Virtualized ECC: Flexible Reliability in Memory Systems

Doe Hyun Yoon Advisor: Mattan Erez

Electrical and Computer Engineering The University of Texas at Austin

- Reliability concerns are growing
 - Memory failure rate is increasing
 - Shrinking semiconductor design rules & lower Vdd
 - More and more memory cells
 - Higher capacity & larger number of nodes in a system
 - Industry consistently requires high reliability levels
 - Chipkill and even higher reliability levels
- Traditional solutions
 - Apply ECC uniformly across memory locations
 - Not all apps/data need same error tolerance levels
 - Cost increases with tolerance levels
 - Hard to meet the required level of reliability at low cost

- Store redundant info within memory hierarchy
- Dynamic mapping between data and ECC
 - Flexible protection level/access granularity
- Two-tiered protection

- Motivation
- Traditional Memory Protection
- Virtualizing Redundant Information
- Memory Mapped ECC (MME)
- Virtualized and Flexible ECC (V-ECC)
- Adaptive Granularity Memory System (AGMS)
- Conclusions and Future Work

Traditional Memory Protection

- Uniform ECC
 - Simple and transparent to the programmer
- Dedicated and aligned HW resources
 - Waste storage and bandwidth
 - Better reliability at higher cost
- Design-time decision
 - Error tolerance level
 - Access granularity

Users always pay for the cost of memory protection

W Virtualizing Redundant Information

- Store all or part of redundant information within the memory hierarchy
 - Minimize dedicated resources to redundant information
 - Two-tiered protection
 - Tier-1 error code: Low-cost, low-complexity for the common case
 - Tier-2 error code: Strong error correcting code, but rarely accessed
 - Decouple data and ECC storage
- Flexibility in memory protection
 - Adaptive error tolerance levels / access granularities
- Users pay for the error tolerance they need, rather than overpay for what they might need

Examples of Virtualizing ECC

- Last-level cache protection with memory mapped ECC
 - Memory Mapped ECC (MME) [ISCA'09]
 - ECC FIFO [SC'09]
- Chipkill level flexible main memory protection
 Virtualized and Flexible ECC (V-ECC) [ASPLOS'10]
- Adaptive memory access granularity with ECC
 Adaptive Granularity Memory System (AGMS) [On-going]

Memory Mapped ECC [ISCA'09]

Memory Mapped ECC [ISCA'09]

T2EC is memory mapped and cacheable

Memory Mapped ECC (Cont'd)

- Last-level cache protection mechanism
- Two-tiered protection
 - Tier-1 error code (T1EC)
 - Low-overhead on-chip error code
 - Tier-2 error code (T2EC)
 - Strong memory mapped error correcting code
 - LLC is dynamically and transparently partitioned into data and T2EC
- Fixed, one-on-one mapping between physical cache lines and memory mapped T2EC
- Area saving: 15%, power saving: 9%

Virtualized and Flexible ECC [ASPLOS'10]

Virtualized and Flexible ECC [ASPLOS'10]

- Main memory protection mechanism
- Virtualize redundant information within the memory hierarchy
 - Augment Virtual Memory (VM)
 - Dynamic mapping between data and ECC
- Flexible memory protection
 - Single hardware can provide different tolerance levels
 - Allow adaptive tuning of reliability levels
- Enable protection even for Non-ECC DIMMs

Virtualized and Flexible ECC (Cont'd)

Write-back a T2EC line when evicted

Performance Impact of V-ECC

- Increased data miss rate

 T2EC lines in LLC reduce effective LLC size
- Increased traffic due to T2EC write-back
 - One-way write-back traffic
 - Not on the critical path

- Single Device-error Correct and Double Device-error Detect
 - Can tolerate a DRAM failure
 - Can detect a second DRAM failure
- Traditional chipkill requires x4 DRAMs
- V-ECC x8
 - Two-tiered error code
 - Simpler T1EC relaxes module design constraints
 - Enable more energy efficient x8 configurations
 - T2EC for error correction is virtualized

- Single HW with V-ECC can provide
 - Chipkill-detect, Chipkill-correct, and Double chipkill-correct
 - Use different T2EC for different pages

	Chipkill-	Chipkill-	Double Chipkill-
	Detect	Correct	Correct
T2EC per 64B	0B	4B	8B

- Maximize performance/power efficiency with Chipkill-Detect
- Stronger protection at the cost of additional T2EC accesses

VECC x8 (normalized to baseline x4 chipkill)

V-ECC with Non-ECC DIMM (normalized to baseline x4 chipkill)

Adaptive Granularity Memory System

Adaptive Granularity Memory System

- Bandwidth wall
 - More and more cores/threads per chip
 - Off-chip bandwidth scaling is limited
 - due to pins and power
- Fixed, coarse access granularity
 - 64B or 128B data block with 12.5% redundancy overhead
 - Works well with most applications with spatial locality
- Inefficient for apps with low spatial locality
 - Waste off-chip BW for unnecessary data with a block
 - Can utilize off-chip BW better with fine-grained blocks
- Cache hierarchy, DRAM and uniform ECC prevents fine-grained accesses

Coarse- and Fine-Grained Memory Access

- Coarse-grained access
 - Lower ECC/control overhead
 - Generally works well
 - But, poor throughput without spatial locality

Data

ECC

- Fine-grained access
 - Higher ECC/control overhead
 - Better throughput, if apps have poor spatial locality

Data	ECC	Data	ECC	Data	ECC	Data	ECC
Data	ECC	Data	ECC	Data	ECC	Data	ECC

AGMS Design

Conclusions and Future Work

- Virtualized ECC
 - Store all or part of redundant information within the memory hierarchy
 - Two-tiered protection
 - Minimize dedicated resources to redundancy
 - Flexibility in error tolerance level/access granularity
- Future work
 - GPU memory protection
 - Non-Volatile memory protection
 - Adaptive/tunable reliability
 - Generic meta-data storage

