T2EC LLC line is evicted back to
DRAM (5©) as invalid portions of the line must not overwrite T2EC
data in DRAM. To do so, we extend each MSHR entry with a valid
bit vector, which the DRAM controller uses for communicating the
write mask to the DRAM chips [38, 39].

When an error is detected by T1EC, which can only happen
upon a read, the correction is carried out using the corresponding
T2EC. If the T2EC is not in the cache, correction requires an
additional DRAM access to fetch the redundant information. The
additional latency, however, does not impact performance because
errors in a particular memory channel are very rare. Very frequent
errors indicate a hard-fault and can be mitigated by data migration,
as suggested by Slayman [36].

3.1.2 Virtualized ECC Interface with Non-ECC DIMMs

Even if physical memory does not provide ECC storage, we can
use Virtualized ECC to protect memory against errors. In the Non-
ECC DIMM configuration, we cannot store an aligned T1EC and,
instead, place all the redundant information in the virtualized T2EC
(we still refer to this as T2EC to keep the notation consistent). The
cache and memory behavior for this scheme is shown in Figure 4
which the circled numbers below refer to. When data is read from
main memory (1©), we use the ECC address translation unit to find
its EA (2© and 3©). A T2EC LLC miss will fetch the T2EC from

4

Table 1: DRAM configurations for chipkill correct of the baseline system, MC-DIMMs that are non-standard DIMMs introduced in [3] to improve DRAM power

consumption, and Virtualized ECC 1.

DRAM type
Data DRAMs # ECC DRAMs

Rank organization
T2EC access T2EC per

per rank per rank on read on write cache line

Baseline Chipkill Correct

Baseline x4 ×4 32 4 2 ECC DIMMs N N N/A

MC-DIMM [3] with 128bit channel and 4 rank subsets

MC-DIMM x4 ×4 32 12 2 MC-DIMMs N N N/A

MC-DIMM x8 ×8 16 12 2 MC-DIMMs N N N/A

MC-DIMM x16 ×16 8 12 2 MC-DIMMs N N N/A

Virtualized ECC

ECC×4 ×4 32 2 1 ECC DIMM and 1 Non-ECC DIMM N Y 2B

ECC×8 ×8 16 2 2 ECC DIMMs N Y 4B

Non-ECC×4 ×4 32 N/A 2 Non-ECC DIMMs Y Y 4B

Non-ECC×8 ×8 16 N/A 2 Non-ECC DIMMs Y Y 8B

Non-ECC×16 ×16 8 N/A 2 Non-ECC DIMMs Y Y 16B

main memory (4©), because without ECC DIMMs, the information
is required to detect errors and not just for correction. Unlike the
two-tiered scenario, we fetch an entire cache-line’s worth of T2EC
data on a miss to amortize the DRAM access, and expect spatial
locality to reduce the cost of following memory accesses. We only
return data to the cache controller after the ECC information is
fetched and the data is verified2. On a dirty write-back (5©), the
PA is translated to an EA (6© and 7©), and a T2EC is fetched from
main memory if the EA is not already cached (8©), again, expecting
spatial locality to amortize this access cost.

3.2 Virtualized ECC Protection Schemes

We now discuss possible DRAM configurations for Virtualized
ECC, assuming a memory system that is representative of servers
that require chipkill correct error protection. The baseline memory
system is composed of a 128-bit wide DDR2 DRAM channel with
an additional 16 bits of dedicated ECC as described in Section 2.2.
We use DDR2 in this paper because of a readily available power
model [45]. Our techniques work as well, or better, with DDR3 [39]
because it uses longer bursts and limits use of traditional chipkill
techniques [3].

In the rest of this subsection we describe memory error protec-
tion mechanisms that are enabled by Virtualized ECC, which main-
tain the storage overhead and access granularity of chipkill and can
even increase protection guarantees.

3.2.1 Virtualized ECC with ECC DIMMs

While traditional chipkill uses a 4-check-symbol error code as ex-
plained in Section 2.2, Virtualized ECC, with two tiered protection
and T2EC storage virtualization, enables a more efficient 3-check-
symbol error code [10]. In two-tiered error protection, the first two
check symbols of the 3-check-symbol code construct a T1EC that
can detect up to 2 symbol errors, while the T2EC is the third check
symbol of the 3-check-symbol code. If the T1EC detects a single
symbol error, it is corrected using all 3 check symbols of both tiers.
Our scheme uses 8-bit symbols for ×4 and ×8 DRAM configura-
tions and 16-bit symbols with×16 chips (alternatively, we can use
a 2-way interleaved 8-bit symbol ECC to reduce the complexity
of GF(216) arithmetic). In the ×4 system, we use two consecutive
transfers of 128 bits so that we have an 8-bit symbol from each
DRAM chip for the 8-bit symbol based error code. This effective
256-bit access does not actually change the DRAM access granu-
larity, which is still 64 bytes as in the baseline DDR2-based chipkill
system.

1Non-ECC configurations of Virtualized ECC cannot detect 2 chip failures.

2 Speculative data forwarding is possible, but did not significantly improve perfor-

mance in our experiments.

The other key point is to use Virtualized ECC to reduce the
system cost, or to increase error tolerance to two malfunctioning
chips, rather than just one. We describe these mechanisms for ×4

and ×8 configurations below, and discuss ×16 cases in the next
subsection. The configurations are summarized in Table 1, which
also presents the details of the baseline chipkill technique and
mechanisms that rely on modified DIMMs and higher-overhead
codes to improve access granularity and power [3].

ECC ×4 uses ×4 chips, but utilizes the two-tiered approach to
improve energy efficiency. We store two 8-bit check symbols in
2 ECC DRAM chips (in an ECC DIMM) that serve as a T1EC
that can detect chip errors (up to 2 chip failures). The third check

symbol is the T2EC, which is stored in the data chips3. Thus,
ECC ×4 only requires 2 ECC chips instead of the 4 chips of
the conventional approach, saving 8 pins and associated costs of
storage, power, and bandwidth.

ECC ×8 is an efficient scheme for chipkill protection using
ECC DIMMs with ×8 chips. We use the two ECC chips in a rank
for the 2-symbol T1EC and store the third check symbol in data
memory as the T2EC. Thus we access 16 ×8 data chips and two
additional ECC chips on every read, for the same 64-byte access
granularity and redundancy overhead of the conventional chipkill
approach. Without virtualizing T2EC, an additional DRAM chip to
hold the third symbol would be touched on every access, increasing
power and pin requirements and redundancy to a fixed 18.5% [3],
as well as requiring non-standard DIMMs.

The above two-tier chipkill schemes can further be extended
by adding a second check symbol to T2EC; if T1EC detects two
chip errors (two erroneous symbols) the combined 4 check sym-
bols from both tiers can be used to tolerate two bad chips. The de-
tails of this approach are summarized in the double-chipkill column
of Table 2). While two simultaneous bad chips are unlikely today,
future energy-saving techniques may require such a protection level
because of the following two trends: transient errors that manifest
as dead chips are growing in likelihood [13]; and energy-efficient
server systems that increasingly operate with narrower noise mar-
gins due to reduced cooling and voltage levels.

3.2.2 Virtualized ECC with Non-ECC DIMMs

Another advantage of Virtualized ECC is the ability to add ECC
protection to systems that use Non-ECC DIMMs. We suggest
schemes that are based on a 2-check-symbol Reed Solomon (RS)
code [32], which can detect and correct one symbol error – in our
case, a code that can tolerate any number of bit errors as long
as they are confined to a single chip. The details for this type of

3We omit the full details of the error correction coding scheme, such as the parity

check matrix and syndrome description, due to format and space restrictions in this

paper.

5

Table 2: Virtualized ECC configurations for flexible error protection achieved by

varying T2EC size4.

T2EC size

No chipkill chipkill double-chipkill

Protection detect correct correct

ECC×4 N/A 0B 2B 4B

ECC×8 N/A 0B 4B 8B

Non-ECC×4 0B 2B 4B 8B

Non-ECC×8 0B 4B 8B 16B

Non-ECC×16 0B 8B 16B 32B

scheme using×4,×8, and×16 DRAM chips are also summarized
in Table 1. All three Non-ECC DIMM configurations have the same
protection capability, but the access properties differ. The wider
symbols needed for ×16 DRAMs imply that fewer T2EC words
fit into an LLC line. Recall that unlike the two-tiered techniques
with ECC DIMMs, both LLC write-backs and demand fetches re-
quire the DRAM controller to access both the data in DRAM and
the T2EC information to perform ECC checking and correcting.
The T2EC is cached and may not require a second DRAM access,
but the different symbol widths used result in different caching
behavior (see Section 4.2.1).

3.2.3 Flexible Protection Mechanisms

An exciting feature of Virtualized ECC is that it enables flexibility
in choosing and adapting the error protection used based on dy-
namic application, user, and system needs. A single hardware with
virtualized T2EC can support different levels of error tolerance by
varying the T2EC size (Table 2). Supporting flexible protection tun-
ing requires that the memory controller be able to compute and de-
code different codes, as well as a way to identify which ECC tech-
nique to use for any given DRAM access. An elegant method to
achieve the latter is to augment the OS virtual memory page table
and hardware TLB to include protection information for each page.
We do not explore the benefits of protection tuning in this paper,
but list two potential scenarios that we will explore in future work.
The first is an opportunity to reduce system power by protecting
more critical data with stronger codes and potentially leaving some
data unprotected. Another potential use is to adapt the protection
level to changes in environmental conditions, such as higher tem-
perature or a higher energetic particle flux (while in an airplane,
or if the system is located at high altitude). Virtualized ECC offers
opportunities for new tradeoffs, such as the double-chipkill tech-
nique described above or reduced power consumption by turning
ECC off.

3.3 Managing T2EC Storage in DRAM

In this subsection we discuss how the OS manages T2EC storage in
DRAM and how ECC address translation is performed to retrieve
the T2EC associated with a particular address. We present a solu-
tion that is based on current virtual memory approaches, but other
alternatives are possible.

3.3.1 T2EC Allocation

Managing DRAM storage is the responsibility of the OS, and we
extend the OS memory manager to account for T2EC information
as well. Any time the OS allocates a new physical page, the OS
also allocates a T2EC section that is large enough to accommo-
date redundant information for the entire data page. The size of this
T2EC data depends on the protection configuration chosen for the
newly allocated page. Note that only dirty pages require T2EC stor-
age in two-tiered protection, because clean pages can be recovered
from secondary storage if T1EC detects an error. Many modern

4 Chipkill detect and chipkill correct can detect up to 2 chip failures in ECC configu-

rations but they can detect only 1 chip failure in Non-ECC configurations.

Level 1

Physical address (PA)

Level 2 Level 3 Page offset

ECC page table

Base register +

ECC table entry

ECC table entry

+

ECC table entry

+

ECC page number ECC Page offset

ECC address (EA)

log2(T2EC) >>

Figure 5: PA to EA translation using a three-level hierarchical ECC table map-

ping, similar to virtual memory address translation.

OSs already only allocate a physical page when the virtual page
is first written (copy-on-write allocation policy), and hence, will
inherently only allocate T2EC for dirty pages. The T2EC alloca-
tion algorithm can follow the same approach as the data memory
allocator of the OS, such as using a slab or buddy allocator [35],
but at a finer granularity than data pages because the T2EC stor-
age overhead is a fraction of the data size. Within a T2EC section,
EAs are mapped to their associated data PAs such that two paired
addresses are always on different ranks. This level of mapping is
handled by the memory controller when it accesses T2EC data (see
Section 3.3.2). Accounting T2EC increases the overhead of allo-
cating a physical page, but prior work has shown that augmenting
a copy-on-write allocator has negligible impact on application per-
formance [2].

The OS is also responsible for freeing T2EC space when it is
no longer needed for data protection. This happens when a data
page is freed by the application or when a page is swapped out to
secondary storage. For the two-tiered schemes, T2EC can also be
freed when a data page is preemptively cleaned and written back to
secondary storage even if it is still stored in DRAM, because it is
then inherently redundant in the system.

One caveat of storing T2EC information in data memory is that
it competes with data and decreases the effective memory capacity
(albeit, while reducing overall cost). This may impact application
performance if the sharing of space increases page replacement
when the working set of applications is large. A possible approach
to mitigating this problem is to spill T2EC memory sections to
secondary storage to dynamically adjust the memory overhead of
ECC. Again, parallels to conventional virtual memory management
can be drawn, where data pages can be proactively cleaned and
moved to secondary storage. In this paper, however, we always
maintain active T2EC data in DRAM.

3.3.2 ECC Address translation

When the memory controller needs to access T2EC information, it
translates the data physical address (PA) into its associated T2EC
ECC address (EA). The translation requires information from the
OS about the T2EC mapping, and we follow the same techniques
as virtual to physical address translation. We maintain a PA to EA
translation table in the OS in addition to the VA to PA page table.
Figure 5 shows an example of a hierarchical PA to EA translation
table that uses the same translation scheme as an x86 virtual page
table, where each translation entry points to the starting physical
address of the T2EC region associated with the data page. It is also
possible to use other translation structures such as those suggested
in prior work on maintaining memory metadata [47]. Note that the

6

L1

EA cache

L2

EA cache

2-level EA cache

ECC address translation unit

TLB
To manage consistency

between TLB and L1 EA cache

Control

logic

PA

EA

EA

MSHR

External
EA translation

Figure 6: ECC address translation unit with a two-level EA translation cache.

OS only manages a single translation table because the translation
is from physical addresses. The hardware then computes an offset
within the T2EC region based on the T2EC size and rank interleav-
ing.

To reduce the overhead of translations we also employ a hierar-
chical TLB-like acceleration structure in the ECC address transla-
tion unit, as shown in Figure 6. The L1 EA cache is maintained with
the processor’s TLB such that the EA translation entries are filled
and evicted in conjunction with the TLB. This guarantees that PA to
EA translation on a read miss will always hit in the L1 EA cache,
because a VA to PA translation was performed to access DRAM.
Updating the EA cache increases the overhead of a TLB fill, be-
cause a second page walk is required to fetch the EA translation
information. This overhead is small because of the low EA cache
miss rate, which we report in Section 4. Note that EA translation is
only required when there is a miss in, or write-back from, the LLC
and is much less frequent than a virtual address translation. To re-
duce the overhead even further, a second level EA cache can be
used to store victim translation of L1 EA cache evictions. A write-
back, in general, does not have as much locality as read operations,
but the L2 EA cache can make the EA translation overhead trivial;
write-back addresses had been translated (VA to PA translation) so
the EA translation entries for writes are likely to be kept in either
the L1 EA cache or a reasonably large L2 EA cache. We evaluate
the effectiveness of the TLB-like EA cache in Section 4.2.2. The
EA translation unit also contains MSHRs to allow concurrent over-
lapping translations to occur. Both levels of translation cache need
to support invalidations from the OS when T2EC data is freed or
re-mapped.

4. Evaluation

We evaluate Virtualized ECC using a combination of detailed
cycle-based simulation to determine performance and power im-
pact, and use the PIN binary instrumentation tool [26] to collect
statistics on T2EC OS management and caching behavior for appli-
cations with large datasets. For the cycle-based simulation, we use
the Simics full system simulator [27] with the GEMS [28] toolset;
the OPAL out-of-order processor model to simulate a SPARC V9
4-wide superscalar core and the Ruby two-level exclusive write-
back cache hierarchy model. We integrated DRAMsim [45] with
GEMS to accurately account for the impact of Virtualized ECC on
memory bandwidth, performance, and power. Table 3 describes the
baseline system configuration, which uses uniform chipkill ECC
with ×4 DRAMs.

We estimate DRAM power consumption using a power model
developed by Micron Corporation [1] that is embedded within
DRAMsim. For processor power analysis, we use WATTCH [8]

Table 3: Simulated system parameters.

Processor SPARC V9 ISA

Core 4-wide superscalar (2GHz)

L1 Cache split I/D caches

each 32KB

2-way set associative

64B cache lines

write-back

1 cycle latency

L2 Cache a unified 1MB cache

8-way set associative

L1 exclusive

64B cache lines

12 cycle latency

DRAM single-channel 4-rank DDR2 DRAM

800MHz 128-bit data bus (12.8GB/s)

16bit SSC-DSD ECC for ×4 chipkill correct

open page, Read and Instruction Fetch First

XOR based rank/bank interleaving [50] is used

to model out-of-order processor energy consumption. We updated
the energy parameters to a 45nm technology based on technology
scaling rules. We also estimate processor power consumption using
IPC-based linear scaling of the maximum power consumption of a
45nm Intel Xeon [22], as suggested in [3]. The estimates of the two
power models closely matched one another. Finally, we estimate
cache power consumption using CACTI 5 [43].

4.1 Workloads

We use a mix of several SPEC CPU 2006 [37] and PARSEC [7]
applications, as well as the STREAM [29] and GUPS [14] micro-
benchmarks. We selected only applications that stress the memory
system and that are potentially significantly impacted by Virtual-
ized ECC. The STREAM micro-benchmark processes a 2M-element
vector and performs copy, scale, add, and triad operations on each
element in sequence. STREAM has very low temporal locality but
high spatial locality and is memory bound with little computation
for every memory access. GUPS reads and performs a single addi-
tion to update distinct pseudo-random locations in a 64MB array
of 64-bit numbers. We use 5120k updates when performing cycle-
accurate simulations and 16M updates when using PIN emulation.
GUPS is even more memory intensive than STREAM, and in addition
has essentially no spatial locality, intensely stressing the memory
system. For the SPEC CPU 2006 applications, we used the ref-
erence input dataset and ran cycle accurate simulations for 200M
representative instructions, as indicated by Simpoint [16], and ran
the applications to completion using PIN. We used the simsmall
dataset for the cycle-based simulations of PARSEC and simlarge
with PIN. We ran all the PARSEC applications to completion using
a single thread. Table 4 summarizes the IPC, cache miss ratio, and
power consumption of the applications on the baseline system.

4.2 Results and Analysis

We present our analysis of Virtualized ECC in four parts: the T2EC
information storage and translation management (Section 4.2.1–
4.2.2), the overall performance and energy impact for single chip-
kill ECC (Section 4.2.3); the flexible reliability schemes (Sec-
tion 4.2.4); and implications on multicore processors that have a
lower effective memory bandwidth for each core (Section 4.2.5).

4.2.1 Virtualized ECC Storage Management

Maintaining T2EC information as data implies sharing storage re-
sources between application data and its ECC redundancy, impact-
ing data caching behavior. Figure 7 shows the impact on caching of
T2EC data, including the average occupancy of T2EC in the LLC,
the T2ECmiss rate (T2EC accesses that required a DRAM access),
and the impact on data MPKI (misses per thousand instructions).

7

Table 4: Application characteristics.

Application IPC MPKI LLC miss rate [%]
Power consumption [W]

Processor LLC DRAM Total

SPEC CPU 2006

bzip2 1.9 1.1 25 15.4 1.3 8.3 25.0

hmmer 2.0 0.9 14 14.5 1.3 7.9 23.9

mcf 0.4 18.5 32 3.5 1.3 11.3 16.1

libquantum 1.0 4.9 71 6.5 1.3 7.1 15.0

omnetpp 1.0 3.5 18 7.4 1.3 8.9 17.6

milc 1.0 3.2 68 8.6 1.3 8.3 18.1

lbm 0.6 8.0 56 5.8 1.3 10.0 17.0

sphinx3 0.7 4.4 47 7.4 1.3 8.2 16.9

PARSEC

canneal 0.4 13.2 72 3.8 1.3 11.1 16.3

dedup 1.6 0.5 4 11.0 1.3 7.5 19.9

fluidanimate 0.7 4.0 60 6.9 1.3 8.3 16.5

freqmine 1.8 1.3 24 12.5 1.3 8.0 21.8

Micro-benchmarks
STREAM 0.3 35.0 99 2.8 1.3 10.1 14.2

GUPS 0.2 92.8 52 1.4 1.3 19.5 22.2

In general, T2EC miss rate and occupancy are directly proportional
to the size of each T2EC (see Table 2). The greater the number of
T2ECs in an LLC line, the lower the impact on data cache miss rate
and memory traffic.

There is a significant difference in behavior between the con-
figurations that use ECC DIMMs (ECC ×4 and ECC ×8) and
those that do not (Non-ECC ×4, Non-ECC ×8, and Non-ECC
×16). With ECC DIMMs, T2EC is only accessed on write-backs
to DRAM and the redundant information in the LLC is only main-
tained for dirty data. Without ECC DIMMs, T2EC information is
accessed on any DRAM read or write and T2EC LLC lines are
not partially valid. The impact can be seen in the higher LLC oc-
cupancy required for T2EC with Non-ECC DIMMs, as well as in
in the lower miss rate. The miss rate is lower because more T2EC
accesses are necessary to support detection.

While T2EC data can occupy upwards of 50% of the LLC, its
impact on data caching behavior is not as severe. For most ap-
plications, MPKI is not significantly affected. A few applications
(bzip2, mcf, omnetpp, and canneal), suffer an increase of up to
20% when ×16 DRAMs are used. The increase in MPKI results in
increased DRAM traffic, which also grows due to T2EC accesses.
The increase can be significant as shown in Figure 8, but as we dis-
cuss in Section 4.2.3 and Section 4.2.5, impact on performance is
not severe and overall power consumption and energy-delay prod-
uct are improved. In addition, T2EC occupancy and miss rate/traffic
increases are modest in many configurations.

4.2.2 Virtualized ECC Translation Management

In this subsection, we use PIN [26] to estimate the overheads of
address translation and copy-on-write for T2EC physical memory
allocation with large datasets. We model a two-level ECC address
translation cache as in Figure 6 with a fully associative 16 entry
L1 cache (same size as the UltraSPARC-III TLB [41]) and a 4K
entry, 8-way set associative L2 translation cache. We measured the
EA translation cache miss rate relative to the number of dirty LLC
evictions (recall that a T2EC access on a memory read always hits
in the EA cache because it is coupled to the data TLB). As shown
in Table 5, most applications we evaluated have EA cache miss
rates that are lower than 1%. The exceptions to this low miss rate
are fluidanimate (5%), mcf (7%), omnetpp (50%), canneal
(52%), and GUPS (67%). More important than the actual miss rate
is the frequency of misses relative to program execution, or the
EA translation cache misses per thousand instructions (EA cache
MPKI in Table 5), which are only significant in three applications:
omnetpp (3.7), canneal (3.0), and GUPS (12.6).

With the exception of the GUPS micro-benchmark, we expect
that a hardware page walk to fill translations will be able to support
the rate of translations necessary, and writing back ECC informa-

Table 5: EA translation cache behavior (KI: thousand instructions).

Application
EA cache Write-backs EA cache

miss rate [%] per KI MPKI

bzip2 0.06 1.9 0.001

hmmer 0.005 2.2 0.0001

mcf 6.5 9.6 0.62

libquantum 0.05 9.9 0.005

omnetpp 50.0 7.4 3.7

milc 0.7 7.0 0.05

lbm 0.0003 21.4 0.0006

sphinx3 0.00007 1.2 0.00000008

canneal 52.0 5.9 3.0

dedup 0.9 0.4 0.004

fluidanimate 5.2 0.5 0.02

freqmine 0.04 0.1 0.000005

STREAM 0.0 20.6 0

GUPS 67 18.8 12.6

tion does not impact performance as long as write throughput is
maintained; EA MSHRs in Figure 6 will allow non-blocking ECC
address translation. For applications such as GUPS, we propose to
use coarser-grained allocation of T2EC ranges in memory, simi-
larly to super- or huge-pages used to improve TLB performance of
virtual memory [42]. We will evaluate this approach in future work,
and for the performance analysis in the following subsections we
roughly estimate for translation overhead by doubling the data TLB
miss penalty.

We also measured the frequency of copy-on-write (COW) ex-
ceptions in our application benchmarks. On average, the COW rate
is only 0.0001 for every 1000 instructions, and not more than 0.05

for every 1000 instructions. Because the frequency is so low we
did not perform a detailed performance evaluation of the additional
overhead for allocating T2EC storage and maintaining the trans-
lation tables. Even an additional 10, 000 cycles for every COW
event would not significantly impact application run time. Note
that COW exceptions rarely access slow secondary storage, as most
translation and allocation data structures are resident in DRAM.

4.2.3 Chipkill Performance and Energy

Figure 9 presents the execution time and system energy-delay prod-
uct (EDP) of the Virtualized ECC configurations described in Ta-
ble 1, normalized to those of the baseline×4 chipkill ECC. For sys-
tem EDP, we measured system power consumption as the sum of
processor core power, LLC power, and DRAM power. Virtualized
ECC with ECC DIMMs has a very small impact on performance.
With the exception of canneal, which has 2% and 3% lower per-
formance with ECC ×4 and ECC ×8 respectively, all applications
have a lower than 0.5% performance difference. This very low per-
formance penalty is a result of the effective T2EC caching and the

8

0%

10%

20%

30%

40%

50%

60%

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4
E

C
C

 x
8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine Average

SPEC 2006 PARSEC

T2EC Miss Rate

T2EC occupancy

Normalized MPKI Overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

E
C

C
 x

4

E
C

C
 x

8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

E
C

C
 x

4

E
C

C
 x

8

N
o
n
-E

C
C

 x
4

N
o
n
-E

C
C

 x
8

N
o
n
-E

C
C

 x
1
6

STREAM GUPS

Figure 7: Impact on the LLC: T2EC miss rate and occupancy in the LLC as well as impact on application data miss rate.

0%

30%

60%

90%

120%

150%

0

5

10

15

20

25

30

35

40

45

50

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine

SPEC 2006 PARSEC Average

T
ra

ff
ic

 I
n
c
re

a
s
e

R
e
q
u
e
s
t
p
e
r

K
il
o
 I
n
s
tr

u
c
ti
o
n

T2EC

Wr

Rd

Traffic Increase

0%

30%

60%

90%

120%

150%

0

50

100

150

200

250

300

350

400

450

500

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

STREAM GUPS

T
ra

ff
ic

 I
n
c
re

a
s
e

R
e
q
u

e
s
t
 p

e
r
K

il
o
 I
n

s
tr

u
c
ti
o

n

Figure 8: Impact of Virtualized ECC on DRAM traffic.

0.7

0.8

0.9

1

1.1

1.2

1.3

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine Average

SPEC 2006 PARSEC

Normalized Execution Time Normalized EDP

0

0.5

1

1.5

2

2.5

3

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

B
a

s
e

li
n

e
 x

4

E
C

C
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
4

N
o

n
-
E

C
C

 x
8

N
o

n
-
E

C
C

 x
1

6

STREAM GUPS

Figure 9: Performance and system EDP for baseline and Virtualized ECC chipkill correct.

fact that the additional DRAM traffic is for writing out T2EC in-
formation and not on the computation critical path. Even the very
write-intensive GUPS micro-benchmark that has no T2EC locality
and very low arithmetic intensity only suffers a ∼ 10% reduction
in performance. ECC ×4, unfortunately, also has little impact on
EDP and only improves it by ∼ 1%. ECC ×8, however, shows a
very significant improvement in energy efficiency. DRAM power

is reduced by an average of almost 30% and EDP is improved
by an average of 12%. EDP improvement is very consistent us-
ing ×8 DRAMs, with only two outliers: mcf and STREAM have a
20% and 18% improvement respectively. Both benchmarks place
significantly higher pressure on the memory system (see Table 4),
and thus benefit more from increased memory power efficiency.
GUPS demands even higher memory performance. While the EDP

9

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine Average

SPEC 2006 PARSEC

Normalized Execution Time Normalized EDP

1 Chipkill Detect

2 Chipkill Correct
3 Double Chipkill Correct

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 1 2 3

STREAM GUPS

(a) ×8 ECC DIMM

0.7

0.8

0.9

1

1.1

1.2

1.3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine Average

SPEC 2006 PARSEC

Normalized Execution Time Normalized EDP
1 No Protection

2 Chipkill Detect
3 Chipkill Correct

4 Double Chipkill Correct

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 1 2 3 4

STREAM GUPS

(b) ×8 Non-ECC DIMM

Figure 10: Performance and system EDP while varying error protection level (execution time and system EDP are normalized to those of baseline ×4 chipkill).

of GUPS is improved by 10% in ECC ×8 with more energy effi-
cient ×8 DRAMs, it is degraded by 23% in ECC ×4, mainly due
to the increase in DRAM power consumption (7%). Note that sup-
porting chipkill with ×8 DRAMs in conventional systems is not
possible unless custom-designed DIMMs with higher redundancy
or increased access granularity are used.

Virtualized ECC can also bring DRAM error tolerance to sys-
tems that use Non-ECC DIMMs. The extra DRAM accesses re-
quired for every read (and not just for writes) results in a larger
impact on performance. Even with this extra traffic, however, ap-
plication performance is degraded by 3%, 6%, and 9% using ×4,
×8, and×16 chips, respectively, on average. The×4 configuration
does not reduce power consumption by much and the performance
overhead leads to a 3% degradation in EDP. Wider DRAM con-
figurations, however, improve EDP by 5% (×8) and 12% (×16)
when compared to a standard chipkill configuration. In fact, only
canneal and GUPS have a relatively worse EDP with Non-ECC
×8 and Non-ECC×16. These two applications are memory bound
and have random access patterns that do not make effective use of
T2EC caching. The other two bandwidth-bound applications, mcf
and STREAM, are not impacted as much. STREAM, especially, shows
the effectiveness of caching T2EC data as it has very high spatial
locality.

4.2.4 Flexible Protection

As described in Section 3.2.3 the Virtualized ECC architecture en-
ables flexibility in choosing the error protection level based on dy-
namic application, user, and system needs. To assess a new tradeoff
that Virtualized ECC enables, we evaluate the effect of different
T2EC sizes, which are summarized in Table 2. Figure 10 presents
the execution time and system EDP, normalized to those of the
baseline system, when using ×8 DRAM chips and varying T2EC
error protection. As expected, increasing the protection level in-
creases EDP and execution time. The impact of adding the capa-
bility to tolerate a second dead chip, however, has a fairly small
overhead overall when using ECC DIMMs (Figure 10(a)). Double-
chipkill correct increases execution time by 0.3% at most over sin-
gle chipkill correct, and system EDP is still 10 − 20% better than
with conventional ×4 chipkill.

If ECC DIMMs are not available, the overhead of improved
protection is more significant; Figure 10(b) shows the normalized
execution time and EDP of Non-ECC ×8. The overall system EDP
is better than the baseline in all configurations, with the exception
of mcf, omnetpp, canneal, and GUPS; Non-ECC ×16 also has
similar behavior. Note that the protection method can be varied
at a granularity of a single page, which can make the options
more attractive in an overall system design optimization process.
Table 6 summarizes the average performance penalty and DRAM
power/system EDP gains of ECC×8, Non-ECC×8, and Non-ECC
×16; ×4 configurations are omitted since they do not show much
gain.

4.2.5 Implications on Multicore Processors

So far our design and evaluation have focused on a single-core sys-
tem. As described in Section 3.1, T2EC information is exclusively
accessed by a DRAM controller and not shared among multiple
processor cores. Therefore, it is easy to integrate Virtualized ECC
within a multiprocessor or multicore system. In multicore systems,
however, the increased traffic due to T2EC accesses and reduced ef-
fective LLC size may be more detrimental to performance than in
a single core case because of the relatively lower per-core memory
bandwidth. We gauge the potential impact of the×8 configurations
of Virtualized ECC on a multicore by simulating a single-core sys-
tem with half the memory bandwidth (6.4GB/s). We believe this is
indicative of the system properties in a multiprogrammed environ-
ment and will serve as a basis to drive future research.

The results of this reduced-bandwidth experiment are shown
in Figure 11. The relative performance penalty of ECC ×8 and
Non-ECC ×8 is only slightly worse than that of the full bandwidth
system, and follows the same trends and insights described before.
One anomalous result can be seen in libquantum, where Non-
ECC×8 slightly improves performance. This anomaly is a result of
changes in the timing of DRAM accesses. The T2EC information
in the LLC changes the eviction pattern that acts as an eager write-
back mechanism, which has been shown to improve performance
in some situations [23].

10

Table 6: Summary of flexible error protection with Virtualized ECC

ECC×8 Non-ECC×8 Non-ECC×16

chipkill chipkill double chipkill no chipkill chipkill double chipkill no chipkill chipkill double chipkill

detect correct correct protection detect correct correct protection detect correct correct

Performance penalty 0% 0.7% 1% 0% 3.4% 5.8% 8.9% 0% 5.8% 8.9% 12.8%

DRAM power reduction 29% 27.8% 27.2% 37.1% 32.6% 30.1% 26.7% 59.5% 53.4% 50.1% 46.2%

System EDP gain 14.6% 12% 11.2% 17.3% 10.4% 5.6% −0.9% 27.8% 17.8% 12.1% 4.9%

0.7

0.8

0.9

1

1.1

1.2

1.3

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e

li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine Average

SPEC 2006 PARSEC

Normalized Execution Time Normalized EDP

0

0.5

1

1.5

2

2.5

B
a
s
e
li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

B
a
s
e
li
n

e
 x

4

E
C

C
 x

8

N
o

n
-
E

C
C

 x
8

STREAM GUPS

Figure 11: Performance and system EDP for×8 Virtualized ECC in a half-bandwidth (6.4GB/s) multicore-like scenario.

5. Related Work

The proposed memory error protection mechanisms build on a
large body of prior work, including general work on error coding [9,
10] and chipkill correct [5, 12, 40]. There has also been recent work
on how to allocate redundant information across chips in a DRAM
module in ways that account for modern DRAM properties. One
approach, like Virtualized ECC, that uses the data chips to also
store redundant information is mentioned in [51]. The focus of the
paper was on reducing DRAM power consumption by modifying
DIMM design and enabling mini-ranks that only access a subset
of the chips on a DIMM at one time, and it included a suggestion
for embedding redundancy uniformly within the data DRAM chips.
There are patents [11, 15] that describe a similar concept of storing
redundant information in data memory. This changes the overall
data layout and access properties, and its full impact on power,
performance, and strong chipkill protection has not been evaluated
to the best of our knowledge.

Similar to [51], MC-DIMMs [4] have also been suggested to
subset DIMM ranks and improve power consumption. As part
of this work, techniques to implement chipkill correct with MC-
DIMMs were developed [3]. These techniques, like the ones in
Section 3.2, use 3-check-symbol SSC-DSD chipkill correct. The
MC-DIMM approach uses uniform and fixed redundancy, however,
and requires dedicating one DRAM chip to each of the three check
symbols, which increases system cost. In our work we focused on
adding flexibility to the design and on using standard DIMMs to
support strong memory error tolerance in efficient configurations.

Our research is also related to prior work that aims to reduce
the overhead of reliable execution by using non-uniform protec-
tion. The Duplication Cache [2] can reduce the overhead of provid-
ing dual-modular redundancy for shared-memory multiprocessor
reliable systems. Instead of replicating all of memory, only dirty
pages are replicated to increase effective capacity. The duplication
cache is implemented on top of the virtual memory interface and
copy-on-write exceptions to identify dirty pages. Our work is very
different and is able to reduce the overhead of all aspects of mem-
ory error tolerance by extending ECC schemes to two tiers. An-
other non-uniform technique was proposed for computation rather

than the memory system. Mixed-Mode Multicore (MMM) Relia-
bility [46] proposes a mechanism that enables different reliability
modes based on user demands; dual-modular redundant execution
for reliable programs or single-mode execution for high perfor-
mance. MMM emphasizes the need to provide flexible reliability
modes in a system based on user and environmental needs. We fully
support this approach and complement prior work by introducing
flexible memory error-tolerance schemes.

The basic idea of two-tiered memory protection has been sug-
gested in the past for on-chip caches. The Punctured ECCRecovery
Cache (PERC) [33] proposed decoupled error codes, where cache
reads only perform error detection to save energy while writes up-
date both detection and correction information. Memory-Mapped
ECC (MME) [49] generalized this idea; MME uses two-tiered ECC
and stores second-tier information as data within the cached mem-
ory hierarchy. We extend the work on MME to address the needs of
main memory reliability and study flexible approaches and benefits
to protection and energy consumption.

6. Conclusions and Future Work

In this paper we presented general mechanisms to virtualize ECC-
based memory error tolerance mechanisms. We showed how Vir-
tualized ECC adds flexibility to what until now has strictly been
a design-time decision. Decoupling the mapping of data from re-
dundancy even allows systems with Non-ECC DIMMs to tolerate
potentially significant memory errors. The focus of this paper has
been on developing the fundamental mechanisms and evaluating
potential ECC schemes that take advantage of Virtualized ECC.
We showed promising early results on improving memory system
efficiency with minimal impact to performance, including examin-
ing near worst-case micro-benchmarks, which have very low arith-
metic intensity and are very demanding on the memory system.
We believe that the schemes we described in this paper are just the
starting point for opportunities to take advantage of dynamically
tunable memory protection.

In our future work wewill explore tighter interaction and collab-
oration between the application software and the reliability layer to
improve overall performance and efficiency. We believe one key to

11

increasing efficiency is to exploit flexible mechanisms and not com-
mit redundancy and overhead based on the intersection of all worst-
case scenarios. We will develop the infrastructure and evaluate the
potential of varying the error tolerance methods used on different
applications, phases, and memory regions using the techniques we
described. We also plan to apply Virtualized ECC to other architec-
tures, such as GPUs, where error protection is an emerging require-
ment [31], and memory extension appliances [24, 44]. GPU design
is perhaps more cost-sensitive than traditional processors because
the main market is not for general-purpose computing and does not
require strict reliability and availability guarantees.

References

[1] Calculating memory system power for DDR2. Technical Report TN-47-04,

Micron Technology, 2005.

[2] N. Aggarwal, J. E. Smith, K. K. Saluja, N. P. Jouppi, and P. Ranganathan.

Implementing high availability memory with a duplication cache. In Proc. the

41st IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Nov. 2008.

[3] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber. Future

scaling of processor-memmory interfaces. In Proc. the Int’l Conf. High Perfor-

mance Computing, Networking, Storage and Analysis (SC), Nov. 2009.

[4] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi. Multicore DIMM: An

energy efficient memory module with independently controlled DRAMs. IEEE

Computer Architecture Letters, 8(1):5–8, Jan. - Jun. 2009.

[5] AMD. BIOS and kernel developer’s guide for AMD NPT family 0Fh processors,

Jul. 2007. URL http://support.amd.com/us/Processor_TechDocs/
32559.pdf.

[6] S. Ankireddi and T. Chen. Challenges in thermal management of memory

modules. URL http://electronics-cooling.com/html/2008_feb_a3.
php.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. Technical Report TR-811-08,

Princeton Univ., Jan. 2008.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. In Proc. the 27th Ann. Int’l Sump.

Computer Architecure (ISCA), Jun. 2000.

[9] C. L. Chen. Symbol error correcting codes for memory applications. In Proc.

the 26th Ann. Int’l Symp. Fault-Tolerant Computing (FTCS), Jun. 1996.

[10] C. L. Chen and M. Y. Hsiao. Error-correcting codes for semiconductor memory

applications: A state-of-the-art review. IBM J. Research and Development, 28

(2):124–134, Mar. 1984.

[11] R. Danilak. Transparent error correction code memory system and method. US

Patent, US 7,117,421, Oct. 2006.

[12] T. J. Dell. A white paper on the benefits of chipkill-correct ECC for PC server

main memory. IBM Microelectronics Division, Nov. 1997.

[13] T. J. Dell. System RAS implications of DRAM soft errors. IBM J. Research and

Development, 52(3):307– 314, 2008.

[14] Earl Joseph II. GUPS (giga-updates per second) benchmark. URL http:

//www.dgate.org/~brg/files/dis/gups/.

[15] M. J. Haertel, R. S. Polzin, A. Kocev, and M. B. Steinman. ECC implementation

in non-ECC components. US Patent Pending, Serial No. 725,922, Sep. 2008.

[16] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster and more

flexible program analysis. In Proc. the Workshop on Modeling, Benchmarking

and Simulation, Jun. 2005.

[17] R. W. Hamming. Error correcting and error detecting codes. Bell System

Technical J., 29:147–160, Apr. 1950.

[18] HP. Server power calculators. URL http://h30099.www3.hp.
comconfigurator/powercalcs.asp.

[19] M. Y. Hsiao. A class of optimal minimum odd-weight-column SEC-DED codes.

IBM J. Research and Development, 14:395–301, 1970.

[20] IBM. Enhancing IBM Netfinity server reliability, 1999.

[21] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM, Disk. Morgan

Kaufmann, 2007.

[22] R. Kuppuswamy, S. R. Sawant, S. Balasubramanian, P. Kaushik, N. Natarajan,

and J. D. Gilbert. Over one million TPCC with a 45nm 6-core Xeon CPU. In

Proc. Int’l Solid State Circuits Conf. (ISSCC), Feb. 2009.

[23] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback - a technique

for improving bandwidth utilization. In Proc. the 33rd IEEE/ACM Int’l Symp.

Microarchitecture (MICRO), Nov.-Dec. 2000.

[24] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt. Un-

derstanding and designing new server architectures for emerging warehouse-

computing environments. In Proc. the 35th Ann. Int’l Symp. Computer Archi-

tecture (ISCA), Jun. 2008.

[25] S. Lin and D. J. C. Jr. Error Control Coding: Fundamentals and Applications.

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood. PIN: Building customized program analysis tools

with dynamic instrumentation. In Proc. the ACM SIGPLAN Conf. Programming

Language Design and Implementation (PLDI), Jun. 2005.

[27] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner. SIMICS: A full system simulation

platform. IEEE Computer, 35:50–58, Feb. 2002.

[28] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s general

execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Com-

puter Architecture News (CAN), 33:92–99, Nov. 2005.

[29] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high performance

computers. URL http://www.cs.virginia.edu/stream/.

[30] U. Nawathe, M.Hassan, L.Warriner, K. Yen, B. Upputuri, D.Greenhill, A.Kumar,

and H. Park. An 8-core, 64-thread, 64-bit, power efficient SPARC SoC. In Proc.

the Int’l Solid State Circuits Conf. (ISSCC), Feb. 2007.

[31] NVIDIA. Fermi architecture. URL http://www.nvidia.com/object/

fermi_architecture.html.

[32] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc.

for Industrial and Applied Math., 8:300–304, Jun. 1960.

[33] N. N. Sadler and D. J. Sorin. Choosing an error protection scheme for a

microprocessor’s L1 data cache. In Proc. the Int’l Conf. Computer Design

(ICCD), Oct. 2006.

[34] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: A large-

scale field study. In Proc. the 11th Int’l Joint Conf. Measurement and Modeling

of Computer Systems (SIGMETRICS), Jun. 2009.

[35] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. Wiley,

Dec. 2004.

[36] C. Slayman. Impact of error correction code and dynamic memory reconfigura-

tion on high-reliability/low-cost server memory. In Proc. IEEE Int’l Integrated

Reliability Workshop (IIRW), Oct. 2006.

[37] Standard Performance Evaluation Corporation. SPEC CPU 2006, 2006. URL

http://www.spec.org/cpu2006/.

[38] J. Standards. JESD 79-2e DDR2 SDRAM specification, 2008.

[39] J. Standards. JESD 79-3b DDR3 SDRAM specification, 2008.

[40] OpenSPARC T2 System-On-Chip (SOC) Microarchitecture Specification. Sun

Microsystems Inc., May 2008.

[41] UltraSPARC R©III Cu. Sun Microsystems Inc., Jan. 2004.

[42] M. Talluri and M. D. Hill. Surpassing the TLB performance of superpages with

less operating system support. In Proc. the 6th Int’l Conf. Architectural Support

for Programming Languages and Operating Systems (ASPLOS), Oct. 1994.

[43] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1.

Technical report, HP Laboratories, Apr. 2008.

[44] Violin Memory Inc. Scalable memory applicance. URL http://
violin-memory.com/DRAM.

[45] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob.

DRAMsim: A memory-system simulator. SIGARCH Computer Architecture

News (CAN), 33:100–107, Sep. 2005.

[46] P. M. Wells, K. Chakraborty, and G. S. Sohi. Mixed-mode multicore reliability.

In Proc. the 14th Int’l Conf. Architectural Support for Programming Languages

and Operating Systems (ASPLOS), Mar. 2009.

[47] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory protection. In Proc.

the 10th Int’l Conf. Architectural Support for Programming Languages and

Operating Systems (ASPLOS), Oct. 2002.

[48] D. H. Yoon and M. Erez. Flexible cache error protection using an ECC FIFO.

In Proc. the Int’l Conf. High Performance Computing, Networking, Storage, and

Analysis (SC), Nov. 2009.

[49] D. H. Yoon and M. Erez. Memory mapped ECC: Low-cost error protection

for last level caches. In Proc. the 36th Ann. Int’l Symp. Computer Architecture

(ISCA), Jun. 2009.

[50] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page interleaving scheme

to reduce row-buffer conflicts and exploit data locality. In Proc. the 33rd

IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Dec. 2000.

[51] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-rank:

Adaptive DRAM architecture for improving memory power efficiency. In Proc.

the 41st IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Nov. 2008.

12

